A PARAMETERIZED GENETIC ALGORITHM IP CORE DESIGN AND ...

23 downloads 510 Views 241KB Size Report
National Technical University of Athens (NTUA),. School of Electrical and Computer Engineering (ECE). IP Core Parameters. A GA IP core was developed with.
A PARAMETERIZED GENETIC ALGORITHM IP CORE DESIGN AND IMPLEMENTATION K.M. Deliparaschos1, G.C. Doyamis2, S.G. Tzafestas National Technical University of Athens (NTUA), School of Electrical and Computer Engineering (ECE)

ICINCO 2007

NTUA Athens

Introduction A parameterized GA IP core is designed and implemented on hardware, achieving impressive time–speedups when compared to its software version. The parameterization stands for the number of population individuals and their bit resolution, the bit resolution of each individual’s fitness, the number of elite genes in each generation, the crossover and mutation methods, the maximum number of generations, the mutation probability and its bit resolution. The proposed architecture is implemented in an Spartan 3-1500 FPGA chip with the use of VHDL and advanced synthesis and place and route tools. The designed GA IP core achieves a frequency rate of 92 MHz and is evaluated using the Traveling Salesman Problem (TSP) where a successful solution to it has been found, as well as several benchmarking functions.

System sub-blocks

Technological Approach

 Control Module

Overall System Architecture clk clk rst_n

rst_n

run 2 mut_out run

genom_lngt

seed load ga_fin index elite_null decode valid addr_1 we1 addr_2 we2 cross_out sel_out run 1 done data_out1 data_in data_out2 datavalid next_gene run 3

clk rst_n run seed load

genom_lngt

mut_method

2

Control Module

run_ga

max_fit

RNG

out

rst_n

clk rst_n

clk rst_n

Fitness elite_indexs in_gene Evaluation gene&scr index elite_null Module rd decode valid fit_sum max_fit

log2(pop_sz)

log2(pop_sz)

genom_lngt + score_sz

RAM 1 data_in addr data_out we

clk rst_n cont

mut_offspring

out RNG

rng

mut_method

 Selection Module

rd

Mutation mut_point Module

clk rst_n 2 run seed load

genom_lngt + mut_res seed_2

fit_limit_reached

in_gene

genom_lngt + score_sz

log2(2*(pop_sz-elite))

 Crossover Module

ga_fin

genom_lngt + mut_res genom_lngt

max_fit

2*log2(genom_lngt) log2(pop_sz) + score_sz

 Mutation Module

best_gene

score_sz

clk rst_n run seed load

clk rst_n

RNG 1 out scaling_factor_res

done

Observer clk Module fit_limit

cross_method

genom_lngt elite*log2(pop_sz)

elite_offs

ready signals (rd) from all modules

 Fitness Evaluation Module

fit_sum

clk rst_n

in_gene

Selection Module

rng valid next_gene

RAM 2

sel_parent rd

genom_lngt

data_in addr data_out we

genom_lngt

cross_offspring rd clk rst_n cross_points cont in_gene1 rng in_gene2

Crossover Module

out RNG

clk rst_n 3load seed run

 Observer Module seed_3

2*log2(genom_lngt)

cross_method

 Random Number Generators

reached

2

seed_1

 Random Access Memory (RAM)

genom_lngt scaling_factor_res

genom_lngt genom_lngt

Experimental Results

IP Core Parameters

FPGA Design Summary

TSP Evaluation: Map of the cities used, Population size vs. Generations

A GA IP core was developed with the following characteristics

Utilization of the implemented GA

Parameter name genom_lngt

generations

score_sz pop_sz

Description Chromosome length in bits

Fitness value bit resolution Population size Bit resolution of the random scaling_factor_ number used in RWS res algorithm elite Number of elite children mr Mutation rate

1000

Possible Value 16

16 32 4

2 80

Logic Utilization

GA

GA adapted to the TSP

Slice Flip Flops

681 (2%) 1045 (3%)

4 input LUT’s

1.086 (4%) 1630 (6%)

Logic distribution Occupied Slices

892 (6%) 1305 (9%)

4 input LUT’s

1.116 (6%) 1686 (6%)

Used as logic

1.086

1630

Used as route-thru

6

4

Used as 16x1 RAMs

24

52

Bonded IOBs

59 (12%) 53

(10%)

MULT 18x18s

1

(3%) 3

(9%)

GCLKs

1

(12%) 1

(12%)

100

Solution of the burma14 benchmark

10

Contacts 1,2 Contact

1 4

8

16

32 pop_sz

Software vs. Hardware GA Version Hardware (11 nsec) Software (Pentium 4 3,2 GHz 1Gb RAM )

Time(msec) 1,702 18.783

Authors:

K.M Deliparaschos, [email protected] G.C Doyamis, [email protected] National Technical University of Athens School of Electrical & Computer Eng. Division of Signals, Control and Robotics, Iroon Polytechniou 9, Zografou Campus, Athens GR-15773, Hellas.

Suggest Documents