A Modified One-Cycle-Control Method for Modular Multilevel ... - MDPI

0 downloads 0 Views 8MB Size Report
Jan 3, 2019 - high-voltage applications such as HVDC, NLM is more suitable because in these ..... (PEDES), Trivandrum, India, 14–17 December 2016; pp.
energies Article

A Modified One-Cycle-Control Method for Modular Multilevel Converters Xu Tian *, Yue Ma, Jintao Yu, Cong Wang and Hong Cheng School of Mechanical Electronic and Information Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; [email protected] (Y.M.); [email protected] (J.Y.); [email protected] (C.W.); [email protected] (H.C.) * Correspondence: [email protected]; Tel.: +86-010-6233-1021 Received: 29 November 2018; Accepted: 27 December 2018; Published: 3 January 2019

 

Abstract: In this paper, a new One-Cycle-Control (OCC) method is designed for a modular multilevel converter (MMC) based on the principle of the equivalent resistance constant. The proposed controller has a simple structure and a small amount of calculation by cancelling the current inner loop proportional integral (PI) controller and the inverse transform in the traditional direct-quadrature (DQ) control. Compared to the traditional OCC controller, the new one separates the control method from the modulation strategy, making it possible to use not only carrier-based pulse-width modulation (PWM), but also nearest level modulation PWM to generate drive signals. Besides, the independent control of the active and the reactive power is implemented by injecting a reference current with the same phase of the supply voltage or a reference current which lags the supply voltage by π/2 into the controller, so the converter can operate in four quadrants and it can work in either a grid-connect or off-grid environment. The feasibility and the performance of the proposed OCC method have been validated by both the simulation under the MATLAB/SIMULINK (R2012a) environment and experimental results. Keywords: modular multilevel converter; One-Cycle-Control; four-quadrant operation; carrier-based PWM; nearest level modulation PWM

1. Introduction Modular multilevel converters (MMCs) have attracted wide attention from both industry and academia due to their advantages of full modularity, better scalability, high redundancy, and low switch voltage stress [1,2]. Consisting of a series connection of submodules (SMs), MMCs are suitable for large-voltage, high-power applications like high-voltage direct current (HVDC) transmission [3], medium-voltage high-power motor drives [4], and photovoltaic generation [5]. There are a great number of control methods which have been used in MMCs successfully since the circuit topology was proposed. Based on linear system theory, the proportional integral (PI) controller has been widely used in power electronic devices [6]. Since the PI controller cannot track the sinusoidal signal without phase error, the abc-to-dq-frame transformation is used to let the controlled variables change from alternating current (AC) to direct current (DC), and the controller output also needs coordinate transformation under this controller structure. To avoid the complicated calculations, the proportional resonant (PR) controller has also been used [7]. By replacing the integral with resonance, the PR controller can provide an infinite gain at the resonant frequency, which makes the PR controller able to track a sinusoidal signal without steady-state error. However, since the gain of the controller is rapidly reduced when the frequency is no longer equal to the resonant frequency, the resonant frequency of the PR controller must be accurately calculated. Except for the traditional control strategy, there are some new types of controllers that have been used in MMCs. Sliding Energies 2019, 12, 157; doi:10.3390/en12010157

www.mdpi.com/journal/energies

Energies 2019, 12, 157

2 of 17

mode control (SMC) divides the state space by referencing controlled variables, and in each subspace the controlled variables are forced to slide along the boundaries by the different control structure. This control method can get good dynamic response when applied to MMCs [8]. Finite control set model predictive control (FCS-MPC) analyzes all possible operating states based on the circuit model and chooses the best one based on the cost function. The advantage of the FCS-MPC is that it can control multiple targets [9] and the disadvantage of it is the accuracy of the model plays an important role in the control effect. Repetitive control takes the previous behavior of the periodic controlled variables into consideration, obtaining a better steady-state response [10], but in order to optimize the dynamic response, it often needs to be used together with other control strategies. One-Cycle-Control (OCC) was proposed by Keyue M. Smedley in 1991 [11]. The basic principle is to let the average controlled variable value over a switch cycle be equal to the reference. Traditional OCC lets the controlled current run in the same phase with the input voltage, therefore, it has been widely used in power factor correction (PFC) [12] and active power filters (APF) [13]. However, the traditional OCC cannot control the reactive component so that the converter can only implement the unit power factor with no ability to output leading or lagging reactive power. This problem was discussed in References [14,15]; they let the APF compensate for only the harmonic components of load currents by injecting the reactive currents. Based on the same principle, OCC working on the grid-connected inversion mode was discussed in References [16,17]. The OCC-based MMC controller has been discussed in Reference [18], but it can only work in the unity power factor rectification mode and the control method must be used in conjunction with the carrier disposition PWM, which reduces the flexibility of the system. In this paper, a modified OCC for an MMC is proposed. As shown in Table 1, an OCC controller has less complexity and calculation demand than PI and PR controllers. Compared to other nonlinear control methods such as FCS-MPC, OCC does not rely on an accurate mathematical model and it can realize the constant switch frequency naturally. Compared with the existing OCC-based MMC controller, the modified OCC proposed in this paper can enable the bi-directional power flow, and the power factor can also be controlled, which expands the application scope of the control method. In addition, the modified OCC realizes the decoupling of the control strategy and the modulation strategy. It can work with several modulation strategies and is compatible with existing SM voltage balancing strategies. Table 1. Comparison between several control strategies for a modular multilevel converter (MMC). PI: proportional integral; PR: proportional resonant; FCS-MPC: finite control set model predictive control; OCC: One-Cycle-Control. Control Strategies

Phase Locked Loop (PLL)

Controller Structure

Calculation

Robustness

Modulation Strategy

Steady-State Error

PI PR FCS-MPC OCC [18] Modified OCC

Yes Yes Yes No Yes

Common Common Complex Simple Simple

Middle Small Large Small Small

Strong Less Less Strong Strong

Unlimited Unlimited Unlimited Limited Unlimited

No No No Yes No

The rest of this paper is organized as follows: the mathematical model of MMCs is briefly introduced in Section 2. The proposed OCC has been described in Section 3. In Section 4, the method that makes the OCC-controlled MMC operate in four-quadrants is described in detail. Section 5 covers the simulation and experimental results to validate the correctness and effectiveness of the proposed modified OCC, and finally, Section 6 summarizes the main points of the paper. 2. Mathematical Model of the MMC The topology of the single-phase MMC is shown in Figure 1, in which iAC , uAC are the AC side current and voltage, ip and iq are the upper arm current and the lower arm current, respectively.

Energies 2019, 12, 157

3 of 17

The phase leg consists of two arms, Energies 2019, 12, x FOR PEER REVIEW   

which can be called upper arm and lower arm, respectively. 3  of  18  Both the two arms need an inductance L0 to suppress the circulating current. The arm is composed of the  arms  need an inductance    to  suppress  the  circulating  The arm by is  composed  SMstwo  in series, and the upper arm voltage up and the lower arm un current.  can be controlled bypassing of  or SMs in series, and the upper arm voltage    and the lower arm    can be controlled by bypassing  inserting the SMs. Assuming the DC side output voltage of the MMC is UDC , based on Kirchhoff’s or  inserting  the  SMs.  Assuming  the  DC  output  voltage  of  the  MMC  is  ,  based  on  current law (KCL), the current dynamics canside  be given as follows: Kirchhoff’s current law (KCL), the current dynamics can be given as follows:  dip UDC di − up − ip R0 − L0 d = uAC − iAC RC − LCd AC (1) 2 dt dt  (1)  2 d d UDC didn di d un − + in R0 + L0 = uAC − iAC RC − LC AC (2) (2)  .  . 2 2 dtd ddt

  Figure 1. Circuit topology of the single‐phase MMC. SM: submodule.  Figure 1. Circuit topology of the single-phase MMC. SM: submodule.

By summing Equations (1) and (2), the AC side current dynamics can be obtained as By summing Equations (1) and (2), the AC side current dynamics can be obtained as      un − up R0 L0 diAC (3)  + iAC + RC + LC + 2 = u.   (3) AC . 2 2 22 2 dt Based on the above formula, the AC side equivalent model of the MMC is shown in Figure 2, in  Based,  on the abovethe  formula, the AC side equivalent model ofcapacitance,  the MMC isrespectively,  shown in Figure which    means  equivalent  inductance  and  equivalent  and  2,  in which L , R means the equivalent inductance and equivalent capacitance, respectively, and ej eq eq means the AC side output voltage of the MMC. They can be defined as:  means the AC side output voltage of the MMC. They can be defined as:

(4)    2L0 Leq = Lc + (4) 2 (5)    R20 Req = Rc + (5) 2 . (6)  un 2− up e = . (6) j From Figure 2 it can be seen that the AC side model of MMC is no different from other voltage  2 source converters. Thus, the traditional control strategy can be used for the MMC to determine  From Figure 2 it can be seen that the AC side model of MMC is no different from other voltage.  Normally, the DC side voltage of the MMC is required to be stable at a fixed value, so the voltages  source converters. Thus, the traditional control strategy can be used for the MMC to determine ej . of    and the DC can also be determined by inserting or bypassing SMs.  Normally, side voltage of the MMC is required to be stable at a fixed value, so the voltages of up and un can also be determined  by inserting or bypassing SMs.

Energies 2019, 12, 157 Energies 2019, 12, x FOR PEER REVIEW   

4 of 17 4  of  18 

  Figure 2. Alternating current (AC) side equivalent model of the MMC.  Figure 2. Alternating current (AC) side equivalent model of the MMC.

3. OCC for Multiple Modulation Strategies 3. OCC for Multiple Modulation Strategies  The conventional OCC has been widely used in the field of unit power factor rectification [19]. The conventional OCC has been widely used in the field of unit power factor rectification [19].  The the input current directly compared withwith  the carrier wavewave  to generate the drive The original original OCC OCC uses uses  the  input  current  directly  compared  the  carrier  to  generate  the  signal, and since there is no reference voltage generation during this process, the controller can only drive  signal,  and  since  there  is  no  reference  voltage  generation  during  this  process,  the  controller  use the carrier phase-shift PWM modulation strategy and this limits the design of the SM voltage can only use the carrier phase‐shift PWM modulation strategy and this limits the design of the SM  balancing strategy. voltage balancing strategy.  In this paper, the OCC is analyzed based on the equivalent resistance constant so that the AC side In this paper, the OCC is analyzed based on the equivalent resistance constant so that the AC  output voltage of the converter can be calculated most of the modulation strategies can be side  output  voltage  of  the  converter  can  be and calculated  and existing most  of  the  existing  modulation  used directly. strategies can be used directly.  The OCC is is  to to  let let  thethe  average controlled variable valuevalue  over over  a switch cycle The basic basic principle principle ofof the the  OCC  average  controlled  variable  a  switch  be equal the reference. For the For  equivalent circuit shown Figurein  2, Figure 2,  in order toin make it to  operate cycle  be  to equal  to  the  reference.  the  equivalent  circuit inshown  order  make in it  the unity power factor state, as Figure 3 shows, the MMC can be equivalent to a resistive load R after e operate in the unity power factor state, as Figure 3 shows, the MMC can be equivalent to a resistive  ignoring the equivalent parasitic resistance Req and the equivalent inductance Leq . load    after ignoring the equivalent parasitic resistance    and the equivalent inductance  . 

  Figure 3. Equivalent circuit in unit power factor rectification mode.  Figure 3. Equivalent circuit in unit power factor rectification mode.

In in a cycle T   be In  order order  to to  let let  the the  behavior behavior  of of  the the  MMC MMC  in  a  switch switch  cycle  be  equivalent equivalent  to to  an an  emulated emulated  resistance the control equation of the conventional OCC can be expressed as follows: resistance Re ,, the control equation of the conventional OCC can be expressed as follows:  Z 11 T ej d dt = Re.  . T 0 iAC

(7)  (7)

Due  to  the  high  switching  frequency  of  the  MMC,  the  change  of  the  current    in  a  switch  Due to the high switching frequency of the MMC, the change of the current iAC in a switch cycle cycle can be ignored, so the control law of the conventional OCC can be expressed as:  can be ignored, so the control law of the conventional OCC can be expressed as: .  (8)  ej = Re iAC . (8)   and    can  be  determined  based  on  Once  the    is  determined,  the  arm  voltages,  Equation (6). The inserted SM numbers of the upper and lower arms are also determined. However,  Once the ej is determined, the arm voltages, up and un can be determined based on Equation (6). which SM should be inserted has not been determined. In addition to making the AC side current  The inserted SM numbers of the upper and lower arms are also determined. However, which SM change be as inserted expected,  another  major  control  target  is  to  keep  the  SM the capacitor  voltages  balance.  should has not been determined. In addition to making AC side currentin  change as That can be implemented by several modulation strategies [20–23], which balances the SM capacitor  expected, another major control target is to keep the SM capacitor voltages in balance. That can be voltage by controlling the insertion and bypass time of each SM.  implemented by several modulation strategies [20–23], which balances the SM capacitor voltage by One  of the the  most  commonly  controlling insertion and bypassused  timemodulation  of each SM. strategies  is  nearest  level  modulation  (NLM)  [20,21]. As Figure 4 shows, the basic principle of NLM is to  One of the most commonly used modulation strategies is determine the number of inserted SMs  nearest level modulation (NLM) [20,21]. according to the required bridge arm voltage and the SM voltage to minimize the error between the  As Figure 4 shows, the basic principle of NLM is to determine the number of inserted SMs according actual  bridge  arm  voltage  and  the  voltage.  algorithm  sorts  the  SMs  the  to the required bridge arm voltage andreference  the SM voltage to The  minimize the error between thebased  actual on  bridge voltage of the SM and insert the SMs from large to small, or from small to large, according to the  arm voltage and the reference voltage. The algorithm sorts the SMs based on the voltage of the SM direction of current to balance the SM capacitor voltages. 

Energies 2019, 12, 157

5 of 17

and insert the SMs from large to small, or from small to large, according to the direction of current to Energies 2019, 12, x FOR PEER REVIEW    5  of  18  balance the SM capacitor voltages.   Energies 2019, 12, x FOR PEER REVIEW  5  of  18 

 

 

Figure 4. Principle of the nearest level modulation (NLM) strategy.  Figure 4. Principle of the nearest level modulation (NLM) strategy. Figure 4. Principle of the nearest level modulation (NLM) strategy. 

Another popular modulation strategy for the MMC is carrier phase‐shift PWM (CPS‐PWM) [22].  Another popular modulation strategy for the MMC is carrier phase-shift PWM (CPS-PWM) [22]. Another popular modulation strategy for the MMC is carrier phase‐shift PWM (CPS‐PWM) [22].  The  basic basic  principle principle  of of CPS-PWM CPS‐PWM is is shown shown in in Figure Figure 5. 5.  The  generated  by by  The The switching  switching signals  signals are  are generated The  basic  principle  of  CPS‐PWM  is  shown  in  Figure  5.  The  switching  signals  are  generated  by  comparing the reference voltage with several carrier waves. For an N+1 level converter, N carrier  comparing the reference voltage with several carrier waves. For an N+1 level converter, N carrier comparing the reference voltage with several carrier waves. For an N+1 level converter, N carrier  waves waves  are are needed needed  and and  each each  one one has has aa phase phase shift shift of of 2π The outputs outputs are are the the control control signals signals for for the the  N  .. The waves  are  needed  and  each  one  has  a  phase  shift  of    .  The  outputs  are  the  control  signals  for  the  upper arm SMs, and the control signals for the lower arm SMs can be generated by inverting the upper arm SMs, and the control signals for the lower arm SMs can be generated by inverting the upper  upper arm SMs, and the control signals for the lower arm SMs can be generated by inverting the upper  upper ones.  ones. ones. 

 

 

Figure 5. Principle of carrier phase-shift (CPS)-PWM. (a) Reference voltage and carrier waves; Figure 5. Principle of carrier phase‐shift (CPS)‐PWM. (a) Reference voltage and carrier waves; (b)  Figure 5. Principle of carrier phase‐shift (CPS)‐PWM. (a) Reference voltage and carrier waves; (b)  (b) output voltage. output voltage.  output voltage. 

Both the modulation strategies have their own advantages and disadvantages [23]. Compared Both the modulation strategies have their own advantages and disadvantages [23]. Compared  to NLM,Both the modulation strategies have their own advantages and disadvantages [23]. Compared  CPS-PWM can generate more accurate voltage, and because the switching devices under to NLM, CPS‐PWM can generate more accurate voltage, and because the switching devices under  theto NLM, CPS‐PWM can generate more accurate voltage, and because the switching devices under  CPS-PWM strategy have nearly the same turn-on time, the loss of the electronic components are the CPS‐PWM strategy have nearly the same turn‐on time, the loss of the electronic components are  the CPS‐PWM strategy have nearly the same turn‐on time, the loss of the electronic components are  basically identical. However, because the traditional CPS-PWM cannot balance the SM capacitor basically  identical.  However,  because  the  traditional  CPS‐PWM  cannot  balance  the  SM  capacitor  basically  identical.  However,  because  the  traditional  cannot  the  SM  capacitor  voltages, additional controllers are often required for eachCPS‐PWM  SM to balance thebalance  SM capacitor voltages voltages, additional controllers are often required for each SM to balance the SM capacitor voltages  voltages, additional controllers are often required for each SM to balance the SM capacitor voltages  in actual applications. The additional controllers increase the calculations and this will put higher in actual applications. The additional controllers increase the calculations and this will put higher  in actual applications. The additional controllers increase the calculations and this will put higher  requirements  for  the  performance  of  the  microprocessor.  Therefore,  CPS‐PWM  is  suitable  for  requirements  for  the  performance  of  the  microprocessor.  Therefore,  CPS‐PWM  is  suitable  for  medium‐  and  low‐voltage  applications  needing  fewer  SMs  such  as  a  variable‐frequency  drive,  medium‐  and  low‐voltage  applications  needing  fewer  SMs  such  as  a  variable‐frequency  drive,  while  for  the  high‐voltage  applications  such  as  HVDC,  NLM  is  more  suitable  because  in  these  while  for  the  high‐voltage  applications  such  as  HVDC,  NLM  is  more  suitable  because  in  these  occasions  the  system  often  requires  a  large  number  of  SMs.  For  the  OCC  described  in  this  paper,  occasions  the  system  often  requires  a  large  number  of  SMs.  For  the  OCC  described  in  this  paper, 

Energies 2019, 12, 157

6 of 17

requirements for the performance  Energies 2019, 12, x FOR PEER REVIEW 

of the microprocessor. Therefore, CPS-PWM is suitable for medium6  of  18  and low-voltage applications needing fewer SMs such as a variable-frequency drive, while for the high-voltage applications such as NLM is more suitable , because in these occasions the system Energies 2019, 12, x FOR PEER REVIEW    HVDC, 6  of the  18  since  the  controller  calculates  the  AC  side  output  voltage  compared  to  traditional  OCC, often requires a large number of SMs. For the OCC described in this paper, since the controller modulation strategy is no longer limited, and both NLM and CPS‐PWM can be used.  since  the  controller  calculates  the  AC  output tovoltage  ,  compared  to  traditional  OCC,isthe  calculates the AC side output voltage ej ,side  compared traditional OCC, the modulation strategy no The basic form of the proposed OCC controller is shown in Figure 6. An outer DC‐side voltage  modulation strategy is no longer limited, and both NLM and CPS‐PWM can be used.  longer limited, and both NLM CPS-PWM can used. to  maintain  the  DC  bus  voltage  control  loop  implemented  by and a  PI  controller  is be designed    ∗ The basic form of the proposed OCC controller is shown in Figure 6. An outer DC‐side voltage  The basic form of the proposed OCC controller is shown in Figure 6. An outer DC-side voltage tracking the reference value  . In order to make the controlled variable positively related to the  control  loop implemented implemented byby  a  controller PI  controller  is  designed  to  maintain  bus  uvoltage  control loop a PI is designed to maintain the DCthe  busDC  voltage DC tracking controller output, the PI controller output is set as the admittance of equivalent resistance    and it   ∗ ∗ . In order tracking the reference value  . In order to make the controlled variable positively related to the  the reference value u to make the controlled variable positively related to the controller determines the input active power. Then, dividing the AC side input current    by the admittance,  DC controller output, the PI controller output is set as the admittance of equivalent resistance  and it  output, the PI controller output is set as  and  the admittance of equivalent resistance Re and it determines which is equivalent to multiplying  , the AC side output voltage of the MMC     can be  determines the input active power. Then, dividing the AC side input current    by the admittance,  the input active power. Then, dividing the AC side input current iAC by the admittance, which is derived. Finally, the switching signals are generated by the modulation strategy.  which is equivalent to multiplying    and  equivalent to multiplying Re and iAC , the AC side, the AC side output voltage of the MMC  output voltage of the MMC ej can be derived.  can be  Finally, the switching signals are generated by the modulation strategy. derived. Finally, the switching signals are generated by the modulation strategy. 

  Figure 6. OCC algorithm for the unit power factor rectifier. 

 

Figure 6. OCC algorithmthe  for the unithas  power rectifier. Figure 6. OCC algorithm for the unit power factor rectifier.  Compared  to  other  control  strategies,  OCC  a  factor simpler  control  structure  and  less 

calculation.  This  method  can  be  implemented  without  a  PLL  or  even  an  AC  side  voltage  sensor.  Compared to control strategies, the OCC has a simpler control structure and less calculation. Compared  to other other  control  strategies,  the  OCC  has  a  simpler  control  structure  and  less  However, this control strategy can only implement the unity power factor rectifier and the power  This method can be implemented without a PLL or even an AC side voltage sensor. However, calculation.  This  be  implemented  without  a  PLL  an  AC  side  voltage  sensor.  factor  cannot  be method  set.  In  can  addition,  because  the  influence  of  or  the even  inductance  is  neglected  in  the  this control strategy can only implement the unity power factor rectifier and the power factor cannot However, this control strategy can only implement the unity power factor rectifier and the power  theoretical  analysis,  there  is  an  error  in  the  power  factor,  so  it  is  only  suitable  for  some  limited  be set. cannot  In addition, because the influence of the  the inductanceof  is the  neglected in the is  theoretical analysis, factor  be  set.  In  addition,  because  inductance  neglected  the  applications,  such  as  the  active  front‐end  (AFE) influence  rectifier,  which  allows  for  a  certain  power in  factor  there is an error in the power factor, so it is only suitable for some limited applications, such as the theoretical  analysis,  there  is  an  error  in  the  power  factor,  so  it  is  only  suitable  for  some  limited  error.  active front-end (AFE) rectifier, which allows for a certain power factor error. applications,  such  as  the  active  front‐end  (AFE)  rectifier,  which  allows  for  a  certain  power  factor  error.  4. Four‐Quadrant Operation for OCC Controlled MMC  4. Four-Quadrant Operation for OCC Controlled MMC 4. Four‐Quadrant Operation for OCC Controlled MMC  4.1. Reactive Power Control  4.1. Reactive Power Control For  with  the the  reactive reactive  power power  output, output,  it  be  equivalent equivalent  using  method  For the  the rectifier  rectifier with it can  can also  also be using the  the method 4.1. Reactive Power Control  described in the previous section. Similar to Figure 3, the MMC rectifier with reactive power output  described in the previous section. Similar to Figure 3, the MMC rectifier with reactive power output For  the  rectifier  the in reactive  it  or can  be  equivalent  the  method  can be equivalent to a resistor in parallel with a capacitor or an inductor, which is determined by  can be equivalent to awith  resistor parallelpower  with aoutput,  capacitor analso  inductor, which is using  determined by the described in the previous section. Similar to Figure 3, the MMC rectifier with reactive power output  the  power  factor  angle.  Figure 7  shows  the  equivalent  circuit  of  a  rectifier  with  a  lagging  power  power factor angle. Figure 7 shows the equivalent circuit of a rectifier with a lagging power factor, can be equivalent to a resistor in parallel with a capacitor or an inductor, which is determined by  factor,  where    is  the  equivalent  resistance    is  the  equivalent  inductance.    and  ,   where R resistance and Le and  is the equivalent inductance. iAC,d and i,AC,q are the e is the equivalent the  power  factor through angle.  Figure 7  shows  the  equivalent  circuit  of  a respectively,  rectifier  with  a be lagging  power  are  the  currents  flowing  through  the  resistance  and  the  inductor,  which  can  also  be  currents flowing the resistance and the inductor, respectively, which can also considered as factor,  where    is  the  equivalent  resistance  and  i of    is  respectively. the  equivalent  ,   and  i The  ,   considered  the  active  or  reactive  component  input  current  ,  respectively.  the active or as  reactive component of the input current Theinductance.  relationship between AC , the  AC,d , are  the  currents  flowing  through  the  resistance  and  the  inductor,  respectively,  which  can  also  be  relationship between    can be written as  iAC,q , and iAC can be written , ,  as , , and  considered  as  the  active  or  reactive  component  the  ,  respectively.  The  iAC = iAC,d +of  iAC,q . input  current  (9) .  (9)  , , relationship between  , ,  , , and    can be written as 

,

,



(9) 

  Figure 7. Equivalent circuit for reactive power output. Figure 7. Equivalent circuit for reactive power output. 

 

Figure 7. Equivalent circuit for reactive power output.  In addition, the output voltage of the MMC can be written as  , , .  In addition, the output voltage of the MMC can be written as  ,

,



(10)  (10) 

Energies 2019, 12, 157

7 of 17

Energies 2019, 12, x FOR PEER REVIEW   

7  of  18 

In addition, the output voltage of the MMC can be written as The reactive component of the input current  ,   can be expressed as Equation (11). It shows  Energies 2019, 12, x FOR PEER REVIEW    7  of  18     by  . Thus, a sine wave in phase with  that the  ej = Re iAC,d = Re iAC − iAC,q . ,   can be obtained by a PLL or by  (10) ,   lags 

  by  a  quarter  of  a  cycle.  The  amplitude  of  the  delaying  the  ,   determines  the  value  of  The reactive component of the input current  ,   can be expressed as Equation (11). It shows  The reactive component of the input current iAC,q can be expressed as Equation (11). It shows that reactive power.    by  . Thus, a sine wave in phase with  ,   can be obtained by a PLL or by  that the  ,   lags  the iAC,q lags uAC by π2 . Thus, a sine wave in phase with iAC,q can be obtained by a PLL or by delaying   by  a  quarter  of  a  cycle.  The  amplitude  of  the    determines  the  value  of  delaying  the  (11)  the uAC by a quarter of a cycle. The amplitude of, the iAC,q  determines the, value of reactive power. reactive power.  uACpower  controller  is  shown  in  Figure  8.  The  The  block  diagram  of  the  OCC  with ia  reactive  (11) AC,q , = jωL   (11)  e active power controller is the same as the controller described in Section 3. The control of reactive  power is implemented by injecting a reactive current  . The phase of the virtual current  ,   into  The block block diagram diagram  the  OCC  with  a  reactive  power  controller  is  shown  in  Figure  The  The ofof  the OCC with a reactive power controller is shown in Figure 8. The 8.  active is obtained by delaying the AC voltage    by a quarter of a cycle and the amplitude can obtained  active power controller is the same as the controller described in Section 3. The control of reactive  power controller is the same as the controller described in Section 3. The control of reactive power is by  a  PI  controller,  which  is  used  to  maintain  the reactive   power    tracking  the  reference  voltage  power is implemented by injecting a reactive current  into  implemented by injecting a reactive current iAC,q into iAC . , The phase. The phase of the virtual current  of the virtual current is obtained ∗ . Positive amplitude means output current lags system voltage while negative amplitude means  is obtained by delaying the AC voltage    by a quarter of a cycle and the amplitude can obtained  by delaying the AC voltage uAC by a quarter of a cycle and the amplitude can obtained by a PI output current leads system voltage.  by  a  PI  controller,  which  used  to the maintain  power  the  tracking  reference  voltage  controller, which is used tois  maintain reactivethe reactive  power Q tracking referencethe  voltage Q∗ . Positive ∗ . Positive amplitude means output current lags system voltage while negative amplitude means  amplitude means output current lags system voltage while negative amplitude means output current output current leads system voltage.  leads system voltage.

  Figure 8. OCC algorithm with reactive power controller. 

  Compared  to  the  traditional  control  strategies  based  on  coordinate  transformation,  although  Figure 8. OCC algorithm with reactive power controller. Figure 8. OCC algorithm with reactive power controller.  the proposed controller still needs a PLL and DQ transform, the inverse transformation is no longer  needed. In addition, since the DQ transform or the PLL is only used in the outer power loop and the  Compared control strategies based on on  coordinate transformation, although the Compared to to the the traditional traditional  control  strategies  based  coordinate  transformation,  although  outer loop has a lower frequency than the inner current loop, the proposed one has less calculation  proposed controller still needs a PLL and DQ transform, the inverse transformation is no longer needed. the proposed controller still needs a PLL and DQ transform, the inverse transformation is no longer  and  because  it  requires  less  hardware,  it  also  has used cost  in advantages.  However,  it  also  has  some  In addition, since the DQ transform or the PLL is only the outer power loop and the outer loop needed. In addition, since the DQ transform or the PLL is only used in the outer power loop and the  limitations;  because  the  controller  can  only  output  the  positive  active  power,  the  MMC  can  only  has a lower frequency than the inner current loop, the proposed one has less calculation and because outer loop has a lower frequency than the inner current loop, the proposed one has less calculation  work in the rectifier mode, therefore it is still not suitable for applications requiring four‐quadrant  it requires lessit  hardware, alsohardware,  has cost advantages. it also has some limitations; because and  because  requires  it less  it  also  has However, cost  advantages.  However,  it  also  has  some  operations such as HVDC.  the controller can only output the positive active power, the MMC can only work in the rectifier mode, limitations;  because  the  controller  can  only  output  the  positive  active  power,  the  MMC  can  only  therefore it is still not suitable for applications requiring four-quadrant operations such as HVDC. work in the rectifier mode, therefore it is still not suitable for applications requiring four‐quadrant  4.2. Inversion  operations such as HVDC.  4.2. Inversion When    is  negative,  the  system  will  have  a  pole  at  the  right  half  of  the  s‐plane  and  it  will  When Re is negative, system pole at the right the s-planeto and it will a 4.2. Inversion  cause  a  stability  problem the [17].  Thus, will  have must a be  positive  and  half it  is of impossible  make  the cause circuit  stability problem [17]. Thus, R must be positive and it is impossible to make the circuit work in the work When  in  the  inverter  mode  by    as  a a negative  value  directly.  for  the it  OCC  e setting  the    is  negative,  the  system  will  have  pole  at  the  right  half  of Therefore,  the  s‐plane  and  will  inverter mode by setting the Re as amode,  negative value directly. Therefore, for the OCC control algorithm control  algorithm  in  the  inverter  the  injection  method  described  in  the  previous  section  is  cause  a  stability  problem  [17].  Thus,    must  be  positive  and  it  is  impossible  to  make  the  circuit  in the inverter mode, the injection method described in the previous section is still used. still used.  work  in  the  inverter  mode  by  setting  the    as  a  negative  value  directly.  Therefore,  for  the  OCC  The equivalent circuit forfor  the inverter modemode  underunder  both the grid-connected and off-grid The algorithm  equivalent  inverter  both  the  grid‐connected  and condition off‐grid  control  in  circuit  the  inverter the  mode,  the  injection  method  described  in  the  previous  section  is  is shown in Figure 9. The output current iAC is the sum of  is the sum of  iS and the fictitious current if . If if is negative.  condition is shown in Figure 9. The output current    and the fictitious current  still used.  and work under the inverter mode. |, the converter will work under the inverter mode.  | | | will If   |iThe  is negative and  f | > |is |, the converter equivalent  circuit  for  the  inverter  mode  under  both  the  grid‐connected  and  off‐grid  condition is shown in Figure 9. The output current    is the sum of    and the fictitious current  .  If    is negative and  | | | |, the converter will work under the inverter mode. 

  Figure 9. Equivalent circuit for inverter mode.  Figure 9. Equivalent circuit for inverter mode.

Similar to Equation (10), the output voltage of the MMC can be written as  Figure 9. Equivalent circuit for inverter mode. 

Similar to Equation (10), the output voltage of the MMC can be written as 

 

Energies 2019, 12, 157

8 of 17

Energies 2019, 12, x FOR PEER REVIEW   

8  of  18 

Similar to Equation (10), the output voltage of the MMC can be written as .   (12)  (12) ej = Re is = Re (iAC − if ). As for the grid‐connected condition, the    is a sine wave with the same frequency and phase  as the input voltage  u , so it can be easily derived by sampling the  . Denote the amplitude of  As for the grid-connected condition, the if is a sine wave with the same frequency and phase as the    and    as  ,  ,  respectively.  If  ,  the  converter  will  work  under  the  rectifier  the input voltage uAC , so it can be easily derived by sampling the uAC . Denote the amplitude of mode  the if and when the  , the converter will work under the inverter mode. For the off‐grid condition,  and is as If , Is , respectively. If If > − IS , the converter will work under the rectifier mode and when the   determines the frequency of the output voltage.  Ithe frequency of the  work under the inverter mode. For the off-grid condition, the frequency of f < − IS , the converter will the if The block diagram of the overall control strategy for the four‐quadrant OCC‐controlled MMC  determines the frequency of the output voltage. is  shown  in  Figure 10.  active  power  and  the  power  have  been  controlled  by  the  The block diagram Both  of thethe  overall control strategy forreactive  the four-quadrant OCC-controlled MMC is injecting  strategy.  The  emulated  resistance    can  be given as  any positive  value,  but in  order  to  shown in Figure 10. Both the active power and the reactive power have been controlled by the injecting control  the    conveniently,  the  Re  can can be be given given  the  maximum  input  voltage  divided  strategy. The emulated resistance asas  any positive value, but in order to controlby  thethe  if converter’s maximum allowable current  , the amplitude of    can be limited as  0, 2maximum   and  conveniently, the Re can be given as the maximum input voltage divided by the converter’s the  phase current is  always  to  the of phase  Thus,  the the amplitude    belongs  to  allowable Imaxopposite  , the amplitude if canof  bethe  limited. as phase is of  always opposite [0, 2Iwhen  max ] and , the system works under the rectifier mode and when it belongs to [ ,2 ], the system  to0,the phase of the uAC . Thus, when the amplitude of if belongs to [0, Imax ], the system works under works under the inverter mode.  the rectifier mode and when it belongs to [Imax , 2Imax ], the system works under the inverter mode.

  Figure 10. The block diagram of the overall control strategy.  Figure 10. The block diagram of the overall control strategy.

This can implement four-quadrant operation for the MMCMMC  with This control control module module  can  implement  four‐quadrant  operation  for OCC-controlled the  OCC‐controlled  less computation, but compared to other control modules introduced in this paper, its structure is with  less  computation,  but  compared  to  other  control  modules  introduced  in  this  paper,  its  slightly complicated. This chapter introduces three different OCC control modules and they meet the structure is slightly complicated. This chapter introduces three different OCC control modules and  requirements for the MMC in most applications, so the most suitable control modules can be selected they meet the requirements for the MMC in most applications, so the most suitable control modules  to balance the features and costs. can be selected to balance the features and costs.  5. Simulation and Experimental Results 5. Simulation and Experimental Results  In In  order order  to to verify verify the the correctness correctness of of the the proposed proposed control control scheme, scheme, some some simulations simulations  and and  experiments To ensure experiments  based based  on on single-phase single‐phase MMC MMC have have been been carried carried out. out.  To  ensure  the the  accuracy accuracy  of of the the  simulations and the experiments, both of them use the same parameters which have been listed in simulations and the experiments, both of them use the same parameters which have been listed in  Table 2. Table 2.  Table 2. Parameters used in the simulations and experiments. Table 2. Parameters used in the simulations and experiments.  Symbol

Description

Symbol  uAC  f   u

Value

Description  Value  AC system voltage 110 V(rms) AC system voltage  110 V(rms)  Power frequency 50 Hz Power frequency  50 Hz  DC-side voltage 330 V DC‐side voltage  330 V  Number of SMs in each arm 4 SM capacitance µF Number of SMs in each arm    780 4  Arm inductance 14.7 mH 780 μF  SM capacitance  Control frequency 10 kHz Arm inductance  14.7 mH  Equivalent control frequency 40 kHz Control frequency  10 kHz  Equivalent control frequency  40 kHz 

DC

N CSM N  L0  fc   fe

 

 

Energies 2019, 12, 157

9 of 17

Energies 2019, 12, x FOR PEER REVIEW    Energies 2019, 12, x FOR PEER REVIEW   

9  of  18  9  of  18 

5.1. Simulation Results 5.1. Simulation Results  5.1. Simulation Results  In order to verity both the steady-state performance and dynamic characteristics of the proposed In  order  to  verity  both  the  steady‐state  performance  and  dynamic  characteristics  of  the  order  to several verity  both  the  steady‐state  dynamic  characteristics  of  the  controlIn  strategies, simulations have beenperformance  carried out and  based on the MATLAB/ SIMULINK proposed  control  strategies,  several  simulations  have  been  carried  out  based  on  the  MATLAB/  proposed  control  strategies,  several  simulations  have  been  carried  out  based  on  the  MATLAB/  platform and all the three control modules mentioned in this paper have been tested. SIMULINK platform and all the three control modules mentioned in this paper have been tested.  SIMULINK platform and all the three control modules mentioned in this paper have been tested.  5.1.1. Basic OCC Controller 5.1.1. Basic OCC Controller  5.1.1. Basic OCC Controller  Figure 11 shows the steady-state performance of the basic unit power factor OCC controller which Figure  11  shows  the  steady‐state  performance  of  the  basic  unit  power  factor  OCC  controller  Figure  11  shows  the  steady‐state  of when the  basic  unit  power  OCC  controller  is shown showsperformance  the situation IAC = 6A and Ifactor  = 12 A, respectively. AC6 A  which  in is  Figure shown 6. in Figure Figure 11a,b 6.  Figure  11a,b  shows  the  situation  when  and  12 A,  which  is  shown  in  Figure  6.  Figure  11a,b  shows  the  situation  when  6 A  and  12 A,  Both of them have sinusoidal current waveforms with few ripples, but as described in Section 4.1, respectively. Both of them have sinusoidal current waveforms with few ripples, but as described in  therespectively. Both of them have sinusoidal current waveforms with few ripples, but as described in  phases of the voltage and current are not exactly the same. The current always lags behind the Section 4.1, the phases of the voltage and current are not exactly the same. The current always lags  Section 4.1, the phases of the voltage and current are not exactly the same. The current always lags  voltage and the situation becomes more severe as the current increases. behind the voltage and the situation becomes more severe as the current increases.  behind the voltage and the situation becomes more severe as the current increases. 

(a)  (a) 

   

   

(b)  (b) 

Figure 11. The steady‐state performance of the unit power  factor OCC controller: (a)  6 A; (b)  Figure 11. The steady-state performance of the unit power factor OCC controller: (a) IAC = 6 A; Figure 11. The steady‐state performance of the unit power  factor OCC controller: (a)  6 A; (b)  12 A.  (b) IAC = 12 A. 12 A. 

The dynamic characteristics of this control strategy is shown in Figure 12. When  t 0.4 0.4 s, the  The dynamic characteristics of this control strategy is shown in Figure 12. When t = s, the DC The dynamic characteristics of this control strategy is shown in Figure 12. When  t 0.4 s, the  ∗ ∗ increased DC  voltage  reference    increased  from  330  to  390  V.  Then,  because  of  the  effect  of  the  PI  voltage reference uDC from 330 to 390 V. Then, because of the effect of the PI controller, DC  voltage  reference  ∗   increased  from  330  to  390  V.  Then,  because  of  the  effect  of  the  PI  controller, the current increases rapidly and the DC voltage gradually rises. By the same time, the  the current increases rapidly and the DC voltage gradually rises. By the same time, the current begins controller, the current increases rapidly and the DC voltage gradually rises. By the same time, the  current begins to decrease gradually and after a short adjustment, when  t 0.5 s, the entire system  to current begins to decrease gradually and after a short adjustment, when  decrease gradually and after a short adjustment, when t = 0.5 s, the entire system regains a new t 0.5 s, the entire system  regains  a  new  steady  state,  and  compared  to  the  original  state,  the  new  one  has  a ripple larger  due DC  side  steady state, andsteady  compared thecompared  original state, the new one hasthe  a larger DChas  sidea  to the regains  a  new  state, toand  to  the  original  state,  new  one  larger  DC  side  ripple due to the increased DC side power.  increased DC side power. ripple due to the increased DC side power. 

   

Figure 12. The situation when the direct current (DC) voltage reference changed.  Figure 12. The situation when the direct current (DC) voltage reference changed. Figure 12. The situation when the direct current (DC) voltage reference changed. 

Energies 2019, 12, x FOR PEER REVIEW   

10  of  18 

Energies 2019, 12, 157 5.1.2. Reactive‐Power‐Controlled OCC Controller  Energies 2019, 12, x FOR PEER REVIEW   

10 of 17

10  of  18 

For the reactive‐power‐controlled OCC controller, which is shown in Figure 8, the steady‐state  5.1.2. Reactive‐Power‐Controlled OCC Controller  5.1.2. Reactive-Power-Controlled OCC Controller performances are shown in Figure 13. Figure 13a,b shows the input current and voltage waveforms  For the reactive‐power‐controlled OCC controller, which is shown in Figure 8, the steady‐state  , controller, ,  respectively,  all  of  in them  have  same  active  when  the  factor  angles  φ   are OCC For thepower  reactive-power-controlled whichand  is shown Figure 8, the  the steady-state performances are shown in Figure 13. Figure 13a,b shows the input current and voltage waveforms  performances shown in Figure 13a,b shows the input and voltage in  waveforms current.  From are Figure  13a,b  it  can 13. be Figure seen  that  the  controller  has current good  performance  both  the  ,  respectively,  and  all  of  them  have  the  same  active  when  the  power  factor  angles  φ  πare  π, when the power factor angles ϕreactive  − 4 , respectively, and all ofFigure  them have the same active current. capacitive  and  the  inductive  output  situations.  13c  shows  the  current  and  S are , power  current.  From  Figure  13a,b  it  can  4be  seen  that  the  controller  has  good  performance  in  both  the  From Figure 13a,b can be seen that thesituation,  controllerand  has good performance both the Figure  capacitive the voltage  under  the itunit  power  factor  comparing  Figure in13c  with  11b and shows  capacitive  and  the  inductive  reactive  power  output  situations.  Figure  13c  shows  the  current  and  inductive power 13camplitude  shows the current and voltage underlikely  the unit that  both reactive of  them  have output almost situations. the  same Figure current  but  Figure  13c  is  more  to  voltage  under  the  unit  power  factor  situation,  and  comparing  Figure  13c  with  Figure  11b  shows  implement  unit  power  factor.  Figure  13d  the  equivalent  side  output  voltage  of  the  power factorthe  situation, and comparing Figure 13cshows  with Figure 11b showsAC  that both of them have almost that  both  of  them  have  almost  the  same  current  amplitude  but  Figure  13c  is  more  likely  to  MMC  calculated  by  Equation  (6); 13c the  five‐level  output  can  be  clearly  seen Figure from 13d the  the same  current amplitude but Figure is more likelyvoltage  to implement the unit power factor. implement  the  unit  power  factor.  Figure  13d  shows  the  equivalent  AC  side  output  voltage  of  the  shows the equivalent AC side output voltage of the MMC e calculated by Equation (6); the five-level figure and at the same time the voltage fluctuation caused by the charge and the discharge of the  j output  can  be  clearly  seen  from  the  MMC    calculated  by  Equation  (6);  the  five‐level  voltage  voltage output can be clearly seen from the figure and at the same time the voltage fluctuation caused SM capacitors can also be seen from the figure.  figure and at the same time the voltage fluctuation caused by the charge and the discharge of the  by SM capacitors can also be seen from the figure.  the charge and the discharge of the SM capacitors can also be seen from the figure.

(a)  (a) 

(c)  (c) 

   

  

 

(b)  (b) 

 

   

(d)  (d) 

Figure 13. The steady‐state performance of the reactive‐power‐controlled OCC controller: (a)  Figure 13. The steady‐state performance of the reactive‐power‐controlled OCC controller: (a)  Figure 13. The steady-state performance of the reactive-power-controlled OCC controller: (a)φϕφS = ; π4 ; ; (b) (b)  φSφ= 0; 0; (d) the equivalent AC side output voltage of the MMC.  ; (c)  0; (d) the equivalent AC side output voltage of the MMC.  (b) ϕφS φ = − π4 ; (c)  ; (c) ϕ (d) the equivalent AC side output voltage of the MMC.

The dynamic characteristic is shown in Figure 14. When t = 0.4tts, let the let  reactive power reference The  dynamic  characteristic  is shown  shown  in  Figure  14.  0.4 s,  power  The  dynamic  characteristic  is  in  14.  When  When  0.4 s,  let the  the reactive  reactive  power  become the opposite of the original value. The current changes quickly after the reference changes and reference become the opposite of the original value. The current changes quickly after the reference  reference become the opposite of the original value. The current changes quickly after the reference  is basically stable after half a grid voltage cycle. changes and is basically stable after half a grid voltage cycle.  changes and is basically stable after half a grid voltage cycle. 

 

 

Figure 14. The dynamic state performance of the reactive‐power‐controlled OCC controller.  Figure 14. The dynamic state performance of the reactive-power-controlled OCC controller. Figure 14. The dynamic state performance of the reactive‐power‐controlled OCC controller. 

The steady‐state performance of the four‐quadrant OCC controller which has been described  in section 4.2 is shown in Figure 15. In these cases, the DC side is connected to a 400 V DC power  supply. Figure 10a,b shows the situation in the inversion mode under the grid‐connect or off‐grid  situation, respectively. For the off‐grid MMC, the AC power is replaced by a  10 Ω  resistor and the  Energies 2019, 12, 157 11 of 17 reactive power controller is no longer need. Since the AC power supply no longer needs to output  active power to maintain the DC side voltage, it is possible to only output the reactive power to the  AC  side.  Figure  10c,d  shows  the  case  when  the  current  lags  or  leads  the  AC  source  voltage  ,  5.1.3. Four-Quadrant OCC Controller respectively.  The steady-state performance of the four-quadrant OCC controller which has been described in The dynamic characteristic of the four‐quadrant OCC controller is shown in Figure 16. When  ∗ cases, the DC side is connected to a 400 V DC power supply. Section 4.2 is shown in Figure 15. In these t 0.4 s, the active power reference    changes from positive to negative, which means the system  Figure 15a,b shows the situation into  the inversion modeThe  under the grid-connect or off-grid situation, switches  from  rectification  mode  inversion  mode.  current  changes  quickly  after  the  mode  respectively. For the off-grid MMC, the AC power is replaced by a 10 Ω resistor and the reactive changes and is basically stable after half a grid voltage cycle.  power controller is no longer need. Since the AC power supply no longer needs to output active To further verify the performance of the proposed controller, the AC currents under different  power to maintain the DC side voltage, it is possible to only output the reactive power to the AC side. operating conditions have been analyzed in the frequency domain. The total harmonic distortions  Figure 15c,d shows the case when the current lags or leads the AC source voltage π2 , respectively. (THDs) in the inversion and rectification conditions are 0.54% and 0.45%, respectively, and during  The dynamic characteristic of the four-quadrant controller shownare  in Figure 16. When the  capacitive  and  inductive  reactive  power  output OCC conditions,  the isTHDs  0.4%  and  0.43%  ∗ tseparately.  = 0.4 s, theThe  active power reference P changes from to negative, the system spectrum  analysis  results  under  the positive four  conditions  are which shown means in  Figure  17.  As  switches from rectification mode to inversion mode. The current changes quickly after the mode shown in the figure, although there are slight differences in the THDs, the AC currents have almost  changes and is basically stable after half a grid voltage cycle. no harmonic contents under all the operating conditions. 

  (a) 

  (b) 

  (c) 

  (d) 

Figure 15. The steady‐state performance of the four‐quadrant OCC controller: (a) Grid‐connect inversion;  Figure 15. The steady-state performance of the four-quadrant OCC controller: (a) Grid-connect (b) off‐grid inversion; (c) capacitive reactive power output; (d) inductive reactive power output.  inversion; (b) off-grid inversion; (c) capacitive reactive power output; (d) inductive reactive Energies 2019, 12, x FOR PEER REVIEW    12  of  18  power output.

  Figure 16. The dynamic state performance of the four-quadrant OCC controller. Figure 16. The dynamic state performance of the four‐quadrant OCC controller. 

Energies 2019, 12, x FOR PEER REVIEW

12 of 18

Energies 2019, 12, 157

12 of 17

To further verify the performance of the proposed controller, the AC currents under different operating conditions have been analyzed in the frequency domain. The total harmonic distortions (THDs) in the inversion and rectification conditions are 0.54% and 0.45%, respectively, and during the capacitive and inductive reactive power output conditions, the THDs are 0.4% and 0.43% separately. The spectrum analysis results under the four conditions are shown in Figure 17. As shown in the Figure 16.are Theslight dynamic state performance of thethe four-quadrant OCC controller. figure, although there differences in the THDs, AC currents have almost no harmonic contents under all the 16. operating conditions. Figure The dynamic state performance of the four-quadrant OCC controller.

Figure 17. Harmonic comparison in different modes. Figure modes. Figure17. 17.Harmonic Harmoniccomparison comparisoninindifferent different modes.

5.2. Experiment Results 5.2. Experiment Results 5.2.To Experiment test the Results working condition of the controller in the real environment, a 200 W MMC To test the working condition of the controller inThe the real environment, a 200 W MMC prototype was the builtworking in the laboratory bridge was made up byprototype the To test condition environment. of the controller half in the realSM environment, a 200 W IGBT MMC was built in the laboratory environment. The half bridge SM was made up by the IGBT IKCM15F60GA IKCM15F60GA (600 V/15 A, Infineon). The digital control was implemented on a floating-point prototype was built in the laboratory environment. The half bridge SM was made up by the IGBT (600 V/15 A, Infineon). The digital control was implemented on a floating-point digital signal (FPGA) process digital signal process (DSP) TMS320F28335 and control a field-programmable gate IKCM15F60GA (600 V/15 A, Infineon). The digital was implemented on array a floating-point (DSP) TMS320F28335 and a field-programmable gate array (FPGA) Xilink-XC6SLX25. As Figure 18 Xilink-XC6SLX25. As Figure 18 shows, the DSP was to calculate the output voltage the digital signal process (DSP) TMS320F28335 andused a field-programmable gate arrayand (FPGA) shows, the DSP was used to calculate the output voltage and the FPGA generated the switching signals. FPGA generated theAs switching signals. The signal wastoimplemented the analog-to-digital Xilink-XC6SLX25. Figure 18 shows, the DSPsample was used calculate theby output voltage and the The signal (ADC) sample chip was implemented by the analog-to-digital converter (ADC) chip the AD7606. Other converter AD7606. Other parameters are shown in Table 1 and experiment FPGA generated the switching signals. The signal sample was implemented by the analog-to-digital parameters are shown in Table 1 and the experiment prototype is shown in Figure 19. prototype shown in Figure 19. converteris (ADC) chip AD7606. Other parameters are shown in Table 1 and the experiment prototype is shown in Figure 19.

Figure 18. 18. The The hardware architecture architecture and and functional introduction of the control system. DSP: digital Figure process. signal process. Figure 18. The hardware architecture andsignal functional introduction of the control system. DSP: digital signal process.

The current and voltage waveforms under the unit power factor situation controlled by the conventional power factor OCC controller and the reactive-power-controlled OCC controller are shown in Figure 20a,b, respectively, and both of them have sinusoidal current waveforms with fewer ripples. Compared with the simulation results, the current in the experiment is smaller due to the limitation of the hardware conditions, but the conclusion that the current waveform shown in Figure 20b is closer to the unit power factor relative to Figure 20a can be obtained by observing the zero-crossing point of the current waveform. Figure 21 shows the equivalent AC side output voltage of the MMC and the five-level voltage output can be clearly seen from that figure.

Energies 2019, 12, 157 Energies 2019, 12, x FOR PEER REVIEW

13 of 17 13 of 18

Figure19. 19.Experiment Experimentprototype. prototype. Figure

The current current and and voltage voltage waveforms waveforms under under the the unit unit power power factor factor situation situation controlled controlled by by the the The conventional power factor OCC controller and the reactive-power-controlled OCC controller are conventional power factor OCC controller and the reactive-power-controlled OCC controller are shown in in Figure Figure 20a,b, 20a,b, respectively, respectively, and and both both of of them them have have sinusoidal sinusoidal current current waveforms waveforms with with shown fewer ripples. Compared with the simulation results, the current in the experiment is smaller due to fewer ripples. Compared with the simulation results, the current in the experiment is smaller due to the limitation of the hardware conditions, but the conclusion that the current waveform shown in the limitation of the hardware conditions, but the conclusion that the current waveform shown in Figure 20b 20b isis closer closer to to the the unit unit power power factor factor relative relative to to Figure Figure 20a 20a can can be be obtained obtained by by observing observing the the Figure zero-crossing point of the current waveform. Figure 21 shows the equivalent AC side output zero-crossing point of the current waveform. Figure 21 shows the equivalent AC side output voltageof ofthe theMMC MMCand andthe thefive-level five-level voltage outputcan can beclearly clearlyseen seenfrom fromthat thatfigure. figure. Figure 19. Experiment Experiment prototype. voltage voltage output be Figure 19. prototype. The current and voltage waveforms under the unit power factor situation controlled by the conventional power factor OCC controller and the reactive-power-controlled OCC controller are shown in Figure 20a,b, respectively, and both of them have sinusoidal current waveforms with fewer ripples. Compared with the simulation results, the current in the experiment is smaller due to the limitation of the hardware conditions, but the conclusion that the current waveform shown in Figure 20b is closer to the unit power factor relative to Figure 20a can be obtained by observing the zero-crossing point of the current waveform. Figure 21 shows the equivalent AC side output voltage of the MMC and the five-level voltage output can be clearly seen from that figure. (a) (a)

(b) (b)

20. The under the the unit unit power power factor factor situation situation controlled controlled by: Figure 20. 20. The current current and and voltage voltage waveforms waveformsunder controlledby: Figure powerfactor factorOCC OCCcontroller; controller;(b) (b)reactive-power-controlled reactive-power-controlledOCC OCCcontroller. controller. (a) traditional traditional unit unit power power factor OCC controller; (a) controller.

(a)

(b)

Figure 20. The current and voltage waveforms under the unit power factor situation controlled by: (a) traditional unit power factor OCC controller; (b) reactive-power-controlled OCC controller.

Figure21. 21.The Theequivalent equivalentAC ACside sideoutput outputvoltage voltageof of the the MMC. MMC. Figure

The dynamic characteristics of the conventional unit power factor OCC controller are shown ∗ . changed, because of the effect of the PI controller, in Figure 22. After DC voltage reference uDC the current increases rapidly and the DC voltage gradually rises. The variation of three SM capacitor voltages are also shown, where VSM1 and VSM2 are the upper arm SM voltages and VSM3 is a lower arm SM voltage. It can be seen that the voltages of the three SMs are basically the same throughout the entire process and the voltage oscillation increases as the current increases. Figure 21. The equivalent AC side output voltage of the MMC.

The dynamic characteristics of the conventional unit power factor OCC controller are shown in The dynamic characteristics of the conventional unit power factor OCC controller are shown in  ∗∗ Figure 22. Figure  22. After After DC DC voltage voltage reference reference  𝑢DC   changed, changed, because because of of the the effect effect of of the the PI PI controller, controller, the the  current current increases increases rapidly rapidly and and the the DC DC voltage voltage gradually gradually rises. rises. The The variation variation of of three three SM SM capacitor capacitor  voltages are also shown, where 𝑉SM1   and the upper arm SM voltages and 𝑉SM3   is a lower voltages are also shown, where  and  𝑉SM2   are are the upper arm SM voltages and  is a lower  arm SM2019, voltage. arm SM voltage. It can be seen that the voltages of the three SMs are basically the same throughout  Energies 12, 157 It can be seen that the voltages of the three SMs are basically the same throughout 14 of 17 the entire process and the voltage oscillation increases as the current increases. the entire process and the voltage oscillation increases as the current increases. 

  Figure thethe dynamic response when thethe DCDC voltage reference changed: (a) Figure 22. 22.Experiment Experimentresults resultsforfor dynamic response when voltage reference changed: Figure 22. Experiment results for the dynamic response when the DC voltage reference changed: (a)  DC bus voltage; (b) SM voltages. (a) DC bus voltage; (b) SM voltages. DC bus voltage; (b) SM voltages. 

For the OCC controller, thethe situations are shown in Figure 23, the23, power For reactive-power-controlled OCC controller, situations are in the For  the reactive-power-controlled reactive‐power‐controlled  OCC  controller,  the  situations  are shown shown  in Figure Figure  23,  the  π π π π factor angles ϕS are 4φ and all of them have thehave samethe active current. dynamic power factor angles ,,− ,, respectively, and all of them have the same active current. The  respectively, and all of them same active The current. The   are are  power factor angles  φ,S − 4 , respectively, 4 4 responseresponse when thewhen reactive power reference becomesbecomes the opposite of the original value isvalue shown dynamic the reactive power reference the opposite of the original is dynamic response when the reactive power reference becomes the opposite of the original value is  in Figure 24. As can be seen from the figure, the adjustment of the reactive power is completed in shown in Figure 24. As can be seen from the figure, the adjustment of the reactive power is shown  in  Figure  24.  As  can  be  seen  from  the  figure,  the  adjustment  of  the  reactive  power  is  two cycles and although and the DC side voltage has some slighthas fluctuation duefluctuation to the influence of the completed the DC voltage due DC side side voltage  has some some slight slight fluctuation  due to to the the  completed in in two two cycles cycles and although although the  disturbance, the steady-state value of the DC voltage has not changed significantly, which means the influence of the disturbance, the steady-state value of the DC voltage has not changed significantly, influence of the disturbance, the steady‐state value of the DC voltage has not changed significantly,  active means power the has active not been affected by the change of reactive power.of reactive power. which power has not been affected by the change which means the active power has not been affected by the change of reactive power. 

 

(a) (a) 

(b) (b) 

Figure23. 23.Experiment Experimentresults resultsfor forthe thesteady-state steady-stateperformance performanceof ofthe thereactive-power-controlled reactive-power-controlled OCC OCC Figure Figure 23. Experiment results for the steady‐state performance of the reactive‐power‐controlled OCC  𝜋 𝜋 controller: (a) (a) φ ϕ = π4;; (b)  ; (b)φ ϕSS==−− .π4.  . controller: (b) φ controller: (a)  φSS = 4

4

 

Energies 2019, 12, 157 Energies 2019, 2019, 12, x FOR REVIEW Energies 12, x PEER FOR PEER REVIEW

15 of 17 15 of15 18of 18

Figure 24.Experiment Experiment results forthe the dynamic response when the reactive reactive power reference Figure 24. results for response when the power reference changed. Figure 24. Experiment results fordynamic the dynamic response when the reactive power reference changed.

The steady-state performance ofof thethe four-quadrant OCC controller is shown in Figure 25. During The steady-state performance four-quadrant OCC controller is shown in Figure 25. 25. The steady-state performance of the four-quadrant OCC controller is shown in Figure these tests, thetests, DC side is connected to a 400 VtoDC power supply. Figure 25a,b shows25a,b the situation in During these the DC side is connected a 400 V DC power supply. Figure shows the During these tests, the DC side is connected to a 400 V DC power supply. Figure 25a,b shows the the inversion mode under the grid-connect or off-grid situation, respectively. For the off-grid MMC, situation in the mode under the grid-connect or off-grid situation, respectively. For For the the situation in inversion the inversion mode under the grid-connect or off-grid situation, respectively. the AC MMC, power the is replaced byisa replaced 100 Ω resistor. Figure 25c,d shows the case when the current lags off-grid AC power by a 100 Ω resistor. Figure 25c,d shows the case when the off-grid MMC, the AC powerπis replacedπby a 100 Ω resistor. Figure 25c,d shows the case when the πThe dynamic or leadslags the or ACleads source , respectively. is shown in 26; current thevoltage AC voltage , respectively. Thecharacteristic dynamic characteristic is Figure shown in in current lags or leads the source AC 2source voltage , respectively. The dynamic characteristic is shown 2 2 the working state of the system finishes the change from rectification mode to inversion mode in two Figure 26; the statestate of the finishes the change fromfrom rectification mode to inversion Figure 26; working the working of system the system finishes the change rectification mode to inversion cycles,inwhich showswhich the superior dynamic characteristic of the controller. mode two cycles, shows the superior dynamic characteristic of the controller. mode in two cycles, which shows the superior dynamic characteristic of the controller.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

Figure 25. results for performance of the four-quadrant OCC controller: (a) (a) Figure 25.Experiment Experiment results forthe thesteady-state steady-state performance of of the four-quadrant OCC controller: Figure 25. Experiment results for the steady-state performance the four-quadrant OCC controller: grid-connect inversion; (b) off-grid inversion; (c) capacitive reactive power output; (d) inductive (a) grid-connect inversion; (b) off-grid inversion; (c) capacitive reactive power output; (d) inductive grid-connect inversion; (b) off-grid inversion; (c) capacitive reactive power output; (d) inductive reactive power output. reactive power output. reactive power output.

Energies 2019, 12, 157

16 of 17

Energies 2019, 12, x FOR PEER REVIEW

16 of 18

Figure Figure 26. 26. The performance performance when when changed changed from from rectification rectificationmode modeto toinversion inversionmode. mode.

6. Conclusions 6. Conclusions This paper proposes a modified OCC for MMCs. It uses the equivalent resistance constant This paper proposes a modified OCC for MMCs. It uses the equivalent resistance constant principle so that the modulation strategy can be separated from the control strategy. By adding the principle so that the modulation strategy can be separated from the control strategy. By adding the equivalent impedance into the controller, the proposed OCC-based MMC controller can control reactive equivalent impedance into the controller, the proposed OCC-based MMC controller can control power output and makes MMC operate in the inverter mode. Compared with the traditional OCC reactive power output and makes MMC operate in the inverter mode. Compared with the used in MMCs, the proposed one has the following advantages: (1) unlike the traditional controller traditional OCC used in MMCs, the proposed one has the following advantages: (1) unlike the which can only use CPS-PWM to generate the switch signals, the modified one can be combined with traditional controller which can only use CPS-PWM to generate the switch signals, the modified both NLM and CPS-PWM; (2) compared to the traditional one which can only operate at the unity one can be combined with both NLM and CPS-PWM; (2) compared to the traditional one which can power factor, the proposed one expands the range of applications for the OCC-based MMC controller. only operate at the unity power factor, the proposed one expands the range of applications for the Finally, the proposed controllers have been evaluated and validated by both simulation under the OCC-based MMC controller. Finally, the proposed controllers have been evaluated and validated MATLAB/SIMULINK platform and an experiment on a five-level single-phase MMC prototype. by both simulation under the MATLAB/SIMULINK platform and an experiment on a five-level single-phase MMC prototype. Author Contributions: X.T. and Y.M. conceived and designed the study; Y.M. and J.Y. performed the simulations and experiments; C.W. and H.C. reviewed the manuscript and provided valuable suggestions; Y.M. wrote the paper.Contributions: X.T. and Y.M. conceived and designed the study; Y.M. and J.Y. performed the Author simulations experiments; C.W. H.C. Key reviewed the manuscript and provided valuable suggestions; Funding: Thisand research was funded byand National R&D Program of China under grant number 2017YFB1200800 Y.M.National wrote the paper.Science Foundation of China grant number 51707194. and Natural Conflicts Interest: The authors declare by no conflict of interest. Funding:ofThis research was funded National Key R&D Program of China under grant number 2017YFB1200800 and National Natural Science Foundation of China grant number 51707194.

References Conflicts of Interest: The authors declare no conflict of interest. 1.

Perez, M.A.; Bernet, S.; Rodriguez, J.; Kouro, S.; Lizana, R. Circuit Topologies, Modeling, Control Schemes,

References and Applications of Modular Multilevel Converters. IEEE Trans. Power Electron. 2015, 30, 4–17. [CrossRef] 2.

1.

3.

2. 4.

3. 5.

4. 6.

Debnath, S.; Qin, J.; Bahrani, B.; Saeedifard, M.; Barbosa, P. Operation, Control, and Applications of the Perez, M.A.; Bernet, S.; Rodriguez, J.; Kouro, S.; Lizana, R. Circuit Topologies, Modeling, Modular Multilevel Converter: A Review. IEEE Trans. Power Electron. 2015, 30, 37–53. [CrossRef] Control Schemes, and Applications of Modular Multilevel Converters. IEEE Trans. Power Perilla, A.; Torres, J.L.R.; van der Meijden, M.A.M.M.; Alefragkis, A.; Lindefelt, A.M. Analysis of a power Electron. 2015, 30, 4–17, doi:10.1109/TPEL.2014.2310127. factor regulation strategy for an embedded point-to-point MMC-HVDC system. In Proceedings of the 2018 Debnath, S.; Qin, J.; Bahrani, B.; Saeedifard, M.; Barbosa, P. Operation, Control, and IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; pp. 1–6. Applications of the Modular Multilevel Converter: A Review. IEEE Trans. Power Electron. 2015, Li, H.; Potty, K.; Ke, Z.; Pan, J.; Chen, Y.; Zhang, F.; Sabbagh, M.A.; Perdikakis, W.; Li, G.; Ye, X.; et al. 30, 37–53, doi:10.1109/TPEL.2014.2309937. Hardware design of a 1.7 kV SiC MOSFET based MMC for medium voltage motor drives. In Proceedings of Perilla, A.; Torres, J.L.R.; van der Meijden, M.A.M.M.; Alefragkis, A.; Lindefelt, A.M. Analysis the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC 2018), San Antonio, TX, USA, of aMarch power factor regulation strategy for an embedded point-to-point MMC-HVDC system. In 4–8 2018; pp. 1649–1655. Proceedings of the 2018 M.A.; IEEE Echeverria, International Energy Conference Limassol, Rojas, C.A.; Kouro, S.; Perez, J. DC–DC MMC for HVDC (ENERGYCON), Grid Interface of Utility-Scale Cyprus, 3–7Conversion June 2018;Systems. pp. 1–6.IEEE Trans. Ind. Electron. 2018, 65, 352–362. [CrossRef] Photovoltaic Li, H.; Potty, K.; Ke, Z.; J.; Chen, Y.; Zhang, F.; Sabbagh,dqM.A.; Perdikakis, W.;Voltage Li, G.; Source Ye, X.; Bahrani, B.; Kenzelmann,Pan, S.; Rufer, A. Multivariable-PI-Based Current Control of et al. Hardware design of a 1.7 kV SiC MOSFET based MMC medium voltage drives. Converters with Superior Axis Decoupling Capability. IEEE Trans.forInd. Electron. 2011, motor 58, 3016–3026. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC [CrossRef]

2018), San Antonio, TX, USA, 4–8 March 2018; pp. 1649–1655.

Energies 2019, 12, 157

7. 8. 9. 10.

11. 12. 13. 14. 15. 16. 17.

18. 19. 20. 21. 22. 23.

17 of 17

Wang, J.; Liang, J.; Wang, C.; Dong, X. Circulating Current Suppression for MMC-HVDC under Unbalanced Grid Conditions. IEEE Trans. Ind. Appl. 2017, 53, 3250–3259. [CrossRef] Yang, Q.; Saeedifard, M.; Perez, M.A. Sliding Mode Control of the Modular Multilevel Converter. IEEE Trans. Ind. Electron. 2019, 66, 887–897. [CrossRef] Gong, Z.; Wu, X.; Dai, P.; Zhu, R. Modulated Model Predictive Control for MMC-based Active Front-End Rectifiers Under Unbalanced Grid Conditions. IEEE Trans. Ind. Electron. 2019, 66, 2398–2409. [CrossRef] Zhang, M.; Huang, L.; Yao, W.; Lu, Z. Circulating Harmonic Current Elimination of a CPS-PWM-Based Modular Multilevel Converter with a Plug-In Repetitive Controller. IEEE Trans. Power Electron. 2014, 29, 2083–2097. [CrossRef] Smedley, K.M.; Cuk, S. One-cycle control of switching converters. IEEE Trans. Power Electron. 1995, 10, 625–633. [CrossRef] Chen, G.; Smedley, K.M. Steady-State and Dynamic Study of One-Cycle-Controlled Three-Phase Power-Factor Correction. IEEE Trans. Ind. Electron. 2005, 52, 355–362. [CrossRef] Jin, T.; Smedley, K.M. Operation of One-Cycle Controlled Three-Phase Active Power Filter With Unbalanced Source and Load. IEEE Trans. Power Electron. 2006, 21, 1403–1412. [CrossRef] Sreeraj, E.S.; Prejith, E.K.; Chatterjee, K.; Bandyopadhyay, S. An Active Harmonic Filter Based on One-Cycle Control. IEEE Trans. Power Electron. 2014, 61, 3799–3809. [CrossRef] Wang, L.; Han, X.; Ren, C.; Yang, Y.; Wang, P. A Modified One-Cycle-Control-Based Active Power Filter for Harmonic Compensation. IEEE Trans. Ind. Electron. 2018, 65, 738–748. [CrossRef] Sreeraj, E.S.; Chatterjee, K.; Bandyopadhyay, S. One-Cycle-Controlled Single-Stage Single-Phase Voltage-Sensorless Grid-Connected PV System. IEEE Trans. Ind. Electron. 2013, 60, 1216–1224. [CrossRef] Nimesh, V.; John, V. Dual comparison one cycle control for single phase bi-directional power converters. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6. Miao, H.; Mei, J.; Zheng, J.; Zhang, C.; Zhu, C.; Ma, T.; Mei, F. An Improved MMC Control Strategy with Single-Phase to Ground Fault-Tolerance Capability. J. Electr. Eng. Technol. 2016, 11, 1242–1252. [CrossRef] Smedley, K.M.; Zhou, L.; Qiao, C. Unified constant-frequency integration control of active power filters-steady-state and dynamics. IEEE Trans. Power Electron. 2001, 16, 428–436. [CrossRef] Siemaszko, D. Fast Sorting Method for Balancing Capacitor Voltages in Modular Multilevel Converters. IEEE Trans. Power Electron. 2015, 30, 463–470. [CrossRef] Ricco, M.; Mathe, L.; Monmasson, E.; Teodorescu, R. FPGA-Based Implementation of MMC Control Based on Sorting Networks. Energies 2018, 11, 2394. [CrossRef] Zhou, F.; Luo, A.; Li, Y.; Xu, Q.; He, Z.; Guerrero, J.M. Double-Carrier Phase-Disposition Pulse Width Modulation Method for Modular Multilevel Converters. Energies 2017, 10, 581. [CrossRef] Moranchel, M.; Huerta, F.; Sanz, I.; Bueno, E.; Rodríguez, F. A Comparison of Modulation Techniques for Modular Multilevel Converters. Energies 2016, 9, 1091. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents