Discrete Integer Fourier Transform in Real Space

0 downloads 0 Views 836KB Size Report
Elliptic Fourier Transform. Artyom M. ... N-block discrete transformation, or N-block. T-GDT. For the ..... “Method of flow graph simplification for the 16-point ...
Discrete Integer Fourier Transform in Real Space: Elliptic Fourier Transform Artyom M. Grigoryan Merughan M. Grigoryan

Department of Electrical and Computer Engineering The University of Texas at San Antonio One UTSA Circle, San Antonio,TX 78249-0669, USA Tel: (210) 458-7518 Fax: (210) 458-5589 [email protected] [email protected]

Outline Introduction  Discrete Fourier transform (DFT) in the real space  N-block T-transform generated discrete transform (T-GDT)  Roots of the identity matrix  N-block elliptic DFT  Properties of the elliptic DFT  Comparison with the DFT  Examples  Summary 

Art and Merughan, SPIE 2009

2

Introduction 





The traditional N-point DFT is defined as the decomposition of the signal by N roots of the unit, which are located on the unit circle. Multiplication of a complex number by a twiddle factor can be considered in matrix form; as the Givens transformation. The definition of the DFT in the real space can be generalized by using a two-point transform T different from the rotations. It is assumed that the matrix of T defines a one-parametric group with period N. We introduce a concept of the T-generated N-block discrete transformation, or N-block T-GDT. For the N-block T-GDT the inner product is defined with respect to which rows/columns of the matrix are orthogonal. T is parameterized; selection of parameters can be done among the integer numbers, which leads to integer-valued metric.

Art and Merughan, SPIE 2009

3

DFT in Real Space  Wk

The N-point DFT: decomposition of the signal by N roots of the unit WNk

e

j

2 k N

ck

jsk

cos(2 k / N )

j sin( 2 k / N )

Multiplication in matrix form: x Tkx

W kx

( x1 , x2 ) ck sk

sk ck

(ck

jsk )( x1

cos sin

x1 x2

N-point DFT of vector

sin cos

k k

f

jx2 ) k k

x1 x2

( f 0 , f1 , f 2 ,..., f N 1 )

N 1

W np f n , p

Fp

0 : ( N 1).

n 0

Matrix of the N-point DFT

[ FN ]

1 1 1 1

1 W1 W2 ...

1 WN

1 W2 W4 ... 1

WN

... 1 ... W N 1 ... W N 2 ... ... 2

...

W1

Art and Merughan, SPIE 2009

4

Transform: CN to R2N 

Vector representation f

f

(r0 , i0 , r1 , i1 , r2 , i2 ,..., rN 1 , iN 1 )

with the vector component fn

( f 2n , f 2n 1 )

(rn , in )

(Re f n , Im f n ) .

N-point DFT as 2N-point in R2N Fp

Rp Ip

N 1

rn , p in

N 1

T

np

T np

fn

n 0

n 0

0 : ( N 1),

has the following matrix: [ FN b ]

I

I

I

I I I

T1 T2 ...

T2 T4 ...

I TN

T k1

k2

T k1T k2 ,

1

TN

...

I

... T N 1 ... T N 2 , ... ... 2

k1 , k 2 ,

...

(T 0

T1

TN

I ).

Art and Merughan, SPIE 2009

5

Exm: 6-point DFT in R12 Six-point DFT with the matrix



X

1 0

1

0 ...

1

0

1

0

0

1

0

1 ...

0

1

0

1

1 0

c1

s1 ...

c4

s4

c5

s5

0

s1

c1 ...

s4

c4

s5

c5

1

... ...

... ... ...

... ...

1 0

c4

s4 ...

c4

s4

... ... , det( X ) c2 s 2

0

1

s4

c4 ...

s4

c4

s2

c2

1 0

c5

s5 ...

c2

s2

c1

s1

0

s5

c5 ...

s2

c2

s1

c1

1

66.

sk for Since c6 k ck and s6 k k=1,2 and c3 1, s3 0,

Xˆf

R4

1

1

1

1

1

1 0 1 0 1

c1 s1 c1 s1 1

c1 s1 c1 s1 1

1 0 1 0 1

c1 s1 c1 s1 1

R2 , I 4

I2

and

1 f0 c1 f1

R0 R1

f2 f3 f4 f5

I1 R2 I2 R3

s1 c1 s1 1

R5

R1 , I 5

[ Two multiplications by s1 , (c1

I1 . 0.5) ]

Art and Merughan, SPIE 2009

6

The inner product 

The DFT is linear in the R2N and the inner product is preserved for extended DFT: 2N 1

( f , g)

2N 1

fn gn n 0

( Xf , Xg )

[ F ]k [G ]k k 0

where [ F ]k and [G]k denote components of the extended DFTs of the vectors f and g, respectively.

Art and Merughan, SPIE 2009

7

Integer representation 

The definition of the DFT in the real space R2N can be generalized by 2-D transforms different from the rotations. The 2N-point transform of the vector f

( f 0 , f1 , f 2 , f 3 ,..., f 2 N 2 , f 2 N 1 )

is defined by Fp

F2 p F2 p 1

N 1

N 1

T n 0

np

fn

T n 0

np

f 2n f 2n

, 1

p 0 : ( N 1).

T is a matrix 2 2, det T=1, and it defines a one-parametric group with period N. F We call the transformation X : f the T-generated N-block discrete transformation, or the N-block T-GFT. Case T=W: N-block W-GFT (N-block DFT) when ( f 2 n , f 2 n 1 ) (rn , in ). Art and Merughan, SPIE 2009

8

N=6 case (space R12) Consider the 6-block T-GDT: T I

X

X (T )

1

1

1

0

I

I

I

T1 T 2

I

T2 T4 3

I

T

I I

T4 T2 T5 T4

1, T 6

det T

, I

I

I,

I

T3 T4 T5 T2 T4

I

I

3

T

I

T

3

, det( X ) 66.

I T4 T2 T 3 T 2 T1

The inverse matrix: X

1 6

1

I

I

I

I

T

1

T

2

I

T

2

T

4

I

T

3

I I

T T

4 5

I

I T T

T

4

3

I T

2

I

f

I

I

4

T

5

I

T5 T4

T

2

T

4

I

T4 T2

T

3

I

T3

T T

2

I I

T2 T4 T1 T 2

I T T 3 T

Cyclic shift:

I

T

3

X (T ) 4

I

I 4 2

1

X (T 1 ) 4

I

I

I

T3 T2 I T3

I T1

T4 T2 I

T3

I T2 T4 T3 T4 T5

62 I .

 f

( f 0 , f1 , f 2 , f 3 , f 4 , f 5 ) ( f 5 , f 0 , f1 , f 2 , f 3 , f 4 )  ( Xf ) p ( Xf ) p T p ( Xf ) p , p 0 : 5,  f , f R12 . Art and Merughan, SPIE 2009

9

N=6: Inner product ( f , g)

( Xf , Xg )

We define the inner product as ( f , g)A

f Ag

where A≠I is a matrix 12 12. For that we first define a matrix R T RT and, then, A I 6 R.  We obtain solutions R

a

R ( a , b)

Example:

R

| x | 2 ( x, x ) R

a b a

x02

|f|

( f , f )A

1 1

x12

.

x0 x1 ,

11

f n 0

.

1 0

R(1,0)

11 2

b

2 n

f 2 n f 2 n 1. n 0 Art and Merughan, SPIE 2009

10

“Inner product” in 

12 R

The metric can be defined as g |2 ( f

d( f , g) | f

g, f

g)A

however ( f , g ) A ( g , f ) A , f To obtain the property ( f , g)A

(g, f ) A

b

g

0

R12 .

a / 2.

Example: R

1 R(2, 1) 3

( f , g)A

( Xf , Xg ) A

1 3

1 3

2

1

1

2

5

[ f 2n

f 2n 1 ]

n 0

1

5

6 3

p 0

g 2n 2 g 2n 1

2

1

1

[ F2 p F2 p 1 ]

f,g

, det R 1.

2 1

G2 p 2 G2 p 1 1

R12 . Art and Merughan, SPIE 2009

11

Roots of the unit matrix ? Integer matrix such that T I . 2 / 5, c cos( ) 0.3090, For 5

C C( )

c

c 1

0.3090

0.6910

c 1

c

1.3090

0.3090

cU V c

1 1

0

1

1 1

1

0

and C 5 I . • 5-block C-GDT is defined by det(C) 1 I X (C )

I

I

I

I

I C1 C 2 C 3 C 4 I C 2 C 4 C 1 C 3 , X 4 (C ) I C 3 C1 C 4 C 2

I C4 C3 C2 I I 1 1 X 1 (C ) X (C 1 ) I 5 5 I

25 I , det X (C ) 55.

C1 I I I I C 4 C 3 C 2 C1 C 3 C1 C 4 C 2 . C 2 C 4 C1 C 3

I C1 C 2 C 3 C 4 Art and Merughan, SPIE 2009

12

Elliptic DFT 

x

Consider the orbit of a point x with respect to the group of motion {C k ; k 0 : 4}, y1

Cx

y2

Cy1

y3

Cy2

y4

Cy3

x

Fig 1: (a) Location of all points y k and (b) scheme of the movement of the point (1,0).

The points move along the perimeter of the ellipse, x

2

y2 1, 2 b

b

1 c 1.3764 1 c

Art and Merughan, SPIE 2009

13

General Elliptic DFT 2 / N, Given N 1 and angle the following matrix is defined 

C

C( )

cos cos

C C( ) R

R( )

cos

1

1

cos

cos

I sin

0

tan / 2

cot / 2

0

cos

U V.

R, , det R 1.

Such a matrix can be also defined as C C( ) cos CN ( )

I,

I sin N

R.

1.

• Definition: Given N 1 and angle the matrix C

C ( ) cos

I sin

R( )

is called the generalized elliptic matrix (GEM). Art and Merughan, SPIE 2009

14

Example: N=32 Consider the sinusoidal signal xr (t )

cos(2 0t ),

x

0

2 / N,t

tn

[0,2 ].

( xr (0),0, xr (1),0,...,0, xr ( N 1),0)

y

X (C) x

yr

( y (0), y (2), y (4), y (6),..., y (2 N

yi

( y (1), y (3), y (5), y (7),..., y (2 N 3), y (2 N 1)) 2

6

4), y (2 N

2))

0

0

Fig 2: (a,c) Sinusoidal signals and (b,d) the 32-block DEFTs of the signals. Art and Merughan, SPIE 2009

15

Imaginary part of EDFT The N-block EDFT recognizes the carrying frequency at the frequencypoints p=6 and 28=32-p.

Fig 2: Imaginary parts of the (a) 32-block EDFT and (b) 32-block DFT of the signal cos(6 0t ).

DFT does not have maximums on the carrying frequency-points 6,26. The imaginary part of the DFT by amplitude is smaller than the EDFT. Art and Merughan, SPIE 2009

16

Properties of GEM 

GEM defines a one-parametric group with period N C ( 1 )C (

) C (

),

, 2. C N ( ) C ( N ) C (2 ) I .

x

y1

Cx

y2

2

Cy1

y3

Cy2

1

2

...

yN

1

Cy N

1

2

x

Cy N

1

/ 30

/ 20

/ 15

/ 10

Fig 4: The scheme of the movement of the point (1,0) when (a) N=10 and (b) N=15.

x

2

y2 b2

1, b cot

2

.

The ellipse does not depend on the angle

.

Art and Merughan, SPIE 2009

17

General case Matrix R satisfies the condition 2

R ( )

I.

• Given N 1 and matrix R such that I , we call the matrix

R2

C C ( ) cos

I sin

R

the generalized elliptic matrix (GEM). The matrix R has the form R

R(a, b, c)

when a 2 bc Example: R

a

b

c

a

1.

R( 1,2, 1)

1 2 1 1

.

Art and Merughan, SPIE 2009

18

N-block GEFT: C

C ( ) - generated matrix I

X (C )

I

I

I C1 C2 I C2 C4 ... ... ... I C N 1 C 2N N

I

2

C3 C6 ... C 3N 3

...

I

... C N 1 ... C 2 N 2 ... ... ... C 1

2 / N.

parameterized by and . The following property holds for the N-block GEFT as for the DFT: R( x) N k R( x) k , I ( x ) N k I ( x) k k 1 : ( N / 2 1),

where R(x) and I(x) denote the “real” and “imaginary” parts of the N-block GEFT of a real input x , respectively. Art and Merughan, SPIE 2009

19

Example: 5-block GEFT 

For N=5, the 5-block GEFT has the following matrix: I

X (C )

X (C ( 5

C1

C3

2 )) 5

0.3090

0.3090

2.9271

0.3090

,

0.8090

0.1910

1.8090

0.8090

C5

I

1 0 0 1

1 X (C 1 ) 5

I

I

I

I

C1 C 2

I I

C 2 C 4 C1 C 3 , C 3 C1 C 4 C 2

I

C4

C3 C2

C1 0.1910

1.8090

0.8090

0.3090 0.3090

, C4

,

C3 C4

0.8090

C2

2.9271 0.3090

,

,

det X (C) 3125.

I X 1 (C )

I

I 1 I 5 I I

I

I

I

I

C 4 C 3 C 2 C1 C 3 C1 C 4 C 2 . C 2 C 4 C1 C 3 C1 C 2

C3 C4

Art and Merughan, SPIE 2009

20

Example: 512-block GEFT 2 / 512 and /6 Consider and a “complex” signal of length 512

C

/6

( )

0.9999

0.0033

0.0458

0.9999

.

Fig 5: (a) Signal of length 512, (b) the real and (c) imaginary parts of the 512-block GEFT of the signal.

Art and Merughan, SPIE 2009

21

Comparison 

Images of matrices GEFT and DFT.

Fig 6: The image of the matrix of the N-block GEFT when (a) N=15, (b) N=30, and (c) N=52.

Fig 7: The image of the matrix of the N-block DFT when (a) N=15, (b) N=30, and (c) N=52.

Art and Merughan, SPIE 2009

22

Summary By constructing matrices C ( ) which are roots of the identity matrix, the N-block EFT has been defined whose block-matrices are composed by powers of C( ). The set of matrices {C ( n ); n 0 : ( N 1)}, where n 2 n / N , compose a oneparametric group of order N. The matrix C ( ) is the matrix of rotation around the ellipse y

a x b

2

1 2 x 2 b

r 2.

The ellipse turns into the circle of radius r when a=0 and b=1. Then C is the Givens rotation and the elliptic DFT is the traditional DFT. Art and Merughan, SPIE 2009

23

References 1.

A.M. Grigoryan and V.S. Bhamidipati, “Method of flow graph simplification for the 16-point discrete Fourier transform,” IEEE Trans. on Signal Processing, vol. 53, no. 1, pp. 384-389, January 2005.

2.

A.M. Grigoryan and M.M. Grigoryan, Brief Notes in Advanced DSP: Fourier Analysis with MATLAB®, Taylor & Francis Group / CRC Press, January 2009 (scheduled publication).

Art and Merughan, SPIE 2009

24

Example: 12-point Block Transform Consider the integer matrix 3x3 1 H

0

0 3

1 2

H4

H 4bl

2 2 , H 1

I and I

1

H

I

I

I

I

I I

H1 H2

H2 I

H3 H2

I

H3

H2

H1

5

4

2

6 3

5 2

2 , det( H ) 1

H2

H3

1,

0.

1 0 0

1

0

0

1

0

0

1

0

0

0 1 0 0 0 1

0 0

1 0

0 1

0 0

1 0

0 1

0 0

1 0

0 1

1 0 0 0 1 0

1 0

0 1

2 2

5 6

4 5

0 0

5 6

4 5

2 2

0 1 0 0 1 0 0

3 5 6 0 5 6 3

2 4 5 0 4 5 2

1 0 0 1 2 2 1

0 1 0 0 5 6 0

0 0 1 0 4 5 0

1 0 0 1 0 0 1

3 5 6 0 1 0 3

2 4 5 0 0 1 2

1 0 0 1 2 2 1

0 0 1 0 0 1 0

1 0 0 1 0 0 1

This is not Fourier-like transform: H2≠I. Art and Merughan, SPIE 2009

25

Example: 15-point Block Transform Consider the complex matrix 3x3 H

- 0.1483 - 1.3080i 0.3416

0.0566 - 0.5002i - 0.4714

0.5834 - 0.3570i - 0.8131 ,

1.1971 1.3080i

0.8862 0.5002i - 0.6893 0.3570i det( H ) 1.

H5

H 5 bl

H 5 bl1

I and I

H

H2

H3 H4

I I I I

I H1 H2 H3

I H2 H4 H1

I H3 H1 H4

I H4 H3 H2

I

H4

H3

H2

H1

I I I I

I H H H

I H H H

I

H

1 2 3 4

H

H 5 bl H 5 bl1

2 4 1 3

I H H H H

3 1 4 2

I H H H H

0.

4 3 2 1

5I .

This is a Fourier-like transform. Art and Merughan, SPIE 2009

26