Discrete Integer Fourier Transform in Real Space: Elliptic Fourier Transform Artyom M. Grigoryan Merughan M. Grigoryan
Department of Electrical and Computer Engineering The University of Texas at San Antonio One UTSA Circle, San Antonio,TX 78249-0669, USA Tel: (210) 458-7518 Fax: (210) 458-5589
[email protected] [email protected]
Outline Introduction Discrete Fourier transform (DFT) in the real space N-block T-transform generated discrete transform (T-GDT) Roots of the identity matrix N-block elliptic DFT Properties of the elliptic DFT Comparison with the DFT Examples Summary
Art and Merughan, SPIE 2009
2
Introduction
The traditional N-point DFT is defined as the decomposition of the signal by N roots of the unit, which are located on the unit circle. Multiplication of a complex number by a twiddle factor can be considered in matrix form; as the Givens transformation. The definition of the DFT in the real space can be generalized by using a two-point transform T different from the rotations. It is assumed that the matrix of T defines a one-parametric group with period N. We introduce a concept of the T-generated N-block discrete transformation, or N-block T-GDT. For the N-block T-GDT the inner product is defined with respect to which rows/columns of the matrix are orthogonal. T is parameterized; selection of parameters can be done among the integer numbers, which leads to integer-valued metric.
Art and Merughan, SPIE 2009
3
DFT in Real Space Wk
The N-point DFT: decomposition of the signal by N roots of the unit WNk
e
j
2 k N
ck
jsk
cos(2 k / N )
j sin( 2 k / N )
Multiplication in matrix form: x Tkx
W kx
( x1 , x2 ) ck sk
sk ck
(ck
jsk )( x1
cos sin
x1 x2
N-point DFT of vector
sin cos
k k
f
jx2 ) k k
x1 x2
( f 0 , f1 , f 2 ,..., f N 1 )
N 1
W np f n , p
Fp
0 : ( N 1).
n 0
Matrix of the N-point DFT
[ FN ]
1 1 1 1
1 W1 W2 ...
1 WN
1 W2 W4 ... 1
WN
... 1 ... W N 1 ... W N 2 ... ... 2
...
W1
Art and Merughan, SPIE 2009
4
Transform: CN to R2N
Vector representation f
f
(r0 , i0 , r1 , i1 , r2 , i2 ,..., rN 1 , iN 1 )
with the vector component fn
( f 2n , f 2n 1 )
(rn , in )
(Re f n , Im f n ) .
N-point DFT as 2N-point in R2N Fp
Rp Ip
N 1
rn , p in
N 1
T
np
T np
fn
n 0
n 0
0 : ( N 1),
has the following matrix: [ FN b ]
I
I
I
I I I
T1 T2 ...
T2 T4 ...
I TN
T k1
k2
T k1T k2 ,
1
TN
...
I
... T N 1 ... T N 2 , ... ... 2
k1 , k 2 ,
...
(T 0
T1
TN
I ).
Art and Merughan, SPIE 2009
5
Exm: 6-point DFT in R12 Six-point DFT with the matrix
X
1 0
1
0 ...
1
0
1
0
0
1
0
1 ...
0
1
0
1
1 0
c1
s1 ...
c4
s4
c5
s5
0
s1
c1 ...
s4
c4
s5
c5
1
... ...
... ... ...
... ...
1 0
c4
s4 ...
c4
s4
... ... , det( X ) c2 s 2
0
1
s4
c4 ...
s4
c4
s2
c2
1 0
c5
s5 ...
c2
s2
c1
s1
0
s5
c5 ...
s2
c2
s1
c1
1
66.
sk for Since c6 k ck and s6 k k=1,2 and c3 1, s3 0,
Xˆf
R4
1
1
1
1
1
1 0 1 0 1
c1 s1 c1 s1 1
c1 s1 c1 s1 1
1 0 1 0 1
c1 s1 c1 s1 1
R2 , I 4
I2
and
1 f0 c1 f1
R0 R1
f2 f3 f4 f5
I1 R2 I2 R3
s1 c1 s1 1
R5
R1 , I 5
[ Two multiplications by s1 , (c1
I1 . 0.5) ]
Art and Merughan, SPIE 2009
6
The inner product
The DFT is linear in the R2N and the inner product is preserved for extended DFT: 2N 1
( f , g)
2N 1
fn gn n 0
( Xf , Xg )
[ F ]k [G ]k k 0
where [ F ]k and [G]k denote components of the extended DFTs of the vectors f and g, respectively.
Art and Merughan, SPIE 2009
7
Integer representation
The definition of the DFT in the real space R2N can be generalized by 2-D transforms different from the rotations. The 2N-point transform of the vector f
( f 0 , f1 , f 2 , f 3 ,..., f 2 N 2 , f 2 N 1 )
is defined by Fp
F2 p F2 p 1
N 1
N 1
T n 0
np
fn
T n 0
np
f 2n f 2n
, 1
p 0 : ( N 1).
T is a matrix 2 2, det T=1, and it defines a one-parametric group with period N. F We call the transformation X : f the T-generated N-block discrete transformation, or the N-block T-GFT. Case T=W: N-block W-GFT (N-block DFT) when ( f 2 n , f 2 n 1 ) (rn , in ). Art and Merughan, SPIE 2009
8
N=6 case (space R12) Consider the 6-block T-GDT: T I
X
X (T )
1
1
1
0
I
I
I
T1 T 2
I
T2 T4 3
I
T
I I
T4 T2 T5 T4
1, T 6
det T
, I
I
I,
I
T3 T4 T5 T2 T4
I
I
3
T
I
T
3
, det( X ) 66.
I T4 T2 T 3 T 2 T1
The inverse matrix: X
1 6
1
I
I
I
I
T
1
T
2
I
T
2
T
4
I
T
3
I I
T T
4 5
I
I T T
T
4
3
I T
2
I
f
I
I
4
T
5
I
T5 T4
T
2
T
4
I
T4 T2
T
3
I
T3
T T
2
I I
T2 T4 T1 T 2
I T T 3 T
Cyclic shift:
I
T
3
X (T ) 4
I
I 4 2
1
X (T 1 ) 4
I
I
I
T3 T2 I T3
I T1
T4 T2 I
T3
I T2 T4 T3 T4 T5
62 I .
f
( f 0 , f1 , f 2 , f 3 , f 4 , f 5 ) ( f 5 , f 0 , f1 , f 2 , f 3 , f 4 ) ( Xf ) p ( Xf ) p T p ( Xf ) p , p 0 : 5, f , f R12 . Art and Merughan, SPIE 2009
9
N=6: Inner product ( f , g)
( Xf , Xg )
We define the inner product as ( f , g)A
f Ag
where A≠I is a matrix 12 12. For that we first define a matrix R T RT and, then, A I 6 R. We obtain solutions R
a
R ( a , b)
Example:
R
| x | 2 ( x, x ) R
a b a
x02
|f|
( f , f )A
1 1
x12
.
x0 x1 ,
11
f n 0
.
1 0
R(1,0)
11 2
b
2 n
f 2 n f 2 n 1. n 0 Art and Merughan, SPIE 2009
10
“Inner product” in
12 R
The metric can be defined as g |2 ( f
d( f , g) | f
g, f
g)A
however ( f , g ) A ( g , f ) A , f To obtain the property ( f , g)A
(g, f ) A
b
g
0
R12 .
a / 2.
Example: R
1 R(2, 1) 3
( f , g)A
( Xf , Xg ) A
1 3
1 3
2
1
1
2
5
[ f 2n
f 2n 1 ]
n 0
1
5
6 3
p 0
g 2n 2 g 2n 1
2
1
1
[ F2 p F2 p 1 ]
f,g
, det R 1.
2 1
G2 p 2 G2 p 1 1
R12 . Art and Merughan, SPIE 2009
11
Roots of the unit matrix ? Integer matrix such that T I . 2 / 5, c cos( ) 0.3090, For 5
C C( )
c
c 1
0.3090
0.6910
c 1
c
1.3090
0.3090
cU V c
1 1
0
1
1 1
1
0
and C 5 I . • 5-block C-GDT is defined by det(C) 1 I X (C )
I
I
I
I
I C1 C 2 C 3 C 4 I C 2 C 4 C 1 C 3 , X 4 (C ) I C 3 C1 C 4 C 2
I C4 C3 C2 I I 1 1 X 1 (C ) X (C 1 ) I 5 5 I
25 I , det X (C ) 55.
C1 I I I I C 4 C 3 C 2 C1 C 3 C1 C 4 C 2 . C 2 C 4 C1 C 3
I C1 C 2 C 3 C 4 Art and Merughan, SPIE 2009
12
Elliptic DFT
x
Consider the orbit of a point x with respect to the group of motion {C k ; k 0 : 4}, y1
Cx
y2
Cy1
y3
Cy2
y4
Cy3
x
Fig 1: (a) Location of all points y k and (b) scheme of the movement of the point (1,0).
The points move along the perimeter of the ellipse, x
2
y2 1, 2 b
b
1 c 1.3764 1 c
Art and Merughan, SPIE 2009
13
General Elliptic DFT 2 / N, Given N 1 and angle the following matrix is defined
C
C( )
cos cos
C C( ) R
R( )
cos
1
1
cos
cos
I sin
0
tan / 2
cot / 2
0
cos
U V.
R, , det R 1.
Such a matrix can be also defined as C C( ) cos CN ( )
I,
I sin N
R.
1.
• Definition: Given N 1 and angle the matrix C
C ( ) cos
I sin
R( )
is called the generalized elliptic matrix (GEM). Art and Merughan, SPIE 2009
14
Example: N=32 Consider the sinusoidal signal xr (t )
cos(2 0t ),
x
0
2 / N,t
tn
[0,2 ].
( xr (0),0, xr (1),0,...,0, xr ( N 1),0)
y
X (C) x
yr
( y (0), y (2), y (4), y (6),..., y (2 N
yi
( y (1), y (3), y (5), y (7),..., y (2 N 3), y (2 N 1)) 2
6
4), y (2 N
2))
0
0
Fig 2: (a,c) Sinusoidal signals and (b,d) the 32-block DEFTs of the signals. Art and Merughan, SPIE 2009
15
Imaginary part of EDFT The N-block EDFT recognizes the carrying frequency at the frequencypoints p=6 and 28=32-p.
Fig 2: Imaginary parts of the (a) 32-block EDFT and (b) 32-block DFT of the signal cos(6 0t ).
DFT does not have maximums on the carrying frequency-points 6,26. The imaginary part of the DFT by amplitude is smaller than the EDFT. Art and Merughan, SPIE 2009
16
Properties of GEM
GEM defines a one-parametric group with period N C ( 1 )C (
) C (
),
, 2. C N ( ) C ( N ) C (2 ) I .
x
y1
Cx
y2
2
Cy1
y3
Cy2
1
2
...
yN
1
Cy N
1
2
x
Cy N
1
/ 30
/ 20
/ 15
/ 10
Fig 4: The scheme of the movement of the point (1,0) when (a) N=10 and (b) N=15.
x
2
y2 b2
1, b cot
2
.
The ellipse does not depend on the angle
.
Art and Merughan, SPIE 2009
17
General case Matrix R satisfies the condition 2
R ( )
I.
• Given N 1 and matrix R such that I , we call the matrix
R2
C C ( ) cos
I sin
R
the generalized elliptic matrix (GEM). The matrix R has the form R
R(a, b, c)
when a 2 bc Example: R
a
b
c
a
1.
R( 1,2, 1)
1 2 1 1
.
Art and Merughan, SPIE 2009
18
N-block GEFT: C
C ( ) - generated matrix I
X (C )
I
I
I C1 C2 I C2 C4 ... ... ... I C N 1 C 2N N
I
2
C3 C6 ... C 3N 3
...
I
... C N 1 ... C 2 N 2 ... ... ... C 1
2 / N.
parameterized by and . The following property holds for the N-block GEFT as for the DFT: R( x) N k R( x) k , I ( x ) N k I ( x) k k 1 : ( N / 2 1),
where R(x) and I(x) denote the “real” and “imaginary” parts of the N-block GEFT of a real input x , respectively. Art and Merughan, SPIE 2009
19
Example: 5-block GEFT
For N=5, the 5-block GEFT has the following matrix: I
X (C )
X (C ( 5
C1
C3
2 )) 5
0.3090
0.3090
2.9271
0.3090
,
0.8090
0.1910
1.8090
0.8090
C5
I
1 0 0 1
1 X (C 1 ) 5
I
I
I
I
C1 C 2
I I
C 2 C 4 C1 C 3 , C 3 C1 C 4 C 2
I
C4
C3 C2
C1 0.1910
1.8090
0.8090
0.3090 0.3090
, C4
,
C3 C4
0.8090
C2
2.9271 0.3090
,
,
det X (C) 3125.
I X 1 (C )
I
I 1 I 5 I I
I
I
I
I
C 4 C 3 C 2 C1 C 3 C1 C 4 C 2 . C 2 C 4 C1 C 3 C1 C 2
C3 C4
Art and Merughan, SPIE 2009
20
Example: 512-block GEFT 2 / 512 and /6 Consider and a “complex” signal of length 512
C
/6
( )
0.9999
0.0033
0.0458
0.9999
.
Fig 5: (a) Signal of length 512, (b) the real and (c) imaginary parts of the 512-block GEFT of the signal.
Art and Merughan, SPIE 2009
21
Comparison
Images of matrices GEFT and DFT.
Fig 6: The image of the matrix of the N-block GEFT when (a) N=15, (b) N=30, and (c) N=52.
Fig 7: The image of the matrix of the N-block DFT when (a) N=15, (b) N=30, and (c) N=52.
Art and Merughan, SPIE 2009
22
Summary By constructing matrices C ( ) which are roots of the identity matrix, the N-block EFT has been defined whose block-matrices are composed by powers of C( ). The set of matrices {C ( n ); n 0 : ( N 1)}, where n 2 n / N , compose a oneparametric group of order N. The matrix C ( ) is the matrix of rotation around the ellipse y
a x b
2
1 2 x 2 b
r 2.
The ellipse turns into the circle of radius r when a=0 and b=1. Then C is the Givens rotation and the elliptic DFT is the traditional DFT. Art and Merughan, SPIE 2009
23
References 1.
A.M. Grigoryan and V.S. Bhamidipati, “Method of flow graph simplification for the 16-point discrete Fourier transform,” IEEE Trans. on Signal Processing, vol. 53, no. 1, pp. 384-389, January 2005.
2.
A.M. Grigoryan and M.M. Grigoryan, Brief Notes in Advanced DSP: Fourier Analysis with MATLAB®, Taylor & Francis Group / CRC Press, January 2009 (scheduled publication).
Art and Merughan, SPIE 2009
24
Example: 12-point Block Transform Consider the integer matrix 3x3 1 H
0
0 3
1 2
H4
H 4bl
2 2 , H 1
I and I
1
H
I
I
I
I
I I
H1 H2
H2 I
H3 H2
I
H3
H2
H1
5
4
2
6 3
5 2
2 , det( H ) 1
H2
H3
1,
0.
1 0 0
1
0
0
1
0
0
1
0
0
0 1 0 0 0 1
0 0
1 0
0 1
0 0
1 0
0 1
0 0
1 0
0 1
1 0 0 0 1 0
1 0
0 1
2 2
5 6
4 5
0 0
5 6
4 5
2 2
0 1 0 0 1 0 0
3 5 6 0 5 6 3
2 4 5 0 4 5 2
1 0 0 1 2 2 1
0 1 0 0 5 6 0
0 0 1 0 4 5 0
1 0 0 1 0 0 1
3 5 6 0 1 0 3
2 4 5 0 0 1 2
1 0 0 1 2 2 1
0 0 1 0 0 1 0
1 0 0 1 0 0 1
This is not Fourier-like transform: H2≠I. Art and Merughan, SPIE 2009
25
Example: 15-point Block Transform Consider the complex matrix 3x3 H
- 0.1483 - 1.3080i 0.3416
0.0566 - 0.5002i - 0.4714
0.5834 - 0.3570i - 0.8131 ,
1.1971 1.3080i
0.8862 0.5002i - 0.6893 0.3570i det( H ) 1.
H5
H 5 bl
H 5 bl1
I and I
H
H2
H3 H4
I I I I
I H1 H2 H3
I H2 H4 H1
I H3 H1 H4
I H4 H3 H2
I
H4
H3
H2
H1
I I I I
I H H H
I H H H
I
H
1 2 3 4
H
H 5 bl H 5 bl1
2 4 1 3
I H H H H
3 1 4 2
I H H H H
0.
4 3 2 1
5I .
This is a Fourier-like transform. Art and Merughan, SPIE 2009
26