A Modified Bird-Mating Optimization with Hill-Climbing for ... - MDPI

5 downloads 472 Views 5MB Size Report
Aug 23, 2016 - Abstract: This paper endeavors to apply a hybrid bird-mating ... imbalance of each node and to minimize the voltage deviation while satisfying ..... Chang, C.Y.; Yu, J.S.; Chen, C.S. Effects of Open-Wye/Open-Delta .... hill-climbing method for maximum power point in microgrid standalone photovoltaic system.
energies Article

A Modified Bird-Mating Optimization with Hill-Climbing for Connection Decisions of Transformers Ting-Chia Ou 1, *, Wei-Fu Su 2 , Xian-Zong Liu 3 , Shyh-Jier Huang 3 and Te-Yu Tai 3 1 2 3

*

Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan Department of Electrical Engineering, Kun Shan University, Tainan 71070, Taiwan; [email protected] Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; [email protected] (X.-Z.L.); [email protected] (S.-J.H.); [email protected] (T.-Y.T.) Correspondence: [email protected]; Tel.: +886-2-8231-7717 (ext. 6389)

Academic Editor: Issouf Fofana Received: 23 May 2016; Accepted: 18 August 2016; Published: 23 August 2016

Abstract: This paper endeavors to apply a hybrid bird-mating optimization approach to connection decisions of distribution transformers. It is expected that with the aid of hybrid bird-mating approach, the voltage imbalance and deviation can be mitigated, hence ensuring a satisfactory supplying power more effectively. To evaluate the effectiveness of this method, it has been tested through practical distribution systems with comparisons to other methods. Test results help confirm the feasibility of the approach, serving as beneficial references for the improvement of electric power grid operations. Keywords: bird-mating optimization; voltage imbalance; and voltage deviation

1. Introduction Three-phase and single-phase loads are sometimes supplied by transformers in the distribution system [1–3]. However, different connections of transformers may cause severe phase voltage imbalance, resulting in a larger ground current and bringing extra power losses. With consideration of transformer costs and loss reduction, the connection of transformers and negative sequence (N-Seq) current injection into utility generators have been deemed a feasible alternative to improve such system imbalance [4,5]. A systematic study with an effective solution approach is crucial to maintain a good quality of supplying power, thereby motivating the study made in this paper. Several improved schemes such as an energy storage system [6], static compensator (STATCOM) control [7,8], feeder cross-section increment, capacitor installation [9], flexible AC transmission system (FACTS) devices [10], and network reconfiguration [11] were proposed to deal with this three-phase imbalance problem [12–14]. Compared to the additional investment for equipment purchasing, network reconfiguration became an economically feasible alternative, which can be performed by solely changing the connection of distribution transformers. The phase-switching work can be practically incorporated below: (a) Choose the transformer to be ready for the change of phase connection; (b) Perform the fuse link to disconnect the regional power supply; (c) Ensure the attachment of the grounding copper rod; (d) Execute the phase-switching work following the confirmation of the above steps; and (e) Restore the power supply with the operation of fuse link, and complete the phase-changing work. It is also worth noting that the limitations in changing the connection should be taken into consideration since the load information varies with time, yet the phase-changing work is not real-time because it needs field labors. Previously, by formulating the phase-connection problem as a linear objective function, classical methods of using mixed-integer programming were employed to solve such imbalance problems [15,16]. The results were proved effective, yet it is arguable since the problem was handled as a linear function with approximation. Energies 2016, 9, 671; doi:10.3390/en9090671

www.mdpi.com/journal/energies

Energies 2016, 9, 671

2 of 12

In view of aforementioned issues, several heuristic methods were previously suggested [17–19]. An intelligent approach of hybrid bird-mating optimization is also proposed in this study to solve the transformer connection problem. By mimicking the courtship behavior observed in the mating process of birds, different strategies of conventional bird-mating optimization was developed [20]. Feasibility of such a method was validated yet failed to locate the global minima for complex multi-minima functions because of limited capability of exploiting more areas. To improve such a demerit, this paper further embeds the bird-mating optimization with a local random search procedure and diversity measurement, by which the connection work in a distribution grid is anticipated with a higher confidence. Moreover, with the systematic computation of the proposed method, it can be included with commercial software for industry applications, creating a potential for extending to distribution automations. 2. Problem Description In this paper, the objectives of connection adjustment of transformers are to improve the voltage imbalance of each node and to minimize the voltage deviation while satisfying equality and inequality constraints of network operation. All functions and constraints are expressed as a multi-objective optimization problem, which are detailed below. Connections of distribution transformers in a distribution network of Taiwan can be largely divided into ‘single-phase three-wired’ and ‘three-phase four-wired’. When the single-phase three-wired connection is made, transformers with mid-tap grounded are often adopted for lighting loads. With a three-phase four-wired connection, a considerable number of transformers are utilized to supply three-phase and single-phase loads for economic benefits and space-saving. The objective functions of this study are formulated so as to minimize the total voltage imbalance ratio and deviation ratio. These functions and constraints are investigated as follows. Firstly, the minimization of voltage imbalance ratio helps improve the voltage profile. A lower value of voltage imbalance ratio implies a system with a better balance. By summing up voltage imbalance ratios of all nodes, an objective function can be expressed below N

Minimize f 1 (x, u) = ∑ VURi i = 1   N max |Vi xy |−Vi avg , |Vi yz |−Vavg , |Vi zx |−Vi avg × 100% = ∑ Vi avg

(1)

i =1

where VURi is the voltage imbalance ratio of i-th bus, Vi xy , Vi yz , and Vi zx are three-phase line voltages of i-th bus, Vi avg is the average line voltage among Vi xy , Vi yz , and Vi zx , and N is the number of nodes in a distribution system [21,22]. The vector of dependent variables x is expressed as xT = [V1 , ..., Vi , ..., VN , I1 , ..., Ij , ...INl ]

(2)

where Vi is the average phase voltage of the i-th node, and Ij is the current on the j-th branch. The subscript N defines the number of nodes, and Nl represents the number of branches. The vector of control variables u is written as single

uT = [χOYOD , ..., χOYOD , ..., χOYOD , χ1 Nk 1 i single

single

, ..., χ j

single

, ...χ Ns

]

(3)

where χOYOD and χ j are connections of the i-th transformer bank for each phase and the i j-th single-phase transformer, Nk is the number of transformer banks, and Ns is the number of single-phase transformers. Secondly, considering that the voltage profile may drift up and exceed the upper limit, the connection reconfiguration of a system with a better balance is suggested to help reduce the line

Energies 2016, 9, 671

3 of 12

current and lower the voltage deviation, hence preventing jeopardization of the system. Based on this minimization of voltage deviation, an objective function is formulated as follows N

Minimize f 2 (x, u) =

∑ VDRi

(4)

i =1

where VDRi is the voltage deviation of the i-th node. By considering both voltage imbalance and voltage deviation, the paper is devoted to perform the connection of transformers while satisfying the operating constraints. Equality constraints consist of three-phase imbalanced power flow equations of a distribution system. For each state variable, the inequality constraints are expressed as follows. Imbalanced three-phase voltages not only result in extra line losses, but also affect the lifetime of electrical equipment. The voltage imbalance ratio of each node needs to be restricted as VURi ≤ VURmax , where VURmax is the limit of voltage imbalance ratio, which is set at 2% in this study for a rigorous concern [23]. Next, a larger voltage deviation not only causes the load fluctuation, but also affects facility equipment. The voltage deviation needs to be regulated within a permissible range, VDRi ≤ VDRmax , where VDRmax is the limit of voltage deviation ratio, which is set at 2.5% [24]. Since the over-voltage may jeopardize the customer, the voltage of each load bus should be operated within the interval of 1.05 and 0.95, respectively. 3. Proposed Approach This section introduces the hybrid bird-mating optimization with local random search and diversity measurement. The bird-mating optimization and its hybrid one are both detailed below. 3.1. Bird-Mating Optimization The framework of bird-mating optimization is composed of bird species and their mating procedures. In this method, each bird represents a feasible solution for the problem, and genes of each bird are regarded as decision variables. The mating behaviors considered for female birds are parthenogenetic and polyandrous ones, and the promising genes gained through the process are solutions containing better objectives. This study considers the mating behaviors including monogamous, polygynous, and promiscuous processes. The corresponding computation mimicking each kind of bird-mating is discussed. Monogamy is a form of relationship in which a male bird tends to copulate with a female bird. Polygyny is a form of plural marriage in which a male bird has a tendency to pair two or more female birds. As for the promiscuity, it refers to an unstable relationship between a male bird and his preferred female partner in the society. In this computation method, promiscuous birds are produced using stochastic process. Subsequently, concerning the polyandry, it is a form of relationship where a female bird tends to copulate with two or more male birds, and the offspring is simulated to be the same as polygynous birds generate in the method. Figure 1 shows the mating behaviors of all species of birds representing the location of distribution transformer, in which each bird string represents a set of primary phase-connections of distribution transformers. To confirm the search space, a bird string is encoded as [0, 1, 2], representing the phase-connection of [a, b, c] for single-phase transformers, and [ab, bc, ca] for three-phase transformer banks, respectively.

Energies 2016, 9, 671

4 of 12

Energies 2016, 9, 671 

4 of 12 

Energies 2016, 9, 671 

4 of 12 

Monogamy

Promiscuity

Polygyny

Male

0

1 1 2 Monogamy

0 Promiscuity 2 0

0

Male

0

1

1

2

0

2

0

0

Female

2

0

0

1

1

1

2

Female

2

0

0

1

1

1

2

Polyandry

0 Polygyny 1 1

2

0

Male Female 1

0 1

1 1

1 0

2 2

0 2

2 1

2

Female 2 1 Female

1 2

1 2

0 0

2 2

2 1

2

Female 3 2 Female

2 0

2 2

0 0

2 1

Female 3

0

2

0

1

Male

2 0 Polyandry

0

Female

0 2

0 0

Female Male 1

1 2

2 1

0 0

Male 2 1 Male

1 2

2 0

1 1

0 2

Male 3 2 Male

2

0

1

2

Male 3

Brood

0

1

1

2

0

1

2

2

Brood

0

1

0

2

2

2

1

2

Brood

0

1

1

2

0

1

2

2

Brood

0

1

0

2

2

2

1

2

Figure 1. Mating process of all species of birds.  Figure 1. Mating process of all species of birds. Figure 1. Mating process of all species of birds. 

   

Different  from  the  above  mating,  the  parthenogenesis  refers  to  an  asexual  reproduction  in  Different from the above mating, the parthenogenesis refers to an asexual reproduction in which which  a  female  bird  without  mating  with  refers  any  one  male.  Considering  all  of  Different  from  the raises  above brood  mating,  the  parthenogenesis  to  an  asexual  reproduction  in  a female bird raises brood without mating with any one male. Considering all of monogamous, monogamous, polygynous, promiscuous, and polyandrous birds, Figure 2 conclusively shows their  which  a  female  bird  raises  brood  without  mating  with  any  one  male.  Considering  all  of  polygynous, promiscuous, and polyandrous birds, Figure 2 conclusively shows their operation, operation, meaning that the state of a bit is from 0 to 1 or 2, or vice versa. In the proposed method,  monogamous, polygynous, promiscuous, and polyandrous birds, Figure 2 conclusively shows their  meaning that the state of a bit is from 0 to 1 or 2, or vice versa. In the proposed method, each each parthenogenetic bird represents the better solution, attempting to pass her better genes to her  operation, meaning that the state of a bit is from 0 to 1 or 2, or vice versa. In the proposed method,  parthenogenetic bird represents the better solution, attempting to pass her better genes to her brood brood with a smaller probabilistic disturbance. For the phase adjustment application in this paper,  each parthenogenetic bird represents the better solution, attempting to pass her better genes to her  with a smaller probabilistic disturbance. the phase‐connection,  phase adjustment application in 1  this the“bc”  lower the  lower  bound  of  0  stands  for  the For “ab”  the  value  of  is paper, for  the  brood with a smaller probabilistic disturbance. For the phase adjustment application in this paper,  bound of 0 stands for the “ab” phase-connection, the value of 1 is for the “bc” phase-connection, and phase‐connection, and the upper bound of 2 is for the “ca” phase‐connection.  the  lower  bound  of  0  stands  for  the  “ab”  phase‐connection,  the  value  of  1  is  for  the  “bc”  thephase‐connection, and the upper bound of 2 is for the “ca” phase‐connection.  upper bound of 2 is for the “ca” phase-connection.

Monogamy

Promiscuity

Polygyny

Polyandry

Parthenogenesis

Monogamy

Promiscuity

Polygyny

Polyandry

Parthenogenesis

0

1

1

2

0

2

0

0

0

1

1

2

0

2

0

0

0

1

1

2

1

2

0

0

0

1

1

2 OR 1

2

0

0

0

1

1

2 OR 2

2

0

0

0

1

1

2

2

0

0

Figure 2. Mutation process of all species of birds.  Figure 2. Mutation process of all species of birds.  Figure 2. Mutation process of all species of birds.

2

   

3.2. Hybrid Bird‐Mating Optimization Approach  3.2. Hybrid Bird‐Mating Optimization Approach  The  Bird-Mating bird‐mating Optimization optimization Approach offers  advantages  of  a  simple  concept,  fewer  parameters,  and  3.2. Hybrid easy implementation. This approach is a good way of locating some promising areas with a better  The  bird‐mating  optimization  offers  advantages  of  a  simple  concept,  fewer  parameters,  and  The bird-mating optimization offers advantages of a simple concept, fewer parameters, and solution, yet it may fail to locate global minima because of limited capability of exploiting more areas.  easy implementation. This approach is a good way of locating some promising areas with a better  easy implementation. This approach is a good way of locating some promising areas with a better Mechanisms of diversity increment and local search are hence suggested to add, anticipating enhancing  solution, yet it may fail to locate global minima because of limited capability of exploiting more areas.  solution, yet it may fail to locate global minima because of limited capability of exploiting more the solution performance of phase‐connection of distribution transformers. A simple way of calculating  Mechanisms of diversity increment and local search are hence suggested to add, anticipating enhancing  areas. Mechanisms of diversity increment and local search are hence suggested to add, anticipating the standard deviation of objective function values is adopted here in order to increase the diversity  the solution performance of phase‐connection of distribution transformers. A simple way of calculating  enhancing the solution performance of phase-connection of distribution transformers. A simple way of of the bird group. This standard deviation quantifies the amount of variation or dispersion of a set of  the standard deviation of objective function values is adopted here in order to increase the diversity  calculating the standard deviation of objective function values is adopted here in order to increase the data. When such a value decreases, it signals the promiscuous birds to generate more offspring to  of the bird group. This standard deviation quantifies the amount of variation or dispersion of a set of  diversity of the bird group. This standard deviation quantifies the amount of variation or dispersion of increase the diversity of the solution set, thus ensuring a sufficient diversity in the search space.  data. When such a value decreases, it signals the promiscuous birds to generate more offspring to  the When original  parthenogenetic  are  regarded  as  solutions  with  a  offspring higher  a set of In  data. suchapproach,  a value decreases, it signalsbirds  the promiscuous birds to generate more increase the diversity of the solution set, thus ensuring a sufficient diversity in the search space.  possibility of evolving to be better ones. Yet, considering that the exploitation around these solutions  In  the  parthenogenetic  birds  are  regarded diversity as  solutions  a  higher  to increase the original  diversityapproach,  of the solution set, thus ensuring a sufficient in thewith  search space. may  be  thoroughly  performed,  a  local  random  search  is  added  to  the  original  approach  [25].  possibility of evolving to be better ones. Yet, considering that the exploitation around these solutions  In not  the original approach, parthenogenetic birds are regarded as solutions with a higher possibility may  not  be  performed,  a  local  random  search  is  added around to  the  original  approach  [25].  of Such a local search has been adopted in several methods with different formulations. The new work  evolving to thoroughly  be better ones. Yet, considering that the exploitation these solutions may not of  this  study  is  to  combine  the  hill  climbing  with  the  bird‐mating  optimization.  Namely,  if  the  Such a local search has been adopted in several methods with different formulations. The new work  be thoroughly performed, a local random search is added to the original approach [25]. Such a local current best solution has no improvement through local exploitations, then a hill climbing method is  of  this  is  to  combine  the  hill  climbing  the  bird‐mating  optimization.  Namely,  if  study the  search hasstudy  been adopted in several methods withwith  different formulations. The new work of this activated  to  assist  in  the  solution  search.  By  combining  these  modifications,  a  hybrid  bird‐mating  current best solution has no improvement through local exploitations, then a hill climbing method is  is to combine the hill climbing with the bird-mating optimization. Namely, if the current best solution optimization approach is proposed. Computation procedures are detailed below.  activated  to  assist  in  the  solution  search.  By  combining  these  modifications,  bird‐mating  has no improvement through local exploitations, then a hill climbing methoda ishybrid  activated to assist in optimization approach is proposed. Computation procedures are detailed below. 

Energies 2016, 9, 671

5 of 12

the solution search. By combining these modifications, a hybrid bird-mating optimization approach is proposed. Computation procedures are detailed below. Energies 2016, 9, 671  4. Computation of the Method

5 of 12 

4. Computation of the Method  Figure 3 shows the flowchart of the proposed hybrid bird-mating optimization approach. Main blocks ofFigure 3 shows the flowchart of the proposed hybrid bird‐mating optimization approach. Main  the method are discussed as follows. The computation starts with the data retrieval of blocks  of  the  method  are  discussed  as  follows.  The  computation  starts  with  the  data  retrieval  of  distribution transformers, customer information, and line impedance. The parameters of bird society distribution transformers, customer information, and line impedance. The parameters of bird society  size, the initial mating probability, and the maximum number of iterations are all initialized. size, the initial mating probability, and the maximum number of iterations are all initialized. 

  Figure 3. Flowchart of hybrid bird‐mating optimization approach. 

Figure 3. Flowchart of hybrid bird-mating optimization approach. A society of N birds is formed and each bird is composed of M genes. A matrix of B = [B1 B2 B3 … Bi … BN]T  is used to represent such a society, where Bi = [βi,1 βi,2 …βi,j …βi,M], and βi,j is the j‐th gene of the i‐th  A society of N birds is formed and each bird is composed of M genes. A matrix of B = [B1 B2 B3 bird. In the society, each bird represents a potential solution to the problem, and each gene of a given  . . . Bi . . . society in matrix B is randomly assigned. Bird species are prescreened based on the objective value  BN ]T is used to represent such a society, where Bi = [βi,1 βi,2 . . . βi,j . . . βi,M ], and βi,j is the of fthe obj(Bi-th i) to eliminate those with lower potentials. The standard deviation of all objective function is  j-th gene of bird. In the society, each bird represents a potential solution to the problem, and calculated. If the current standard deviation σ(t) is smaller than the previous one σ(t − 1), then the  each gene of a given society in matrix B is randomly assigned. Bird species are prescreened based on promiscuous birds are randomly generated to increase the diversity of the solution set. These new  the objective value of fobj (Bi ) to eliminate those with lower potentials. The standard deviation of all set  of  solutions  are  next  generated  in  the  mating  process.  Next,  the  local  random  search  is  added  objective function is calculated. If the current standard deviation σ(t) is smaller than the previous one such that the promising area can be better exploited. During the exploitation, if the objective value of  the current best solution f (Bbest,neware ) is equal to the previous f obj(Bbest,old ), it implies that the current best  σ(t − 1), then the promiscuousobjbirds randomly generated to increase the diversity of the solution set. These solution has no improvement. The local random search is then carried out in anticipation of finding  new set of solutions are next generated in the mating process. Next, the local random search a  better  one.  This  optimization  process  is  terminated  after  concluding  with  no  better  solution  is added such that the promising area can be better exploited. During the exploitation, if the objective occurred within a predefined number of iterations. 

value of the current best solution fobj (Bbest,new ) is equal to the previous fobj (Bbest,old ), it implies that the 5. Numerical Studies  current best solution has no improvement. The local random search is then carried out in anticipation of finding a better one. This optimization process is terminated after concluding with no better solution In order to confirm the effectiveness of the proposed bird‐mating optimization for connection  decision aof  transformers,  the  operation  data  acquired  from  real  distribution  systems  of  Taiwan  occurred within predefined number of iterations. 5. Numerical Studies

In order to confirm the effectiveness of the proposed bird-mating optimization for connection decision of transformers, the operation data acquired from real distribution systems of Taiwan Power

Energies 2016, 9, 671  Energies 2016, 9, 671  Energies 2016, 9, 671

6 of 12  6 of 12  6 of 12

Power  Company  Company  (TPC)  (TPC)  and  and  the  the  Institute  Institute  of  of  Nuclear  Nuclear  Energy  Energy  Research  Research  (INER)  (INER)  are  are  served  served  for  for  Power  validation. For all of tests, the results of using the proposed method are compared with those using  validation. For all of tests, the results of using the proposed method are compared with those using  Company (TPC) and the Institute of Nuclear Energy Research (INER) are served for validation. For all genetic algorithm  algorithm  (GA), particle  particle swarm  swarm optimization  optimization (PSO),  (PSO), and  and bird‐mating  bird‐mating optimization  optimization (BMO)  (BMO)  genetic  of tests, the results(GA),  of using the proposed method are compared with those using genetic algorithm algorithm. In the evaluation, the number of birds in the society is set at 100, in which the number of  algorithm. In the evaluation, the number of birds in the society is set at 100, in which the number of  (GA), particle swarm optimization (PSO), and bird-mating optimization (BMO) algorithm. In the monogamous, polygynous, promiscuous, polyandrous, and parthenogenetic birds amount to 50, 30,  monogamous, polygynous, promiscuous, polyandrous, and parthenogenetic birds amount to 50, 30,  evaluation, the number of birds in the society is set at 100, in which the number of monogamous, 10, 5, and 5, respectively. The mating rate is set at 0.8, the mutation rate is 0.1, and the maximum  10, 5, and 5, respectively. The mating rate is set at 0.8, the mutation rate is 0.1, and the maximum  polygynous, promiscuous, polyandrous, and parthenogenetic birds amount to 50, 30, 10, 5, and 5, number of allowed iterations is 1000. For both genetic algorithm and particle swarm optimization,  number of allowed iterations is 1000. For both genetic algorithm and particle swarm optimization,  respectively. The mating rate is set at 0.8, the mutation rate is 0.1, and the maximum number of allowed the population size is 100, the crossover probability is 0.8, the mutation rate is 0.1, and the cognitive  the population size is 100, the crossover probability is 0.8, the mutation rate is 0.1, and the cognitive  iterations is 1000. For both genetic algorithm and particle swarm optimization, the population size is and social parameters equal to 2. These parameter settings are considered suitable for the problem  and social parameters equal to 2. These parameter settings are considered suitable for the problem  100, the crossover probability is 0.8, the mutation rate is 0.1, and the cognitive and social parameters concerned [26,27].  concerned [26,27].  equal to 2. These parameter settings are considered suitable for the problem concerned [26,27]. Figures 4  4  and 5  5  show the  the  load patterns  patterns  of feeders  feeders  measured in  in  an area  area  of TPC.  TPC.  Because of  of  Figures  Figures 4 and  and 5 show  show the load  load patterns of  of feeders measured  measured in an  an area of  of TPC. Because  Because of capacitive  effect  caused  by  underground  cables,  the  reactive  power  is  fed  to  the  secondary  capacitive  effect caused caused  underground  cables,  the  reactive  fed  to  the  secondary  capacitive effect byby  underground cables, the reactive powerpower  is fed tois the secondary substation substation during some intervals, possibly bringing a higher voltage imbalance. Assumptions and  substation during some intervals, possibly bringing a higher voltage imbalance. Assumptions and  during some intervals, possibly bringing a higher voltage imbalance. Assumptions and descriptions of descriptions of following scenarios are listed below. Case 1 considers the voltage imbalance ratio,  descriptions of following scenarios are listed below. Case 1 considers the voltage imbalance ratio,  following scenarios are listed below. Case 1 considers the voltage imbalance ratio, case 2 considers case 2 considers the voltage deviation, and case 3 considers both of them. Each scenario along with  case 2 considers the voltage deviation, and case 3 considers both of them. Each scenario along with  the voltage deviation, and case 3 considers both of them. Each scenario along with its test results are its test results are examined as follows.  its test results are examined as follows.  examined as follows.

Active Active Power Power (kW) (kW)

Resedential Feeder Feeder Resedential 5000.0 5000.0 4500.0 4500.0 4000.0 4000.0 3500.0 3500.0 3000.0 3000.0 2500.0 2500.0 2000.0 2000.0 1500.0 1500.0 1000.0 1000.0 500.0 500.0 0.0 0.0

Industrial Feeder Feeder Industrial

Commercial Feeder Feeder Commercial

10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 11 22 33 44 55 66 77 88 99 10 Time (hour) (hour) Time

  

Reactive Reactive Power Power (kVar) (kVar)

Figure 4. Active power curves of three test feeders.  Figure 4. Active power curves of three test feeders. Figure 4. Active power curves of three test feeders.  1200.0 1200.0 1000.0 1000.0

Resedential Feeder Feeder Resedential

Industrial Feeder Feeder Industrial

Commercial Feeder Feeder Commercial

800.0 800.0 600.0 600.0 400.0 400.0 200.0 200.0 0.0 0.0 -200.0 -200.0 -400.0 -400.0

10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 11 22 33 44 55 66 77 88 99 10 Time (hour) (hour) Time   

Figure 5. Reactive power curves of three test feeders.  Figure 5. Reactive power curves of three test feeders.  Figure 5. Reactive power curves of three test feeders.

5.1. Case 1  5.1. Case 1  5.1. Case 1 In this test, the proposed method is applied to an industrial feeder in the TPC test system. This  In this test, the proposed method is applied to an industrial feeder in the TPC test system. This  In this test, the proposed method is applied to an industrial feeder in the TPC test system. feeder  consists  of  seventeen  seventeen  25  kVA,  kVA,  thirty‐eight  50  kVA,  kVA,  forty‐six  100  kVA,  and  nine  167  kVA  feeder  consists  of  25  thirty‐eight  50  forty‐six  100  kVA,  This feeder consists of seventeen 25 kVA, thirty-eight 50 kVA, forty-six 100 kVA,and  andnine  nine167  167kVA  kVA distribution transformers. The total feeder load is 4.36 MW and 2.22 MVar. There are 11 high‐voltage  distribution transformers. The total feeder load is 4.36 MW and 2.22 MVar. There are 11 high‐voltage  distribution transformers. The total feeder load is 4.36 MW and 2.22 MVar. There are 11 high-voltage customers connected to three‐phase transformers.  customers connected to three‐phase transformers.  customers connected to three-phase transformers. Figure 6 shows the voltage imbalance ratio at each node before and after the phase adjustment  Figure 6 shows the voltage imbalance ratio at each node before and after the phase adjustment  Figure 6 shows the voltage imbalance ratio at each node before and after the phase adjustment considering minimizing the summation of voltage imbalance ratio at all nodes. It indicates that the  considering minimizing the summation of voltage imbalance ratio at all nodes. It indicates that the  considering minimizing the summation of voltage imbalance ratio at all nodes. It indicates that the voltage  imbalance ratio  ratio  can be  be decreased  decreased through  through the  the reconfiguration reconfiguration work. work. Figure  Figure  7  shows  the  voltage  reconfiguration  work.  voltage imbalance  imbalance ratio can  can be decreased through the Figure 7  7 shows  shows the  the convergence characteristics of different methods. Both bird‐mating optimization (BMO) and hybrid  convergence characteristics of different methods. Both bird‐mating optimization (BMO) and hybrid 

Energies 2016, 9, 671

7 of 12

convergence characteristics of different methods. Both bird-mating optimization (BMO) and hybrid Energies 2016, 9, 671  7 of 12  bird-mating optimization (HBMO) have similar convergence features, which are better than Energies 2016, 9, 671  7 of 12 other Energies 2016, 9, 671  7 of 12  bird‐mating optimization (HBMO)  have  similar  convergence  features,  which are  better  than  other  approaches. Because of added diversity and local search, the HBMO method is further improved. approaches. Because of added diversity and local search, the HBMO method is further improved.  bird‐mating optimization (HBMO)  have  similar  convergence  features,  which are  better  than  other  have  similar  convergence  which are  better  than  other  Figurebird‐mating optimization (HBMO)  8 shows the daily voltage imbalance of initial connectionfeatures,  and reconfiguration, where the largest Figure  8  shows  the  daily  voltage  imbalance  of  initial  connection  and  reconfiguration,  where  the  approaches. Because of added diversity and local search, the HBMO method is further improved.  approaches. Because of added diversity and local search, the HBMO method is further improved.  imbalance often happens near the peak load in a day. Since the reconfiguration work is usually made largest  imbalance  often  happens  the  peak  load  in  a  day.  Since  reconfiguration  work  is  Figure  8  the  daily  voltage  imbalance  of  connection  and the  reconfiguration,  where  the  Figure  8 shows  shows  the  daily  voltage near  imbalance  of  initial  and  reconfiguration,  where  the  around the peak load, the significant improvement occurs at hours 9–18 as the plot reveals. Table 1 usually made around the peak load, the significant improvement occurs at hours 9–18 as the plot  largest  imbalance  often  happens  near  the  peak  load  in  a  day.  Since  the  reconfiguration  work  is  largest  imbalance  often  happens  near  the  peak  Since  the  reconfiguration  work  is  shows that the proposed method can obtain the lowest Max.VUR%. Comparing the Max.VUR% of the reveals. Table 1 shows that the proposed method can obtain the lowest Max.VUR%. Comparing the  usually made around the peak load, the significant improvement occurs at hours 9–18 as the plot  usually made around the peak load, the significant improvement occurs at hours 9–18 as the plot  regulation algorithms the proposed method with those prior to improvement, it to  can be Max.VUR%  of  the obtained regulation by algorithms  obtained  by  the  proposed  method  with  those  prior  reveals. Table 1 shows that the proposed method can obtain the lowest Max.VUR%. Comparing the  reveals. Table 1 shows that the proposed method can obtain the lowest Max.VUR%. Comparing the  seen Max.VUR%  that the Max.VUR% fall by up to 34.5%. improvement, it can be seen that the Max.VUR% fall by up to 34.5%.  proposed  method  method with  with those  those prior  prior to  to  Max.VUR% of  of the  the regulation  regulation algorithms  algorithms  obtained  obtained  by  the  proposed  improvement, it can be seen that the Max.VUR% fall by up to 34.5%.  improvement, it can be seen that the Max.VUR% fall by up to 34.5%.  Initial Connection

Reconfiguration

Initial Connection Connection Initial

Reconfiguration Reconfiguration

11 1 88 8 15 15 15 22 22 22 29 29 29 36 36 36 43 43 43 50 50 50 57 57 57 64 64 64 71 71 71 78 78 78 85 85 85 92 92 92 99 99 99 106106 106 113113 113 120120 120 127127 127 134134 134 141141 141 148148 148 155155 155 162162 162

Voltage Unbalance Ratio (%) Voltage Unbalance Ratio Voltage Unbalance Ratio (%)(%)

2.0 1.8 2.0 2.0 1.6 1.8 1.8 1.4 1.6 1.6 1.2 1.4 1.4 1.0 1.2 1.2 1.0 0.8 1.0 0.8 0.6 0.8 0.6 0.4 0.6 0.4 0.2 0.4 0.2 0.0 0.2 0.0 0.0

1 11 414141 818181 121 121 121 161 161 161 201 201 201 241 241 241 281 281 281 321 321 321 361 361 361 401 401 401 441 441 441 481 481 481 521 521 521 561 561 561 601 601 601 641 641 641 681 681 681 721 721 721 761 761 761 801 801 801 841 841 841 881 881 881 921 921 921 961 961 961

11 1 171717 333333 494949 656565 818181 979797 113 113 113 129 129 129 145 145 145 161 161 161 177 177 177 193 193 193

Objective Function Value Objective Function Value Objective Function Value

Node Number   Node Number   Node Number   Figure 6. Comparison of the improvement in the voltage imbalance ratio for each node of the Taiwan  Figure 6. Comparison of the improvement in the voltage imbalance ratio for each node of the Taiwan Figure 6. Comparison of the improvement in the voltage imbalance ratio for each node of the Taiwan  Power Company (TPC) 162‐node system.  Figure 6. Comparison of the improvement in the voltage imbalance ratio for each node of the Taiwan  PowerPower Company (TPC) 162‐node system.  Company (TPC) 162-node system. Power Company (TPC) 162‐node system.  85 85 80 85 80 80 80 70 80 80 75 70 60 70 75 60 75 50 70 60 50 70 50 70 65 65 GA PSO 65 GA PSO 60 BMO HBMO GA PSO 60 BMO HBMO 60 55 BMO HBMO 55 55 50 50 50 Number of Iterations   Number of Iterations   Number of Iterations   Figure 7. Comparison of convergence characteristics among methods.  Figure 7. Comparison of convergence characteristics among methods.  Figure 7. Comparison of convergence characteristics among methods. Figure 7. Comparison of convergence characteristics among methods.  Max. Voltage Unbalance Ratio (%)(%) Max. Voltage Unbalance Ratio (%) Max. Voltage Unbalance Ratio

2.0 2.0 1.8 2.0 1.8 1.6 1.8 1.6 1.4 1.6 1.4 1.2 1.4 1.2 1.0 1.2 1.0 0.8 1.0 0.8 0.6 0.8 0.6 0.4 0.6 0.4 0.2 0.4 0.2

Initial Connection Initial Connection Initial Connection

Reconfiguration Reconfiguration Reconfiguration

0.0 0.2 0.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (Hour) Time 1 2 3 4 5 6 7 8 9 10 11 12 (Hour) 13 14 15 16 17 18 19 20 21 22 23 24    Time (Hour)  

Figure  Max. voltage  voltage imbalance  imbalance ratio  ratio for  for the  the industrial  industrial  Figure 8.  8. Comparison  Comparison of  of the  the improvement  improvement  in  the  Max.  feeder on a daily scale.  feeder on a daily scale.  Figure  8.  Comparison  of  the  improvement  in  the  Max.  voltage  imbalance  ratio  for  the  industrial 

Figure 8. Comparison of the improvement in the Max. voltage imbalance ratio for the industrial feeder feeder on a daily scale.  on a daily scale.

Energies 2016, 9, 671

8 of 12

Table 1. Comparison of algorithms considering the Max. voltage imbalance ratio as the single objective. Energies 2016, 9, 671  Energies 2016, 9, 671 

8 of 12  8 of 12 

Max. VUR%

GA

PSO

BMO

1.74% PSO PSO 1.16% 1.74%  1.74%  1.16%  1.16% 

1.74% BMO BMO 1.14% 1.74%  1.74%  1.14%  1.14% 

HBMO

Table 1. Comparison of algorithms considering the Max. voltage imbalance ratio as the single objective.  Table 1. Comparison of algorithms considering the Max. voltage imbalance ratio as the single objective. 

Origin 1.74% Max. VUR%  GA Max. VUR%  GA Result 1.16% Origin  1.74%  Origin  1.74%  Result  1.16%  Result  1.16% 

5.2. Case 2

1.74% HBMO  HBMO  1.14% 1.74%  1.74%  1.14%  1.14% 

5.2. Case 2  In5.2. Case 2  this case, the proposed method is applied to commercial feeders in a TPC test system. In this case, the proposed method is applied to commercial feeders in a TPC test system. The  The feeders consists of nineteen 25 kVA, thirty-eight 50 kVA, fifty-three 100 kVA, and four 167 kVA In this case, the proposed method is applied to commercial feeders in a TPC test system. The  feeders  consists  of  of  nineteen  nineteen  25  kVA,  kVA,  thirty‐eight  50  kVA,  kVA, voltage fifty‐three  100  kVA,  kVA, at and  four  167  kVA  kVA  distribution Figure 9 shows the maximum deviation each node with and feeders transformers. consists  25  thirty‐eight  50  fifty‐three  100  and  four  167  distribution  transformers.  Figure  9  shows  the  maximum  voltage  deviation  at  each  node  with  and  distribution  transformers.  Figure  9  shows deviation the  maximum  at  each  node  with  and  without the reconfiguration. The voltage mayvoltage  occur deviation  due to the inclusion of renewable without the reconfiguration. The voltage deviation may occur due to the inclusion of renewable energy.  energy.without the reconfiguration. The voltage deviation may occur due to the inclusion of renewable energy.  The equivalent loads become more evenly distributed among phases after the reconfiguration. The equivalent loads become more evenly distributed among phases after the reconfiguration. The  The equivalent loads become more evenly distributed among phases after the reconfiguration. The  The line currents are reduced along with the mitigation of voltage rise. Figure 10 shows the daily line currents are reduced along with the mitigation of voltage rise. Figure 10 shows the daily voltage  line currents are reduced along with the mitigation of voltage rise. Figure 10 shows the daily voltage  voltage deviation gained fromfield  fieldmeasurements.  measurements. After reconfiguration, increased voltage deviation  gained  from  After  the the reconfiguration,  these these increased  voltage  deviation  gained  from  field  measurements.  After  the  reconfiguration,  these  increased  voltage  deviations can be effectively restricted. deviations can be effectively restricted.  2.5 2.5 Initial Connection Initial Connection

2.0 2.0

Reconfiguration Reconfiguration

1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0

11 99 17 17 25 25 33 33 41 41 49 49 57 57 65 65 73 73 81 81 89 89 97 97 105 105 113 113 121 121 129 129 137 137 145 145 153 153 161 161 169 169 177 177 185 185 193 193 201 201

Voltage VoltageDeviation DeviationRatio Ratio(%) (%)

deviations can be effectively restricted. 

Node Number Node Number

  

Figure 9. Comparison of voltage deviation for each node of the TPC test system.  Figure 9. Comparison of voltage deviation for each node of the TPC test system. Figure 9. Comparison of voltage deviation for each node of the TPC test system. 

Max. Max.Voltage VoltageDeviation DeviationRatio Ratio(%) (%)

2.5 2.5 2.0 2.0

Initial Connection Initial Connection

Reconfiguration Reconfiguration

1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (Hour) Time (Hour)

  

Figure 10. Daily voltage deviation ratio of initial connection and reconfiguration in the test feeder.  Figure 10. Daily voltage deviation ratio of initial connection and reconfiguration in the test feeder. 

Figure 10. Daily voltage deviation ratio of initial connection and reconfiguration in the test feeder. 5.3. Case 3  5.3. Case 3  5.3. Case 3 In this case, the composite of maximum voltage imbalance ratio and voltage deviation ratio is  In this case, the composite of maximum voltage imbalance ratio and voltage deviation ratio is  concerned.  The  voltage  imbalance  of  the  the  system  system  may  become  worse  worse  because  of  the  the  deviation connected  ratio Inconcerned.  this case,The  thevoltage  composite of maximum voltage imbalance ratiobecause  and voltage imbalance  of  may  become  of  connected  renewable resources. Now for the case where the maximum voltage deviation ratio of 2.75%, it can  renewable resources. Now for the case where the maximum voltage deviation ratio of 2.75%, it can  is concerned. The voltage imbalance of the system may become worse because of the connected be controlled to be 2.5% after the reconfiguration. However, it is also suggested that if the voltage  be controlled to be 2.5% after the reconfiguration. However, it is also suggested that if the voltage  renewable resources. Now for the case where the maximum voltagestorage  deviation ratio of 2.75%, it can imbalance continues increasing,  continues increasing, then  then the  the equipment  equipment such as  such as energy  energy storage  system installation  installation or  or  imbalance  system  be controlled to be 2.5% after the reconfiguration. However, it is also suggested that if the voltage additional transformer installation may be further required. It is worth mentioning that the suitable  additional transformer installation may be further required. It is worth mentioning that the suitable  imbalance continues increasing, then the equipment such as energy storage system installation or connection of transformers can be served as an alternative for utility engineers when the supplying  connection of transformers can be served as an alternative for utility engineers when the supplying  quality is concerned.  additional transformer installation may be further required. It is worth mentioning that the suitable quality is concerned. 

connection of transformers can be served as an alternative for utility engineers when the supplying quality is concerned.

Energies 2016, 9, 671

9 of 12

Energies 2016, 9, 671 

9 of 12 

Figure 11 shows the daily voltage profile. In view of this voltage profile, the degree of imbalance Figure  11  shows  the  daily  voltage  profile.  In  view  of  this  voltage  profile,  the  degree  of  Energies 2016, 9, 671  9 of 12  is significant the night because the because  peak load thisload  feeder occurs at 22:00. Through imbalance during is  significant  during  the  night  the of peak  of  this  feeder  occurs  at  22:00.  the reconfiguration, dailythe  voltage and deviation be subsequently Through the reconfiguration, both daily voltage imbalance and deviation curve can be subsequently  Figure  both 11  shows  daily imbalance voltage  profile.  In  view  curve of  this can voltage  profile,  the  ameliorated degree  of  at each ameliorated at each hour, hence supporting the feasibility of the proposed method.  hour, hence supporting the feasibility of the proposed method. imbalance  is  significant  during  the  night  because  the  peak  load  of  this  feeder  occurs  at  22:00. 

2.5 2.0 2.5 1.5 2.0 1.0 1.5 0.5 1.0 0.0 0.5

5.4. Case 4 

5.4. Case 4

0.0

Max. Voltage Unbalance Ratio of Reconfiguration Max. Voltage Deviation Ratio of Initial Connection Max. Voltage Voltage Deviation UnbalanceRatio RatioofofReconfiguration Initial Connection Max. Max. Voltage Unbalance Ratio of Reconfiguration Max. Voltage Deviation Ratio of Initial Connection Max. Voltage Deviation Ratio of Reconfiguration

5.0

4.0 5.0 3.0 4.0 2.0 3.0 1.0 2.0 0.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1.0 Time (Hour) 0.0 1 2 3 4 5 Figure 11. Daily voltage profile.  6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Figure 11. Daily voltage profile. Time (Hour)

Voltage Deviation Ratio (%) Voltage Deviation Ratio (%)

Voltage Unbalance Ratio (%) Voltage Unbalance Ratio (%)

Through the reconfiguration, both daily voltage imbalance and deviation curve can be subsequently  Max. Voltage Unbalance Ratio of Initial Connection ameliorated at each hour, hence supporting the feasibility of the proposed method. 

   

Figure 11. Daily voltage profile. 

A distribution network with renewable generation systems [28–30] in the Institute of Nuclear  5.4. Case 4  A distribution with renewable generation systems [28–30] in the Institute of Nuclear Energy  Research network (INER)  was  taken  into  account  to  perform  the  phase  adjustment  of  distribution  transformers  in  this  case.  shows  the  one‐line  diagram  the  real  11.4  kV  distribution  Energy Research (INER) wasFigure  taken12  into account to perform the of  phase adjustment of distribution A distribution network with renewable generation systems [28–30] in the Institute of Nuclear  network in the INER. This system consists of 30 buses along with several hybrid energy resources, in  Energy  Research  (INER)  was 12 taken  into  account  to  perform  phase  of  distribution  transformers in this case. Figure shows the one-line diagramthe  of the realadjustment  11.4 kV distribution network which  includes  battery  energy  storage  system  (BESS),  micro  turbine  generator  (MTG),  diesel  transformers  in  this  case.  Figure  12  shows  the  one‐line  diagram  of  the  real  11.4  kV  distribution  in the INER. This system consists of 30 buses along with several hybrid energy resources, in which generator  photovoltaic  system  (PV), micro high  turbine concentration  photovoltaic  system  (HCPV), (DG), network in the INER. This system consists of 30 buses along with several hybrid energy resources, in  includes battery(DG),  energy storage system (BESS), generator (MTG), diesel generator vanadium redox battery (VRB), sodium sulfur fuel cell (SOFC), and wind turbine (WT), which are  which  includes  battery  energy  storage  system  (BESS),  micro  turbine  generator  (MTG),  diesel  photovoltaic system (PV), high concentration photovoltaic system (HCPV), vanadium redox battery connected at Bus 18 in Figure 12. It is worth noting that all loads are supplied through open wye‐open  generator  (DG),  photovoltaic  system  (PV),  high  concentration  photovoltaic  system  (HCPV),  (VRB), sodium sulfur fuel cell (SOFC), and wind turbine (WT), which are connected at Bus 18 in delta transformers in this simulation system.  vanadium redox battery (VRB), sodium sulfur fuel cell (SOFC), and wind turbine (WT), which are  Figure 12. It is worth noting that all loads are supplied through open wye-open delta transformers in connected at Bus 18 in Figure 12. It is worth noting that all loads are supplied through open wye‐open  this simulation system. delta transformers in this simulation system. 

  Figure  12.  Single  line  diagram  of  11.4  kV  substation  of  the  Institute  of  Nuclear  Energy  Research  (INER) 30‐Bus system.  Figure  12.  Single  line  diagram  of  11.4  kV  substation  of  the  Institute  of  Nuclear  Energy  Research 

 

Figure 12. Single line diagram of 11.4 kV substation of the Institute of Nuclear Energy Research (INER) (INER) 30‐Bus system.  30-Bus system.

Energies 2016, 9, 671 Energies 2016, 9, 671  Energies 2016, 9, 671 

10 of 12 10 of 12  10 of 12 

VoltageUnbalance UnbalanceRatio Ratio(%) (%) Voltage

Figure 13 shows the voltage imbalance ratio at each bus with and without the reconfiguration.  Figure 13 shows the voltage imbalance ratio at each bus with and without the reconfiguration. Figure 13 shows the voltage imbalance ratio at each bus with and without the reconfiguration.  The test shows that the voltage imbalance ratio of each bus not only decreases significantly after the  The test shows that the voltage imbalance ratio of each bus not only decreases significantly after The test shows that the voltage imbalance ratio of each bus not only decreases significantly after the  rearranging  phase  of  distribution  transformers,  but  also  satisfies  the rearranging phase of distribution transformers, but also satisfiesthe  thelimit  limitof  of allowable  allowable voltage  voltage rearranging  phase  of  distribution  transformers,  but  also  satisfies  the  limit  of  allowable  voltage  balance ratio. Meanwhile, the total loss is also lowered down from 265.70 kW to 247.31 kW after the  balance ratio. Meanwhile, the total loss is also lowered down from 265.70 kW to 247.31 kW after balance ratio. Meanwhile, the total loss is also lowered down from 265.70 kW to 247.31 kW after the  employment  of  the  suggested  approach.  It  is  also  the employment of the suggested approach. It is alsoworth  worthnoting  notingthat  thatthe  the aforementioned  aforementioned phase  phase employment  of  the  suggested  approach.  It  is  also  worth  noting  that  the  aforementioned  phase  adjustment of distribution transformer is implemented as a human machine interface (HMI) to assist  adjustment of distribution transformer is implemented as a human machine interface (HMI) to assist adjustment of distribution transformer is implemented as a human machine interface (HMI) to assist  utility engineers in monitoring system operation. Figure 14 shows the display of HMI made by this  utility engineers in monitoring system operation. Figure 14 shows the display of HMI made by this utility engineers in monitoring system operation. Figure 14 shows the display of HMI made by this  paper.  The functions functions ofof  HMI  include  single  diagram  of  kV 11.4  kV  substation  the 30-Bus INER  paper. The HMI include thethe  single lineline  diagram of 11.4 substation of the of  INER paper.  The  functions  of  HMI  include  the  single  line  diagram  of  11.4  kV  substation  of  the  INER  30‐Bus  well  as  the with results  and reconfiguration. without  reconfiguration.  The  information  of  HMI  system system  as well as  as the results andwith  without The information of HMI including 30‐Bus  system  as  well  as  the  results  with  and  without  reconfiguration.  The  information  of  HMI  including the voltage imbalance ratio of each bus, neutral line current, and total power loss are also  the voltage imbalance ratio of each bus, neutral line current, and total power loss are also displayed including the voltage imbalance ratio of each bus, neutral line current, and total power loss are also  displayed  respectively.  It  is  for engineer the  utility  supervise  the  grid  with  a  higher  respectively. It is suitable forsuitable  the utility to engineer  superviseto  the grid with a higher convenience displayed  respectively.  It  is  suitable  for  the  utility  engineer  to  supervise  the  grid  with  a  higher  convenience and efficiency.  and efficiency. convenience and efficiency.  1.0 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0

with configuration with configuration

without configuration without configuration

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930 Bus Number    Bus Number

Figure 13. Comparison of the improvement in the voltage imbalance ratio for the INER 30‐Bus system.  Figure 13. Comparison of the improvement in the voltage imbalance ratio for the INER 30-Bus system. Figure 13. Comparison of the improvement in the voltage imbalance ratio for the INER 30‐Bus system. 

   Figure 14. Comparison of the results of each Bus for the INER 30‐Bus system considering reduction  Figure 14. Comparison of the results of each Bus for the INER 30‐Bus system considering reduction  Figure 14. Comparison of the results of each Bus for the INER 30-Bus system considering reduction of of voltage imbalance ratio and neutral line current with reconfiguration.  of voltage imbalance ratio and neutral line current with reconfiguration.  voltage imbalance ratio and neutral line current with reconfiguration.

6. Conclusions  6. Conclusions  6. Conclusions An approach using hybrid bird‐mating optimization is proposed to enhance the phase‐connection  An approach using hybrid bird‐mating optimization is proposed to enhance the phase‐connection  An approach using hybrid bird-mating is proposed to enhanceunder  the phase-connection adjustment  of  distribution  transformers  in optimization a  grid.  Through  tests  performed  three  practical  adjustment  of  distribution  transformers  in  a  grid.  Through  tests  performed  under  three  practical  adjustment ofproposed  distribution transformers in a grid. Through tests performed under imbalance  three practical systems,  this  approach  has  exhibited  its  capability  of  improving  voltage  and  systems,  this  proposed  approach  has  exhibited  its  capability  of  improving  voltage  imbalance  and  deviation.  This  work  is  being  done  in  cooperation  with  the  Institute  of  Nuclear  Energy  Research  deviation.  This  work  is  being  done  in  cooperation  with  the  Institute  of  Nuclear  Energy  Research  (INER) in Taiwan. Through the project cooperation, we are endeavoring to implement the proposed  (INER) in Taiwan. Through the project cooperation, we are endeavoring to implement the proposed 

Energies 2016, 9, 671

11 of 12

systems, this proposed approach has exhibited its capability of improving voltage imbalance and deviation. This work is being done in cooperation with the Institute of Nuclear Energy Research (INER) in Taiwan. Through the project cooperation, we are endeavoring to implement the proposed method for the assessment of the phase adjustment performance through open wye-open delta transformers. The outcomes gained from this study validate the feasibility of the proposed approach for balancing the phase operation of a power system, making it effective for electric power operation improvement applications. Reliability of scenario assessment becomes the major concern at this time. Further validation of this practical system will be reported in the near future. Acknowledgments: The authors are greatly indebted to the Institute of Nuclear Energy Research for their valuable operating experience. Financial support of this paper under the contract number of MOST 104-3111-Y-042A-055 of Ministry of Science and Technology (MOST), Taiwan is appreciated. Author Contributions: Ting-Chia Ou made substantial contributions to conception and plan; give final approval of the version to be submitted and any revised version. Wei-Fu Su handled the project. Xian-Zong Liu performed the experiments and conducted simulations; analysis and interpretation of data. Shyh-Jier Huang supervised the research throughout. Te-Yu Tai assisted analysis of algorithm. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2. 3.

4.

5. 6. 7. 8.

9. 10. 11. 12. 13. 14. 15.

Chang, C.Y.; Yu, J.S.; Chen, C.S. Effects of Open-Wye/Open-Delta Transformers on the Operation of Distribution Systems. Electr. Power Syst. Res. 1986, 10, 167–174. [CrossRef] De Armas Teyra, M.A.; Gonzalez, G.G. Selection of Asymmetrical transformers banks with emphasis in losses and efficiency. IEEE Trans. Lat. Am. 2010, 8, 678–684. [CrossRef] Santoso, S.; Dugan, R.C. Experiences with the New Open-Wye/Open-Delta Transformer Test Cases for Distribution System Analysis. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 16 June 2005; Volume 1, pp. 884–889. Tsay, M.T.; Chan, S.Y. Improvement in system unbalance and loss reduction of distribution feeders using transformer phase rearrangement and load diversity. Int. J. Electr. Power Energy Syst. 2003, 25, 395–401. [CrossRef] Chen, S.L.; Li, R.J.; Hsi, P.H. Traction system unbalance problem-analysis methodologies. IEEE Trans. Power Deliv. 2004, 19, 1877–1883. [CrossRef] Chua, K.H.; Lim, Y.S.; Taylor, P.; Morris, S.; Wong, J. Energy storage system for mitigating voltage imbalance on low-voltage networks with photovoltaic systems. IEEE Trans. Power Deliv. 2012, 27, 1783–1790. [CrossRef] Li, K.; Liu, J.; Wang, Z.; Wei, B. Strategies and operating point optimization of statcom control for voltage imbalance mitigation in three-phase three-wire systems. IEEE Trans. Power Deliv. 2007, 22, 413–422. [CrossRef] Lin, W.M.; Lu, K.H.; Ou, T.C. Design of a novel intelligent damping controller for unified power flow controller in power system connected offshore power applications. IET Gener. Transm. Distrib. 2015, 9, 1708–1717. [CrossRef] Shahnia, F.; Majumder, R.; Ghosh, A.; Ledwich, G.; Zare, F. Voltage imbalance analysis in residential low voltage distribution networks with rooftop PVs. Electr. Power Syst. Res. 2011, 81, 1805–1814. Ghahremani, E.; Kamwa, I. Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface. IEEE Trans. Power Syst. 2013, 28, 994–1000. Ghahremani, E.; Kamwa, I. Analysing the effects of different types of FACTS devices on the steady-state performance of the Hydro-Québec network. IET Gener. Transm. Distrib. 2014, 8, 233–249. [CrossRef] Lin, W.M.; Ou, T.C. Unbalanced distribution network fault analysis with hybrid compensation. IET Gener. Transm. Distrib. 2011, 5, 92–100. [CrossRef] Ou, T.C. A novel unsymmetrical faults analysis for microgrid distribution systems. Int. J. Electr. Power Energy Syst. 2012, 43, 1017–1024. Ou, T.C. Ground fault current analysis with a direct building algorithm for microgrid distribution. Int. J. Electr. Power Energy Syst. 2013, 53, 867–875. Zhu, J.; Bilbro, G.; Chow, M.Y. Phase balancing using simulated annealing. IEEE Trans. Power Syst. 1999, 14, 1508–1513.

Energies 2016, 9, 671

16. 17.

18. 19. 20. 21. 22. 23. 24. 25.

26. 27. 28. 29. 30.

12 of 12

Zhu, J.; Chow, M.Y.; Zhang, F. Phase balancing using mixed-integer programming. IEEE Trans. Power Syst. 1998, 13, 1487–1492. Chen, T.H.; Cherng, J.T. Optimal phase arrangement of distribution transformers connected a primary feeder for system unbalance improvement and loss reduction using a genetic algorithm. IEEE Trans. Power Syst. 2000, 15, 994–1000. [CrossRef] Huang, M.Y.; Chen, C.S.; Lin, C.H.; Kang, M.S.; Chuang, H.J.; Huang, C.W. Three-phase balancing of distribution feeders using immune algorithm. IET Gener. Transm. Distrib. 2008, 714, 55–65. [CrossRef] Ding, F.; Loparo, K.A. Feeder reconfiguration for unbalanced distribution systems with distributed generation: a hierarchical decentralized approach. IEEE Trans. Power Syst. 2016, 31, 1633–1642. [CrossRef] Askarzadeh, A. Bird Mating optimizer: An optimization algorithm inspired by bird mating strategies. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1213–1228. [CrossRef] Kersting, W.H. Distribution System Modeling and Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. NEMA National Electrical Manufacturers Association. NEMA Standard MG1–1987: Motors and Generators; NEMA National Electrical Manufacturers Association: Arlington, VA, USA, 1987. TPC Taiwan Power Company. Technical Manual of Overhead Line Design for Distribution Systems; TPC Taiwan Power Company: Taipei, Taiwan, 2009. TPC Taiwan Power Company. Interconnection Guideline of Renewable Energy; TPC Taiwan Power Company: Taipei, Taiwan, 2009. Alajmi, B.N.; Ahmed, K.H.; Finney, S.J.; Williams, B.W. Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans. Power Electr. 2011, 26, 1022–1030. [CrossRef] Haupt, R.L.; Haupt, S.E. Practical Genetic Algorithms, 2nd ed.; Wiley: Hoboken, NJ, USA, 2004. Clerc, M. Particle Swarm Optimization; Wiley: Hoboken, NJ, USA, 2010. Ou, T.C.; Chuang, S.J.; Hong, C.M.; Wu, R.C.; Tsao, T.P.; Chen, C.Y. Self-regulation ground faults model for microgrid distribution. ICIC Express Lett. Part B Appl. 2015, 6, 3225–3230. Ou, T.C.; Hong, C.M. Dynamic operation and control of microgrid hybrid power systems. Energy 2014, 66, 314–323. [CrossRef] Hong, C.M.; Ou, T.C.; Lu, K.H. Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy 2013, 50, 270–279. [CrossRef] © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents