for the Sto k es problem. Numerical e x periments contrast DEM w ith stabili z ed .... 5 .3 .1 Free - space solutions of the sto k es Equations . . . . . . . . . . . 100. 5 .3 .
!"#%$ $& '&( ) $ * +-, /.102435"37698:37;= 24?A@1= 24?A@1=D^3J_L F F!F F!F!F F!F F!FF F!F!F /FWP7FWP J=X. + ?424? B
@J?4?4?
F!F F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F !
F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F F!F!F
F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF F!FF
F!F F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F ! F F !
]
]
]
Q
Q
Q
Q-S Q7Q P m1m Pm Pm P7P ] P7P Q PlP Pl P m P l
k $! # k?Aj70CM< l FWP $ CM=D?A37% ; & F F!F!F F!F F!FF F!F!F F!F F!F!F F!FF F!F bFWP l H[65
# LN37240b=M?437;bL(Of31Ck"CM3 + F F bFWP m , ?A=M^ H[65
b?W@
Pl] PlQ PlQ PlQ
^H 8CN3 @J?A_@7
! " #
%
F
$ J %&!
LM^[.KCM8@1.KCM? .Y=D?431;L 31OJ=D^=D^3J_\H-.1;b_c . @J? .1C='.K;_`^3769.1L*$ ]bP%/37; =D^b
^b< LM0 + LNVBCN?48b=ML.1CMH ^?42A< .1CNCD. , L .1CN< CM?W=M=M
'%
4 4
lF
8
/?4;VZ< 3 3 ?4L9. L , 6565
8
65?4; 8
$
g[;
=D?A37;L 6 . , + < _?4LNVB37;-=D?A;h0370L .KVBCM31LML ?A;h=M
$
< CM@J?4
8CN3 + 24H ^?AVX^ VZ37CMCN
/
4
3
37;
) P ;
?A;bO
f_?A@
^?AVX^?AL
#)
)
1
PS
1
1
37LN=*31O!=D^b< g;?A=M<
1
P 1
P
P
P
P
1
,.
+,
1 1 1
1
PR]
P
(& = ( +
LM
$2A=M^370j1^ +h,
N
1
a37;bLM?4_b
8
8 " $ $ 8 " $ 8 " $ 8 "
b=D^[.Y= ?ALBH
I8
&(= .K;_ + < CN
N
l
^
m
lF l
LN8[.1;
^
m
l
'
l F
a 37;_?W=D?431; l F # ?46582A?4
, ?4
+,
4
,.
4
1
4
l F 7S
&
;*j1
&
!
&
^
!
&
LM.K=D?ALNO , H ^b
! ' #
'
!
l F
! ?4L.`g[;?A=M
!
lF
l F -S
l
^
LN8[.1;
8
LN8[.1;
.1;_ H 8c .1CN< 2A3/VB.12h.188CN3 b?A6 .Y=D?431;L(31O .1;_ 8H1CM
[ 37CM6 0b2 .K=M?437; l F (69. ,!+ =D?431; CN< .1V>=D?431;d
1
3
$;31=M^
bFWP m
&
' %
;< 69. , VB316980/=D< =M^< $ LN37240/=D?431; fO 37C bFWP
3K=D
&(= 0bL VZ37;LM?A_
#
$ % #
!LM0VX^*=D^[.K=
bFWP l
#
'
# #
#
^< VX^37?AVB
+,,
,,
,, ,,.
! 1 1 ! ! ! ! 1 1 ! # #
8 8 !
1
P
#
'
! ' #
'
!
bFWP
?A=M^
34
H
T
.1L?4; bFAP .1;_ .1L?4; l F
l F -S H ?A=M^
^F'^b
+, -
3 4 ,.
1
m ?A;
bFWPRQ
m 31;
$LNLM065
1
1
1
T
3 4
l
31=M?4VB
,.
+,
1 1
+, ,.
1
1
bF l
k?4j10CM< /F #& 3JV .K=M?437;d31O ^F ;-=M
^
k?Aj70CM< /FAP m $ 8[.1CN=M?A=M?437;dLM.K=D?ALNO , ?4;jc.KLMLM0b698b=M?437;bL /FAP bF
(&
bF -S
&
(
m,
1
1 2
2 −1
−1
h L
||u−u ||
||u−u ||
h L
2
10
2
10
DG SDG DEM
−2
10 −2 10
−2
k?4j10CM< /FAP CNCM37C82A31=DL3KO'"CM3 + F bF bFAP
0
J
+,
−1
10
m , H[69
DG SDG DEM h
0.75
0.75 z
1.25
z
1.25
0.25
−0.25 0
0.25
0.2
0.4
0.6
0.8
1
−0.25 0
0.2
0.4
0.6
0.8
k?4j70bCM< bFWPR] $LM372A0b=D?A37; Of37C"CM3 + F /F bFWP 2A
−1
10
, [H 69
4 3
4
" 4 1
1
8
0=D?A@1= + < .g[;b?A=D
LN8[.1;
1
3 %
3 a@7
LM8.1;
1
3
+ 370;_.1C , F ;
FGS
^
8
FUQ
P
FWP m
/ ?4;VZ< =D^< =M=) P .K;_ P k?AjF F l .1;_% aLM0VX^=D^[.Y= P m .1;_% P P P F T<
7Q
LM
VB31;LN=M?A=D0/=D
P P
P P &
S/P
$
FWPR]
2
J
)+! 0
J
(& =0L_F ; < /8:37;
8
$ "
P
$ )
$
"
"
P
1
S
) 1
1
$ ) $
)
)
P
)
bF#;
$
l l
k?4jF F `VZ37698.1CMO = =D35CM?Aj7^-=
m H *%
m,H
P m H
k?Aj70CM< F b E
m,
h
0
0
10
10 1
1
1
1
−1
−1
h L
||u−u ||
h L
||u−u ||
2
10
2
10
−2
10
−3
−3
10
10 GLS SBO DEM
−4
10 −2 10
−2
10
−4
10 −2 10
−1
h
GLS SBO DEM
10
−1
k?4j10CM< bFAP m CNCM37C82A31=DL3KO'"CM3 + F F /F l H *
S1]
10
h
m,
,
k?Aj70CM< FWP7P # F
P
y
y
0.5
P
m
l
l Xm ED
0.5
0.1
x
x
k?4j10CM< bFAP S #J=X.K=M
−1
10
||u−u ||
h L
2
1 1
−2
10
GLS SBO DEM
−3
10 −2 10
−1
10
k?4j10CM< FWPRQCNCM37C82A31=31Ok"CM3 + F bF bF h
=D39.1;*370b=& [3 LM?A_
" .1; _ aLM0bVX^=D^.K=
.1;_
m
$L ?A; FWP l >H a < _b
"!
1
1
1
$ "" " 1
""
1
m ?4;
37;
^
]
/
=D^b
(
N
% (
&(= 0bL VZ37;LM?A_
N
&
NJ
$ L*LMH * m ,
,
m , f24O ==M3
0
0
10
10
1
1 1
1 −1
−1
h L
||u−u ||
h L
||u−u ||
2
10
2
10
−2
10
−3
−2
10
−3
10
10 GLS SBO DEM
−4
10 −2 10
−4
10 −2 10
−1
10
h
k?4j10CM< bF l S CNCM37C82A31=DL3KO'"CM3 + F F bF l
GLS SBO DEM
−1
m , H[69
k?Aj70CN< F bE
,, ,,.
1
4 ) 463!' '
?4; m 4? ; 73 ;
/FAP
^
m
7 '
7
/F
l
P l
/FGS
2 ) 5 ^
1
P l
' ' '
'
' '
'
'
'
'
P
)
'&
JN J ^
,, ' 1 ' ! ,., ,,
1 ! 1
' !
' ! ' ! !
!
)
)
1
) ! 1
) !
1
1
1 1
) !
!
m ! m
1
)
m
m
Q7Q
lF mH
! ) ) ! % 1
LN0VX^=M^[.K=
' ! ' ! ! ' ! ' ! ' '
/FUQ
" CN
/?4;VZ
/
/ /
/
/ 1
463!'
4
l #
P
P l
1
/
/
/
1
m /
/
3 4
m
/
CN376 f?A@ >H 4? L^3169/ 37j1
&
#IH P l F 73 C ?A=D^ +
P
3K=D< =D^[.Y=
l 31;*65
;
/FWP S
3 Z< @1
F
'
&D H
HbLM3 '
45'
CN376 $ LMLM0b698b=M?437; /F bHa=D^b
/?4;VZ<
m
m H
%
3 " .KCM<
Pm]
,
/F l
,
m
?A;
,
1
PmQ
P 1
Q
,
/F l ]
^=D?A37; + B< 2A37;j7L=D3 F T< VB.1; ==D^b<
OfCN376 & 1. ;b_ LN=D?A242^[. @7< P P P 1 1
+ ?A24?4;b< .1C`=D
=M^
"
^H
5F#[CM316
^Hb$LMLN0658b=D?A37; /F l .1;b_ /F >H -] -] " " ^
1 "
/
F$;.12437j1370LM2 , =D3`& H&(
k?4j10CM< /F $@7O =.1;_
0
CN?4j7^-=
10
1
1 1
||u−u ||
h V
1
h V
0
10
||u−u ||
10
h
−1
10
GLS SBO DEM
−2
10 −2 10
−1
10
GLS SBO DEM
−2
10 −2 10
−1
10
−1
k?4j10CM< JFU] =D^3J_ ?A;`.65
$ 24265
2
2
−2
−2
10
10 2
1
h L
||u−u ||
||u−u ||
h L
2
1
−3
10
−3
10
GLS SBO DEM
−4
10 −2 10
GLS SBO DEM
−4
10 −2 10
−1
10
−1
10
k?Aj70CM< /FWP l
)
31=M?4VB
^
k?Aj70CN< /F lKm "CM
Pl]
0
0
10
10 1 2
h L
||p−p ||
||p−p ||
h L
2
1
1
−1
1
−1
10
10
GLS SBO DEM
−2
10 −2 10
GLS SBO DEM
−2
10 −2 10
−1
10
−1
10
%?4j70CN< /F l "CM
−1
−1
10
10
GLS SBO DEM
−2
10 −2 10
GLS SBO DEM
−2
10 −2 10
−1
10
−1
k?4j10CM< /F l S B >H l P P WP7P S :P l bH:PRQ7Q /F
$ P% )`F
< k.12A24H 7S/P 1]-S/HIPRQ7Q F
$ l7l %
F !FEaCN3/3 hL5.1;_ F bFF0j7^
: #">Hb@7372A065
P 1Q
# "
$ %
F F $0; + 0CNj75cs # A BRA7 ? K}I O"#$# 0 ^ ¤Y_bX\RY_~`4f@YZ SA© XZZ`W YWL^T\XV{`4f@YZ ^WYZdeX`$eX . l , (*g m9, " + g ,U/ ^ o %"E By ! 7 %"A8E BR&E !C?@! E 7 By ?3 E%" PGME 2 @8A # 2P% < A8 ?@! E 7K % !CN&O ! E 7 "2@E I # ABR [SU\^]T_jXV X_bSAUeP`W ]*]Z`4@ 0f0b9YW`4f0e YW [W `© W0XV{`W ("h . UK . . k{l , g , m9, gg ( (9 + ,U/ t ^O ; 7 ?3 )8A8 O 238 J EG 7"E 7"8E 79GME 2QB ! 7" O %"2 !$# ? 23 # # ABRA7 ? K "2@E ! By ?@! E 7 GME 2 ?@