A Windows program for calculation and classification ...

5 downloads 0 Views 6MB Size Report
different facies of metamorphic rocks (e.g., Henry and Dutrow,. 1992, 2012 ...... host-rock type (e.g., Henry and Dutrow, 1992; Morton et al., 2005;. Nascimento et al. ..... Williamson, B.J., Spratt, J., Adams, J.T., Tindle, A.G., Stanley, C.J., 2000.
Computers & Geosciences 63 (2014) 70–87

Contents lists available at ScienceDirect

Computers & Geosciences journal homepage: www.elsevier.com/locate/cageo

A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011)$ Fuat Yavuz a,n, Necati Karakaya b, Demet K. Yıldırım a, Muazzez Ç. Karakaya b, Mustafa Kumral a a b

Department of Geological Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey Selçuk Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümü, 42079 Konya, Turkey

art ic l e i nf o

a b s t r a c t

Article history: Received 11 June 2013 Received in revised form 17 October 2013 Accepted 18 October 2013 Available online 6 November 2013

A Microsoft Visual Basic program, WinTcac, has been developed to calculate structural formulae of tourmaline analyses based on the Subcommittee on Tourmaline Nomenclature (STN) of the International Mineralogical Association's Commission on New Minerals, Nomenclature and Classification (IMACNMCN) scheme. WinTcac calculates and classifies tourmaline-supergroup minerals based on 31 O atoms for complete tourmaline analyses. For electron-microprobe-derived tourmaline analyses site occupancy can be estimated by using the stoichiometric H2O (wt%) and B2O3 (wt%) contents. This program also allows the user to process tourmaline analyses using 15 cations and 6 silicons normalization schemes. WinTcac provides the user to display tourmaline analyses in a various classification, environmental, substitution, and miscellaneous plots by using the Golden Software's Grapher program. The program is developed to predict cation site-allocations at the different structural positions, including the T, Z, Y, and X sites, as well as to estimate the OH1  , F1  , Cl1  , and O2  contents. WinTcac provides editing and loading Microsoft Excel files to calculate multiple tourmaline analyses. This software generates and stores all the calculated results in the output of Microsoft Excel file, which can be displayed and processed by any other software for verification, general data manipulation, and graphing purposes. The compiled program code is distributed as a self-extracting setup file, including a help file, test data files and graphic files, which are designed to produce a high-quality printout of the related plotting software. & 2013 Elsevier Ltd. All rights reserved.

Keywords: International Mineralogical Association (IMA) Tourmaline Classification Normalization Software

1. Introduction Minerals of the tourmaline-supergroup are the most important and ubiquitous accessory borosilicate minerals in a great diversity of geological settings within the Earth's crust (Dutrow and Henry, 2011; van Hinsberg et al., 2011a, 2011b). Within these settings, tourmalines occur in a wide variety of rock compositions, including as authigenic overgrowths on detrial grains in sedimentary rocks (e.g., Henry et al., 1994; Henry and Dutrow, 1996; Van den Bleeken et al., 2007), as resistant and prograde minerals in different facies of metamorphic rocks (e.g., Henry and Dutrow, 1992, 2012; Kawakami, 2001; Torres-Ruiz et al., 2003; Abu El-Enen and Okrusch, 2007; Ertl et al., 2010; van Hinsberg and Schumacher, 2011), and as a primary phase in intrusive rocks and related pegmatites (e.g., London and Manning, 1995; Roda et al., 1995; Keller et al., 1999; Tindle et al., 2002; Trumbull et al., ☆ The executable code is available in the journal server or from corresponding author on request. n Corresponding author. E-mail address: [email protected] (F. Yavuz).

0098-3004/$ - see front matter & 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.cageo.2013.10.012

2008; Yavuz et al., 2008). Tourmaline is a common mineral in hydrothermal deposits that are formed by epigenetic and syngenetic processes (Slack and Trumbull, 2011). Tourmalines belong to the epigenetic style are composed of porphyry type Cu 7Mo deposits (e.g., Lynch and Ortega, 1997; Yavuz et al., 1999), Cu–Au breccias pipes (e.g., Warnaars et al., 1985; Skewes et al., 2003), and Sn–W veins in or near granites (e.g., Manning, 1986; Mlynarczyk and Williams-Jones, 2006; Neiva et al., 2007; Esmaeily et al., 2009). Tourmaline-supergroup minerals in syngenetic category are mainly found in sedimentary-exhalative (SEDEX) Zn–Pb–Ag deposits (e.g., Bone, 1988; Slack et al., 1993; Jiang et al., 1995) and volcanogenic massive sulfide (VMS) Cu–Zn–Pb–Ag–Au deposits (e.g., Taylor and Slack, 1984; Slack and Coad, 1989; Deb et al., 1997). The presence of tourmaline in such different geological environments made it important to understand the physical and chemical conditions of rock formation, ore-forming processes, and hydrothermal ore deposits. Since the tourmaline-supergroup minerals have an extensive temperature (T) and pressure (P) stability range, they have been used as a good petrogenetic indicator for P–T–fO2 conditions (Henry and Guidotti, 1985; van Hinsberg et al., 2011a, 2011b and references therein).

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

71

Table 1 Relative site abundances of cations and anions in tourmaline-supergroup minerals (from Henry et al., 2011). Site

Relative abundance of ions with different valence states

Common cations and anions at each site in order of relative abundance

X

R1 þ 4R2 þ 4vacancy (□)

R1 þ :Na1 þ 4 4 K1 þ R2 þ :Ca2 þ

Y

R2 þ 4R3 þ 4R1 þ 4 R4 þ

R2 þ :Fe2 þ EMg2 þ 4Mn2 þ 4 4 4 Zn2 þ , Ni2 þ , Co2 þ , Cu2 þ R3 þ :Al3 þ 4 4Fe3 þ 4Cr3 þ 4 4V3 þ R1 þ :Li1 þ R4 þ :Ti4 þ

Z

R3 þ 4 4R2 þ

R3 þ :Al3 þ 4 4Fe3 þ 4Cr3 þ 4 V3 þ R2 þ :Mg2 þ 4Fe2 þ

T

R4 þ 4 4R3 þ

R4 þ :Si4 þ R3 þ :Al3 þ 4 B3 þ

B

R3 þ

R3 þ :B3 þ

V

1–

S 4 4S

W

S1– E S2–

2–

S1–:OH1– S2  :O2– S1–:OH1– EF1  S2–:O2–

Notes: R¼ cations; S¼ anions; the bolded cations and anions represent the most common ions at these sites.

Table 2 IMA-accepted and prospective alkali-, calcic-, and vacant-group tourmaline species with their end-member compositions (revised from Henry et al., 2011). Row

General formula

(X)

(Y3)

(Z6)

T6O18

(BO3)3

V3

W

Alkali group 1 2 3 4 5 6 7 8 9

Alkali-subgroup 1 Draviten Schorln Chromium-draviten Vanadium-draviten Fluor-draviten Fluor-schorn “Potassium-dravite”† “Tsilaisite”a

R1 þ Na Na Na Na Na Na K Na

R32 þ Mg3 Fe32 þ Mg3 Mg3 Mg3 Fe32 þ Mg3 Mn32 þ

R63 þ Al6 Al6 Cr6 V6 Al6 Al6 Al6 Al6

R64 þ O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3

S31  (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3

S1  (OH) (OH) (OH) (OH) F F (OH) (OH)

10 11

Alkali-subgroup 2 Elbaiten “Fluor-elbaite”b

R1 þ Na Na

R1.51 þ R1.53 þ Li1.51 þ Al1.53 þ Li1.51 þ Al1.53 þ

R63 þ Al6 Al6

R64 þ O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3

S31  (OH)3 (OH)3

S1  (OH) F

12 13 14 15 16 17 18 19 20

Alkali-subgroup 3 Povondraiten Chromo-alumino-povondraiten “Oxy-dravite”c “Oxy-schorl”d “Na–Cr–O root name (Oxy-chromium-dravite)”e “(Oxy-vanadium-dravite)”f “Vanadio-oxy-dravite”g “Vanadio-oxy-chromium-dravite”h “Potassium-povondraite”†

R1 þ Na Na Na Na Na Na Na Na K

R33 þ Fe33 þ Cr3 Al3 Al3 Cr3 V3 V3 V3 Fe33 þ

R43 þ R22 þ § Fe34 þ Mg2 Al4 Mg2 Al4 Mg2 Al4 Fe22 þ Cr4 Mg2 V4Mg2 Al4 Mg2 Cr4 Mg2 Fe34 þ Mg2

R64 þ O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3

S31  (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3

S2  O O O O O O O O O

21

Alkali-subgroup 4 “Na–Li–O root name (Darrellhenryite)”i

R1 þ Na

R11 þ R23 þ Li1 Al2

R63 þ Al6

R64 þ O18 Si6O18

(BO3)3 (BO3)3

S31  (OH)3

S2  O

22 23 24 25

Alkali-subgroup 5 Fluor-buergeriten Oleniten “Buergerite”‡ “Fluor-olenite”‡

R1 þ Na Na Na Na

R33 þ Fe33 þ Al3 Fe33 þ Al3

R63 þ Al6 Al6 Al6 Al6

R63 þ O18 Si6O18 Si6O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3

S32  (O)3 (O)3 (O)3 (O)3

S1  F (OH) (OH) F

26 27 28 29

Alkali-subgroup 6 “Na–Al–Al–Al root name”‡ “Na–Al–Al–B root name”‡ “Fluor-Na–Al–Al–Al root name”‡ “Fluor-Na–Al–Al–B root name”‡

R1 þ Na Na Na Na

R33 þ Al3 Al3 Al3 Al3

R63 þ Al6 Al6 Al6 Al6

R33 þ R34 þ O18 Al3Si3O18 B3Si3O18 Al3Si3O18 B3Si3O18

(BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3

S31  (OH)3 (OH)3 (OH)3 (OH)3

S1  (OH) (OH) F F

Calcic-subgroup 1 Fluor-uviten Feruviten

Ca2 þ Ca Ca

R32 þ Mg3 Fe32 þ

R2 þ R53 þ MgAl5 MgAl5

R64 þ O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3

S31  (OH)3 (OH)3

S1  F (OH)

Calcic group 30 31

72

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

Table 2 (continued ) Row

General formula

(X)

(Y3)

(Z6)

T6O18

(BO3)3

V3

W

32 33

Uviten “Fluor-feruvite”†

Ca Ca

Mg3 Fe32 þ

MgAl5 MgAl5

Si6O18 Si6O18

(BO3)3 (BO3)3

(OH)3 (OH)3

(OH) F

34 35

Calcic-subgroup 2 Fluor-liddicoatiten “Liddicoatite”†

Ca2 þ Ca Ca

R21 þ R13 þ Li21 þ Al3 þ Li21 þ Al3 þ

R63 þ Al6 Al6

R64 þ O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3

S31  (OH)3 (OH)3

S1  F (OH)

36 37

Calcic-subgroup 3 “Ca–Mg–O root name”‡ “Ca–Fe–O root name”‡

Ca2 þ Ca Ca

R32 þ Mg3 Fe32 þ

R63 þ Al6 Al6

R64 þ O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3

S31  (OH)3 (OH)3

S2  O O

38

Calcic-subgroup 4 “Ca–Li–O root name”‡

Ca2 þ Ca

R1.51 þ R1.53 þ Li1.5 Al1.5

R63 þ Al6

R64 þ O18 Si6O18

(BO3)3 (BO3)3

S31  (OH)3

S2  O

39 40

Vacant-subgroup 1 Foititen Magnesio-foititen

Vacancy (□) Vacancy (□) Vacancy (□)

R22 þ R3 þ Fe22 þ Al Mg2Al

R63 þ Al6 Al6

R64 þ O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3

S31  (OH)3 (OH)3

S1  (OH) (OH)

41

Vacant-subgroup 2 Rossmaniten

Vacancy (□) Vacancy (□)

R11 þ R23 þ Li1 þ Al23 þ

R63 þ Al6

R64 þ O18 Si6O18

(BO3)3 (BO3)3

S31  (OH)3

S1  (OH)

42 43

Vacant-subgroup 3 “□–Mg–O root name”‡ “□–Fe–O root name”†

Vacancy (□) Vacancy (□) Vacancy (□)

R12 þ R23 þ MgAl2 Fe2 þ Al2

R63 þ Al6 Al6

R64 þ O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3

S31  (OH)3 (OH)3

S2  O O

44

Vacant-subgroup 4 “□–Li–O root name”†

Vacancy (□) Vacancy (□)

R0.51 þ R2.53 þ Li0.5 Al2.5

R63 þ Al6

R64 þ O18 Si6O18

(BO3)3 (BO3)3

S31  (OH)3

S2  O

Vacant group

a

Tsilaisite recognized by the IMA-CNMNC (Bosi et al., 2012b). Fluor-elbaite recognized by the IMA-CNMNC (Bosi et al., 2013a). c Oxy-dravite recognized by the IMA-CNMNC (Bosi and Skogby, 2013). d Oxy-schorl recognized by the IMA-CNMNC (Bačík et al., 2013). e Oxy-chromium-dravite recognized by the IMA-CNMNC (Bosi et al., 2012a). f Oxy-vanadium-dravite recognized by the IMA-CNMNC (Bosi et al., 2013b). g Vanadio-oxy-dravite recognized by the IMA-CNMNC (Bosi et al., in press-a). h Vanadio-oxy-chromium-dravite recognized by the IMA-CNMNC (Bosi et al., in press-b). i Darrellhenryite recognized by the IMA-CNMNC (Novák et al., 2013). n Tourmaline species recognized by the IMA-2011 tourmaline nomenclature scheme (Henry et al., 2011). † Tourmaline species with compositions found in natural settings, but not currently recognized by the IMA-CNMNC. ‡ Tourmaline species produced experimentally or found in natural settings in which the tourmalines show a tendency for development of these compositions, and not recognized by the IMA-CNMNC. b

Table 3 Description of column numbers in the Calculation Screen window of WinTcac program. Row Explanations

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Major oxide (wt%) tourmaline analyses Recalculated cations Recalculated cations in the T, Z, Y, and X sites Stoichiometric calculation of H2O, B2O3, and Li2O (wt%) contents Calculation of OH, F, and Cl (apfu) contents OH, O, F, and Cl (apfu) estimation at the W and V sites Determination of primary tourmaline groups (i.e., alkali-, calcic, and X-site vacant) based on the dominant occupancy of the X-site Determination of tourmaline species (i.e., hydroxyl-, oxy-, and fluor-tourmaline) based on the anion occupancy of the W-site Estimation of various parameters used for the classification of tourmaline-supergroup minerals Determination of tourmaline subgroups (i.e., from subgroup 1 to subgroup 5) Determination of tourmaline species Normalization used for the calculation of tourmaline data Total cations at different sites and their allocations Calculated various useful ratios and parameters of tourmaline analyses

Column numbers in the “Calculation Screen” of WinTcac program 1–31 32–58 59–95 96–98 99–102 103–110 111 112 113–142 143 144 145 146–152 153–175

Table 4 Selected tourmaline analyses (wt%) with their structural formulae (apfu) and important parameters calculated by WinTcac program. Row SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O Li2O F H2O B2O3 –O¼ F Total (wt%)

Cations based on 31 anions 17 T-site Si 18 Al 19 T-site total (apfu)

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

36.670 1.130 29.690 0.130 7.500 0.003 7.580 1.550 1.700 0.040 0.000 0.060 3.190 10.250  0.025 99.468

34.224 0.000 29.038 0.000 20.462 0.000 0.000 0.000 2.942 0.000 0.000 0.000 3.420 9.914 0.000 100.000

38.486 0.000 40.819 0.000 0.000 0.000 0.000 0.000 3.308 0.000 2.393 0.000 3.846 11.148 0.000 100.000

37.524 0.000 31.838 0.000 0.000 0.000 12.585 0.000 3.226 0.000 0.000 1.977 2.813 10.869  0.832 100.000

34.159 0.000 28.984 0.000 20.423 0.000 0.000 0.000 2.936 0.000 0.000 1.800 2.561 9.895  0.758 100.000

38.198 0.000 37.812 0.000 0.000 0.000 0.000 5.942 0.000 0.000 3.166 0.000 3.818 11.065 0.000 100.001

33.762 0.000 23.872 0.000 20.186 0.000 3.775 5.252 0.000 0.000 0.000 0.000 3.374 9.780 0.000 100.001

37.045 0.000 26.193 0.000 0.000 0.000 16.566 5.763 0.000 0.000 0.000 0.000 3.702 10.731 0.000 100.000

38.117 0.000 37.732 0.000 0.000 0.000 0.000 5.926 0.000 0.000 3.159 2.009 2.862† 11.041†  0.846 100.000

33.699 0.000 23.828 0.000 20.148 0.000 3.768 5.242 0.000 0.000 0.000 1.776 2.526 9.762  0.748 100.001

36.969 0.000 26.140 0.000 0.000 0.000 16.533 5.751 0.000 0.000 0.000 1.948 2.771 10.709  0.820 100.001

39.026 0.000 44.151 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.617 0.000 3.900 11.305 0.000 99.999

35.996 0.000 35.632 0.000 14.347 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.598 10.427 0.000 100.000

38.416 0.000 38.028 0.000 0.000 0.000 8.590 0.000 0.000 0.000 0.000 0.000 3.839 11.128 0.000 100.001

6.047 0.000 6.047

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

6.000 0.000 6.000

20 21 22 23 24

Z-site Al Fe3 þ Mg Fe2 þ Z-site total (apfu)

5.770 0.016 0.214 0.000 6.000

6.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 6.000

5.000 0.000 1.000 0.000 6.000

5.000 0.000 1.000 0.000 6.000

6.000 0.000 0.000 0.000 6.000

5.000 0.000 1.000 0.000 6.000

5.000 0.000 1.000 0.000 6.000

6.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 6.000

25 26 27 28 29 30 31

Y-site Al Ti Fe2 þ Mn Mg Li Y-site total (apfu)

0.000 0.140 1.034 o 0.001 1.649 0.000 2.824

0.000 0.000 3.000 0.000 0.000 0.000 3.000

1.500 0.000 0.000 0.000 0.000 1.500 3.000

0.000 0.000 0.000 0.000 3.000 0.000 3.000

0.000 0.000 3.000 0.000 0.000 0.000 3.000

1.000 0.000 0.000 0.000 0.000 2.000 3.000

0.000 0.000 3.000 0.000 0.000 0.000 3.000

0.000 0.000 0.000 0.000 3.000 0.000 3.000

1.000 0.000 0.000 0.000 0.000 2.000 3.000

0.000 0.000 3.000 0.000 0.000 0.000 3.000

0.000 0.000 0.000 0.000 3.000 0.000 3.000

2.000 0.000 0.000 0.000 0.000 1.000 3.000

1.000 0.000 2.000 0.000 0.000 0.000 3.000

1.000 0.000 0.000 0.000 2.000 0.000 3.000

32 33 34 35 36

X-site Ca Na K X-site vacancy X-site total (apfu)

0.274 0.543 0.008 0.175 1.000

0.000 1.000 0.000 0.000 1.000

0.000 1.000 0.000 0.000 1.000

0.000 1.000 0.000 0.000 1.000

0.000 1.000 0.000 0.000 1.000

1.000 0.000 0.000 0.000 1.000

1.000 0.000 0.000 0.000 1.000

1.000 0.000 0.000 0.000 1.000

0.999 0.000 0.000 0.001 1.000

1.000 0.000 0.000 0.000 1.000

1.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 1.000 1.000

0.000 0.000 0.000 1.000 1.000

0.000 0.000 0.000 1.000 1.000

37 38 39 40 41 42 43 44 45 46 47 48 49

Z þ Y sites total (apfu) T þ ZþY sites total (apfu) T þ ZþY þX sites total (apfu) Si excess (apfu) Cation charge R1 (apfu) R2 (apfu) R3 (apfu) X Al (Al-in-R2) (apfu) R þ (apfu) R2 þ (apfu) R3 þ (apfu) Mgn (apfu)

8.824 14.871 15.696 0.047 49.000 0.817 2.914 5.956 0.003 1.100 2.684 5.973 2.758

9.000 15.000 16.000 0.000 49.000 1.000 3.000 6.000 0.000 1.000 3.000 6.000 3.000

7.500 13.500 14.500 0.000 49.000 1.000 0.000 7.500 1.500 1.000 0.000 6.000 3.001

9.000 15.000 16.000 0.000 49.000 1.000 3.000 6.000 0.000 1.000 3.000 6.000 3.000

9.000 15.000 16.000 0.000 49.000 1.000 3.000 6.000 0.000 1.000 3.000 6.000 3.000

7.000 13.000 14.000 0.000 49.000 1.000 0.000 7.000 1.000 2.000 0.000 6.000 4.000

9.000 15.000 16.000 0.000 49.000 1.000 4.000 5.000  1.000 2.000 3.000 5.000 4.000

9.000 15.000 16.000 0.000 49.000 1.000 4.000 5.000  1.000 2.000 3.000 5.000 4.000

7.000 13.000 14.000 0.000 49.000 0.999 0.000 7.000 1.000 1.999 0.000 6.000 4.000

9.000 15.000 16.000 0.000 49.000 1.000 4.000 5.000  1.000 2.000 3.000 5.000 4.000

9.000 15.000 16.000 0.000 49.000 1.000 4.000 5.000  1.000 2.000 3.000 5.000 4.000

8.000 14.000 14.000 0.000 49.000 0.000 0.000 8.000 2.000 0.000 0.000 6.000 2.000

9.000 15.000 15.000 0.000 49.000 0.000 2.000 7.000 1.000 0.000 2.000 6.000 2.000

9.000 15.000 15.000 0.000 49.000 0.000 2.000 7.000 1.000 0.000 2.000 6.000 2.000

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S1

73

74

Table 4 (continued ) Row

S1 n

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

Al (apfu) Nan (apfu) OHn (apfu) Fetot/(Fetot þMg) Na/(NaþCa) Al/(Al þ Mg) Al/(Al þ Si) Al/(Al þ Fetot þ Mg) Ca/(Ca þFetot þ Mg)

6.066 0.552 0.540 0.360 0.665 0.756 0.488 0.664 0.086

6.000 1.000 0.999 1.000 1.000 1.000 0.500 0.667 0.000

6.000 1.000 0.999 1.000 1.000 1.000 0.556 1.000 0.000

6.000 1.000 1.000 0.000 1.000 0.667 0.500 0.667 0.000

6.000 1.000 1.000 1.000 1.000 1.000 0.500 0.667 0.000

5.000 0.000 1.000 1.000 0.000 1.000 0.538 1.000 1.000

5.000 0.000 1.000 0.750 0.000 0.833 0.455 0.556 0.200

5.000 0.000 1.000 0.000 0.000 0.556 0.455 0.556 0.200

5.000 0.000 1.000 1.000 0.000 1.000 0.538 1.000 1.000

5.000 0.000 1.000 0.750 0.000 0.833 0.455 0.556 0.200

5.000 0.000 1.000 0.000 0.000 0.556 0.455 0.556 0.200

7.000 0.000 1.000 1.000 1.000 1.000 0.571 1.000 0.000

7.000 0.000 1.000 1.000 1.000 1.000 0.538 0.778 0.000

7.000 0.000 1.000 0.000 1.000 0.778 0.538 0.778 0.000

59 60 61 62 63 64 65

OH (V þ W sites) OH (V-site) O (V-site) OH (W-site) F (W-site) O (W-site) V þ W sites Total (apfu)

3.509 3.000 0.000 0.509 0.031 0.460 4.000

3.999 3.000 0.000 0.999 0.000 0.001 4.000

3.999 3.000 0.000 0.999 0.000 0.001 4.000

3.000 3.000 0.000 0.000 1.000 0.000 4.000

3.001 3.000 0.000 0.000 1.000 0.000 4.000

4.000 3.000 0.000 1.000 0.000 0.000 4.000

4.000 3.000 0.000 1.000 0.000 0.000 4.000

4.000 3.000 0.000 1.000 0.000 0.000 4.000

2.000 2.000 1.000 0.000 1.000 0.000 4.000

3.000 3.000 0.000 0.000 1.000 0.000 4.000

3.000 3.000 0.000 0.000 1.000 0.000 4.000

4.000 3.000 0.000 1.000 0.000 0.000 4.000

4.000 3.000 0.000 1.000 0.000 0.000 4.000

4.000 3.000 0.000 1.000 0.000 0.000 4.000

66

Dominant cation (X-site)

Na

Na

Na

Na

Na

Ca

Ca

Ca

Ca

Ca

Ca

Mg2 þ 2.684

Fe2 þ 3.000

Mg2 þ 3.000

Mg2 þ 3.000

0.000 Al3 þ 6.000 0.000 Al3 þ

0.000 Al3 þ 6.000 3.000 Al3 þ

0.000 Al3 þ 6.000 0.000 Al3 þ

0.000 Mg2 þ 1.000 Al3 þ 5.000 4.000 Al3 þ

0.000 Al3 þ 6.000 0.000 Al3 þ

0.000 Mg2 þ 1.000 Al3 þ 5.000 4.000 Al3 þ

0.000 Mg2 þ 1.000 Al3 þ 5.000 4.000 Al3 þ

Mg2 þ 2.000 Al3 þ 1.000

0.000 Al3 þ 6.000 3.000 Al3 þ

0.000 Mg2 þ 1.000 Al3 þ 5.000 4.000 Al3 þ

Fe2 þ 0.000 Al3 þ 1.000

Fe2 þ 3.000

0.000 Mg2 þ 0.000 Al3 þ 6.000 3.000 Al3 þ

Fe2 þ 0.000 Al3 þ 1.000

Mg2 þ 3.000

0.000

Fe2 þ 3.000 Al3 þ 0.000

Fe2 þ 3.000

0.000 Mg2 þ 0.214 Al3 þ 5.786 2.898 Al3 þ

Fe2 þ 0.000 Al3 þ 1.500

0.000 Al3 þ 6.000 0.000 Al3 þ

0.000 Al3 þ 6.000 2.000 Al3 þ

0.000 Al3 þ 6.000 2.000 Al3 þ

5.786 Ti4 þ

6.000

7.500

6.000

6.000

7.000

5.000

5.000

7.000

5.000

5.000

8.000

7.000

7.000

0.140

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

80 81

Dominant divalent cation (Y-site) Total divalent cation (Y-site) (apfu) Dominant trivalent cation (Y-site) Total trivalent cation (Y-site) (apfu) Dominant divalent cation (Z-site) Total divalent cation (Z-site) (apfu) Dominant trivalent cation (Z-site) Total trivalent cation (Z-site) (apfu) Total divalent cation (Y þ Z sites) Dominant trivalent cation (Y þZ sites) Total trivalent cation (Y þ Z sites) Dominant quadrivalent cation (Y þZ sites) Total quadrivalent cation (Y þ Z sites) (apfu) Dominant cation (T-site) Dominant anion (V-site)

X-site vacant Fe2 þ 2.000 Al3 þ 1.000

X-site vacant

67 68 69 70 71 72 73 74 75 76

X-site vacant Fe2 þ 0.000 Al3 þ 2.000



Si OH



Si OH



Si OH



Si OH



Si OH



Si OH



Si OH



Si OH



Si OH



Si OH



Si OH



Si OH



Si OH

Si4 þ OH

82 83 84 85 86 87 88 89 90 91 92

Li-species test (Y-site) Mg/(Mg þFe2 þ ) (Y-site) R2 þ /(R2 þ þ2Li) (Y-site) Ca/(Ca þNa þ K) (X-site) Vacancy/(Ca þ vacancy) (X-site) Vacancy/(NaþK þ vacancy) (X-site) O/(O þ OHþ F) (W-site) OH/(OH þ F) (V-site) Al/(Al þ Fe3 þ þ Cr) (Z-site) Fe3 þ /(Al þFe3 þ þCr) (Z-site) Si/(Si þ B þAl) (T-site)

other 0.615 1.000 0.332 0.389 0.240 0.460 1.000 0.997 0.003 1.000

other 0.000 1.000 0.000 0.000 0.000 0.001 1.000 1.000 0.000 1.000

Li species 0.000 0.000 0.000 1.000 0.000 0.001 1.000 1.000 0.000 1.000

other 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 1.000

other 0.000 1.000 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

Li species 0.000 0.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 1.000

other 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 1.000

other 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 1.000

Li species 0.000 0.000 1.000 0.001 0.944 0.000 0.667 1.000 0.000 1.000

other 0.000 1.000 1.000 0.000 0.018 0.000 1.000 1.000 0.000 1.000

other 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 1.000

Li species 0.000 0.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000

other 0.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000

other 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000

93 94 95

Species series (W-site) Group name (Henry, 2011) Subgroup name (Henry, 2011)

HydroxyAlkali Subgroup 2 Elbaite

FluorAlkali Subgroup 1

HydroxyCalcic Subgroup 2

HydroxyCalcic Subgroup 1 Feruvite

HydroxyCalcic Subgroup 1 Uvite

FluorCalcic Subgroup 2

FluorFluorCalcic Calcic Subgroup 1 Subgroup 1

HydroxyX-vacant Subgroup 2

HydroxyX-vacant Subgroup 1 Foitite

HydroxyX-vacant Subgroup 1

Tourmalie species (Henry, 2011)

HydroxyAlkali Subgroup 1 Schorl

FluorAlkali Subgroup 1

96

HydroxyAlkali Subgroup 1 Dravite

77 78 79

Liddicoatite

Rossmanite

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

50 51 52 53 54 55 56 57 58

Fluorliddicoatite Tourmaline species (by WinTcac) 100

98 99

Notes: Tourmaline analyses are taken from Henry (2011); apfu ¼atomic per formula unit; (†) ¼ Calculated by WinTcac; R1 ¼ Na þCa (row 42), R2 ¼ Fetot þ Mg þMn(row 43), R3 ¼ Alþ1.33Ti (row 44), X Al (Al-in-R2) ¼Alþ 1.33Ti þSi-12 (row 45) (London and Manning, 1995); R þ ¼ Na þ þK þ þ 2Ca2 þ (row 46), R2 þ ¼Fe2 þ þ Mg2 þ þ Mn2 þ (row 47), R3 þ ¼Al3 þ þFe3 þ þ1.3Ti4 þ (row 48) (Foit Jr. et al., 1989); Mgn ¼Mg þ Fe2 þ þMnþ 2Li–Ti (row 49), Aln ¼Alþ Fe3 þ þ2Ti– Li (row 50), Nan ¼ Na þ K (row 51), OHn ¼OH þF (row 52) (Henry and Dutrow, 1990).

Magnesiofoitite

X-vacant subgroup 1

X-vacant X-vacant subgroup 2 subgroup 1 Rossmanite Foitite Calcic subgroup 1 Fluoruvite Calcic subgroup 1 Fluorferuvite Calcic subgroup 2

Calcic subgroup 1 Uvite Calcic subgroup 1 Liddicoatite Feruvite Calcic subgroup 2

Alkali subgroup 1 Fluorschorl Alkali subgroup 1 Fluordravite Alkali subgroup 1 Schorl Alkali subgroup 1 Dravite

Alkali subgroup 2 Elbaite

HydroxyFluorFluorFluorFluorFluorHydroxyHydroxyHydroxy-

Species series (W-site) (by WinTcac) Group name (by WinTcac) Subgroup name (by WinTcac) 97

Fluordravite

Fluorschorl

Hydroxy-

Hydroxy-

Hydroxy-

Fluorliddicoatite

Fluorferuvite

Fluoruvite

Hydroxy-

Hydroxy-

Magnesiofoitite

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

75

The Subcommittee on Tourmaline Nomenclature (STN) of the International Mineralogical Association's Commission on New Minerals, Nomenclature and Classification (CNMCN) has classified tourmalines with the tourmaline-supergroup terminology as they consist of two or more mineral groups (Henry et al., 2011). The general formula of tourmaline-supergroup can be expressed as XY3Z6(T6O18)(BO3)V3W, where the most common ions (or vacancy) at each site are X¼ Na1 þ , Ca2 þ , K1 þ , Pb2 þ , and vacancy (□); Y¼Fe2 þ , Mg2 þ , Mn2 þ , Al3 þ , Li1 þ , Fe3 þ , Ti4 þ , and Cr3 þ ; Z¼Al3 þ , Fe3 þ , Mg2 þ , and Cr3 þ ; T ¼Si4 þ , Al3 þ , and B3 þ ; B ¼ B3 þ ; V ¼OH1  and O2  ; and W¼ OH1  , F1  , and O2  . This formula show that tourmaline incorporates a wide variety of elements as mono-, di-, tri-, and tetravalent cations and mono- and divalent anions as well as extensive solid solution at Z and Y sites (Table 1). According to the IMA-2011 (Henry et al., 2011), the tourmaline-supergroup consist of 18 species (Table 2), but the best known minerals are dravite, schorl, and elbaite (Dutrow and Henry, 2011). Consequently, there are essentially two main types of common tourmaline: Li-dominated tourmaline (elbaite-rich), and Mg–Fe dominated tourmaline (dravite-schorl). In this study, we developed a Microsoft Visual Basic program, WinTcac, to calculate structural formulae of tourmaline analyses based on the current International Mineralogical Association (IMA-2011) nomenclature scheme. This software calculates tourmaline analyses both based on 31 O atoms normalization as default and 15 cations and 6 silicons as optional, shares out the recalculated cations at different sites (T, Z, Y, and X), estimates the OH  1 and O2  contents at the V-site and OH1  , F1  , Cl1  , and O2  contents at the W-site, and allows the user to display tourmalinesupergroup minerals in various binary and ternary diagrams by using the Golden Software's Grapher program.

2. Program description Compared to the software on amphibole group minerals (e.g., Yavuz, 2007 and references therein), programs as well as spreadsheets to calculate and classify the structural formulae of tourmalines are limited (Yavuz, 1997; Yavuz et al., 2002, 2006). Pesquera et al. (2008) presented a Visual Basic program (TOURCOMP) based on a linear algebraic model to calculate the end-member proportions of tourmaline analyses from their structural formulae. Henry (2011) developed an Excel spreadsheet, which is designed to use already-calculated cations for determining the tourmaline species based on an ordered distribution of elements in the tourmaline formula taking into account the current tourmaline nomenclature scheme. WinTcac, a Windows program for tourmaline calculation and classification, is the compiled software developed for running on the Microsoft Windows platform. The program described here is a comprehensive implementation of the chemistry-based nomenclature of the tourmaline-supergroup minerals (Henry et al., 2011) and it is intended for use with major oxide (wt%) tourmaline chemical data. WinTcac consists of a self-extracting setup file, which is compiled by using the Inno Setup software (http://www. jrsoftware.org/isdl.php). On successful installation of the WinTcac program, the start-up screen form with various pull-down menus and equivalent shortcuts appears on the screen. 2.1. Data entry The users of this program can edit tourmaline analyses by clicking the New icon on the toolbar, by selecting New File from the pull-down menu of File option or pressing the CtrlþN keys. The program defined standard 29 variables for calculation and classification of tourmaline analysis in the following order:

76

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

Sample No, SiO2, TiO2, SnO2, Al2O3, V2O3, Bi2O3, Cr2O3, Mn2O3, Fe2O3, FeO, MnO, NiO, CoO, ZnO, CuO, MgO, CaO, PbO, BaO, Na2O, K2O, Rb2O, Cs2O, Li2O, F, Cl, H2O, and B2O3. Tourmaline analyses typed in Excel files with the extension of “. xls” or “.xlsx”, as in the above order, can be loaded into the program's data entry section by clicking the Open Excel File option from the pull-down menu of File and then selecting the “1997– 2003 Files” or “2007–Later Files” alternatives. For example, two representative tourmaline Excel data files (WinTcac_Henry and WinTcac_Test) in the folder (i.e., C:\Program Files\WinTcac\Open Excel Files) can be used for this purpose by the user. Once the tourmaline analyses in an Excel file is displayed on the screen by using the Open Excel File option, it can be stored with the extension of “.tou” by clicking the Save As option from the pull-down menu of File. By selecting the Edit Excel File option from the pull-down menu of File and subsequently selecting the “1997–2003 Files” or “2007–Later Files”, tourmaline analyses can be typed in a blank Excel file (i.e., WinTcac) in the (C:\Program Files\WinTcac\Edit Excel File) folder, stored in a different file name with the extension of “.xls” or “.xlsx”, and then loaded into the program's data entry section by clicking the Open Excel File option from the pull-down menu of File for the next calculation. Additional knowledge on data entry or similar topics can be reached by pressing the F1 function key to display the WinTcac help file on the screen.

stoichiometric amount of B, and fully occupied Y, Z and T sites. These are, in fact, not just different options in the normalization, but are based on assumptions about the site occupancy. For an incomplete tourmaline analysis, normalization approach based on 24.5 anions may provide a good first approximation, but as it leaves out the W-site (O(1)) this scheme is prone to errors especially for F-bearing tourmaline species. Normalized to 15 total cations (i.e., YþZþ T) is the recommended approach for tourmaline with low Li contents and minor B in the tetrahedral site (Henry et al., 2011). The 15 total cations normalization procedure will be appropriate for tourmalines in almost all metamorphic and most igneous rocks (Henry et al., 2011). Normalization approach based on the Si¼ 6 (apfu) is useful for tourmaline analyses with significant amounts of unanalyzed elements especially for Li contents (Henry et al., 2011). This method assumes that T-site is fully occupied by Si and there is no significant amount of tetrahedral Al or B contents. Normalization on 6 (apfu) of Si seems to be an appropriate procedure for many Li-rich tourmalines. Where there is a complete tourmaline analysis, including H2O, B2O3, and Li2O (wt%) contents, WinTcac estimates site occupancy for normalization based on 31 anions. The program allows the user to select the normalization option for the calculation of structural formulae based on 31 anions, 15 total cations (i.e., Y þZþT), and

2.2. Normalization Normalization based on anions and cations can be used for tourmaline recalculation scheme. The best approach for determination of the structural formula of tourmaline-supergroup minerals is to use all possible analytical techniques (e.g., electronmicroprobe, secondary-ion mass spectrometry (SIMS), magicangle-spinning nuclear magnetic resonance (MAS NMR), and 57 Mössbauer spectroscopy) for a tourmaline sample. With the complete tourmaline analyses, including light elements (H, Li, and B), normalization can be properly carried out on a 31 anion basis that would give an accurate formula (Henry and Dutrow, 1996; Clark, 2007; Henry et al., 2011). However, without accurate analyses of H, Li, B, and oxidation states of some transition elements (e.g., Fe, Mn, V, Cr, and Ti), the question is that what is the most convenient normalization scheme for a tourmaline analysis? There are various cation normalization schemes that come with implicit assumptions. For example “19 cations” assumes that the X-site is fully occupied, which is uncommon, and requires a known B-content; YþZ þT ¼15 assumes a

Fig. 2. Plot of tourmalines in the ternary V3 þ –Cr3 þ –Al3 þ subsytem (low F3 þ ) used for explaining the dominant occupancy of the Z-site (from Henry et al., 2011). Data used in this figure are taken from Henry (2011).

Fig. 1. (a). Classification of primary tourmaline groups in the ternary Ca2 þ —X-site vacancy—Na1 þ (K1 þ ) system based on the dominant occupancy at the X-site (from Henry et al., 2011). (b) Plot of tourmaline species in the ternary O2  –F1  –OH1  system based on the anion occupancy of the W-site (from Henry et al., 2011). Data used in these figures are taken from Henry (2011).

Table 5 Examples of recently recognized tourmaline species with their calculation and classification parameters by WinTcac program. Row SiO2 TiO2 Al2O3 V2O3 Cr2O3 Fe2O3 FeO MnO ZnO MgO CaO Na2O K2O Li2O F Cl H2O B2O3 –O¼ F –O¼ Cl Total (wt%)

Cations based on 31 anions 22 Si (apfu) 23 Ti 24 Al 25 V 26 Cr 27 Fe3 þ 28 Fe2 þ 29 Mn 30 Zn 31 Mg 32 Ca 33 Na 34 K 35 Li 36 F 37 Cl 39 B

R2b

R3c

R4d

R5e

R6f

R7g

R8h

R9i

36.10 0.32 37.10 0.00 0.00 0.00 0.00 9.60 0.00 0.00 0.09 2.11 0.03 0.81 0.79 0.00 3.09 10.24  0.333 0.000 99.947

37.48 0.00 37.81 0.00 0.00 0.00 3.39 2.09 0.27 0.00 0.34 2.51 0.06 1.58 1.49 0.00 3.03 10.83  0.627 0.000 100.253

37.01 0.14 33.11 0.00 0.00 5.00 0.19 0.00 0.00 8.56 0.00 2.65 0.10 0.00 0.00 0.00 2.65 10.76 0.000 0.000 100.170

33.10 0.02 39.81 0.00 0.00 0.00 7.97 0.03 0.00 2.31 0.58 1.83 0.00 0.00 0.26 0.01 2.92 10.45  0.109  0.002 99.178

31.73 0.32 3.61 5.81 36.25 0.00 0.00 0.00 0.00 7.49 0.00 2.78 0.08 0.00 0.78 0.00 2.18 9.35  0.328 0.000 100.052

33.05 0.41 4.30 38.56 1.48 0.00 0.00 0.00 0.00 8.21 0.00 2.50 0.32 0.00 0.13 0.00 2.60 9.59  0.055 0.000 101.095

35.34 0.29 20.36 15.97 1.48 0.34 0.15 0.00 0.00 9.65 1.24 2.11 0.09 0.00 0.00 0.00 2.86 10.23 0.000 0.000 100.110

37.94 0.00 42.77 0.00 0.00 0.00 0.17 0.02 0.00 0.00 0.07 1.81 0.12 1.88 0.64 0.00 2.86 11.01  0.269 0.000 99.021

32.75 0.00 7.64 24.36 12.87 0.42 0.00 0.00 0.00 7.19 0.00 2.52 0.24 0.00 0.25 0.00 2.40 9.56  0.105 0.000 100.095

5.889 0.039 7.133 0.000 0.000 0.000 0.000 1.326 0.000 0.000 0.016 0.667 0.006 0.531 0.408 0.000 3.000

6.017 0.000 7.153 0.000 0.000 0.000 0.455 0.284 0.032 0.000 0.058 0.781 0.012 1.020 0.756 0.000 3.001

5.889 0.017 6.210 0.000 0.000 0.599 0.025 0.000 0.000 2.031 0.000 0.818 0.020 0.000 0.000 0.000 3.000

5.438 0.002 7.708 0.000 0.000 0.000 1.095 0.004 0.000 0.566 0.102 0.583 0.000 0.000 0.135 0.003 3.000

5.792 0.044 0.777 0.850 5.232 0.000 0.000 0.000 0.000 2.038 0.000 0.984 0.019 0.000 0.450 0.000 3.000

5.897 0.055 0.904 5.516 0.209 0.000 0.000 0.000 0.000 2.184 0.000 0.865 0.073 0.000 0.073 0.000 3.000

5.914 0.036 4.016 2.143 0.196 0.043 0.021 0.000 0.000 2.408 0.222 0.685 0.019 0.000 0.000 0.000 3.000

5.908 0.000 7.849 0.000 0.000 0.000 0.022 0.003 0.000 0.000 0.012 0.546 0.024 1.177 0.315 0.000 3.000

5.842 0.000 1.606 3.484 1.815 0.056 0.000 0.000 0.000 1.912 0.000 0.872 0.055 0.000 0.141 0.000 3.000

OH (V þ W sites) OH (V-site) O (V-site) OH (W-site) F (W-site) Cl (W-site) O (W-site) V þW sites total (apfu)

3.362 3.000 0.000 0.362 0.408 0.000 0.230 4.000

3.245 3.000 0.000 0.244 0.756 0.000 0.000 4.000

2.813 2.813 0.187 0.000 0.000 0.000 1.000 4.000

3.200 3.000 0.000 0.200 0.135 0.003 0.662 4.000

2.654 2.654 0.346 0.000 0.450 0.000 0.550 4.000

3.094 3.000 0.000 0.094 0.073 0.000 0.832 4.000

3.193 3.000 0.000 0.193 0.000 0.000 0.807 4.000

2.971 2.971 0.029 0.000 0.315 0.000 0.685 4.000

2.856 2.856 0.144 0.000 0.141 0.000 0.859 4.000

48 49 50 51 52 53

Dominant Dominant Dominant Dominant Dominant Dominant

Na Mn2 þ Al3 þ Al3 þ Mn2 þ Al3 þ

Na Fe2 þ Al3 þ Al3 þ Fe2 þ Al3 þ

Na Mg2 þ Fe3 þ Al3 þ Mg2 þ Al3 þ

Na Fe2 þ Al3 þ Al3 þ Fe2 þ Al3 þ

Na Mg2 þ V3 þ Cr3 þ Mg2 þ Cr3 þ

Na Mg2 þ V3 þ V3 þ Mg2 þ V3 þ

Na Mg2 þ V3 þ Al3 þ Mg2 þ Al3 þ

Na Fe2 þ Al3 þ Al3 þ Fe2 þ Al3 þ

Na Mg2 þ V3 þ V3 þ Mg2 þ V3 þ

cation (X-site) divalent cation (Y-site) trivalent cation (Y-site) trivalent cation (Z-site) divalent cation (Y þ Z sites) trivalent cation (Y þ Z sites)

77

40 41 42 43 44 45 46 47

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R1a

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

OxyAlkali subgroup 3 Vanadio-oxy-chromium-dravite

6 silicons from the pull-down menu of Normalization ) Structural formulae. WinTcac, thus provides the user the opportunity to calculate tourmaline analyses from a variety of modes of occurrence. Clicking the (OH þ FþCl) ¼4 option under the pull-down menu of Normalization ) Structural formulae allows the user to normalize the sum of OH, F, and Cl to 4 for microprobe-derived tourmaline analyses.

OxyAlkali subgroup 3 Vanadio-oxy-dravite OxyAlkali subgroup 3 Oxy-vanadium-dravite OxyAlkali subgroup 3 Oxy-chromium-dravite

OxyAlkali subgroup 4 Darrellhenryite

2.3. Li, B2O3, and H2O estimation Tourmalines in Li-bearing pegmatites may contain a significant amount of lithium at the Y-site. In such cases, the Li content of tourmaline can be calculated stoichiometrically by initially normalizing to 29 oxygens basis or 24.5 oxygens basis, and then estimating Li (apfu) content (i.e., Li (apfu)¼3 (∑Y-site)) as proposed by Henry and Dutrow (1996). By clicking the Yes option from the pull-down menu of Li calculation ) Calculate Li content, WinTcac calculates the stoichiometric amounts of Li2O (wt%) except for the 15 cations (i.e., YþZ þT) normalization method. WinTcac also automatically assumes B2O3 (wt%) (i.e., stoichiometric amounts of B ¼3 apfu) and calculates H2O (wt%) contents if Yes option is selected from the pull-down menu of H2O Calculation ) Calculate H2O content.

2.4. Ferric iron estimation

Tsilaisite (from Bosi et al., 2012b). Fluor-elbaite (Bosi et al., 2013a). Oxy-dravite (Bosi and Skogby, 2013). d Oxy-schorl (Bačík et al., 2013). e Oxy-chromium-dravite (Bosi et al., 2012a). f Oxy-vanadium-dravite (Bosi et al., 2013b). g Vanadio-oxy-dravite (Bosi et al., in press-a). h Darrellhenryite (Novák et al., 2013). i Vanadio-oxy-chromium-dravite (Bosi et al., in press-b). c

b

a

Species series (W-site) Group name (X-site) Subgroup name Tourmaline species 63 64 65 66

Notes : apfu ¼ atomic per formula unit. Tourmaline analyses:

Li-species test (Y-site) Mg/(Mg þFe2 þ ) (Y-site) R2 þ /(R2 þ þ 2Li) (Y-site) Ca/(Ca þ Na þ K) (X-site) Vacancy/(Ca þ vacancy) (X-site) Vacancy/(NaþK þ vacancy) (X-site) O/(O þOH þ F) (W-site) OH/(OH þF) (V-site) 55 56 57 58 59 60 61 62

FluorFluorAlkali Alkali subgroup 1 subgroup 2 Tsilaisite Fluor-elbaite

OxyAlkali subgroup 3 Oxy-dravite

OxyAlkali subgroup 3 Oxy-schorl

other 0.991 1.000 0.240 0.249 0.095 0.807 1.000 other 1.000 1.000 0.000 1.000 0.062 0.832 1.000 other 1.000 1.000 0.000 0.000 0.000 0.550 0.885

Dominant quadrivalent cation (Y þZ sites) Ti4 þ 54

other 0.000 0.555 0.023 0.952 0.316 0.230 1.000

Li 0.000 0.274 0.069 0.717 0.157 0.000 1.000

species 0.988 1.000 0.000 1.000 0.162 1.000 0.938

other 0.341 1.000 0.149 0.755 0.351 0.664 1.000

Ti4 þ Ti4 þ Ti4 þ

Ti4 þ

Ti4 þ

R7g Row

Table 5 (continued )

R1a

R2b

R3c

R4d

R5e

R6f

R8h

other 0.000 0.010 0.020 0.973 0.423 0.685 0.990

R9i

Li 1.000 1.000 0.000 1.000 0.074 0.859 0.952

78

Although the Fe3 þ contents calculated from electron-microprobe measurements do not correlate with measured Fe3 þ values (McGuire et al., 1989), an empirical ferric iron estimation procedure can be used for some of the rock-forming mineral (e.g., amphibole and pyroxene) analyses derived from electronmicroprobe technique (e.g., Papike et al., 1974; Droop, 1987). Lynch and Ortega (1997) proposed that ferric iron state of tourmaline analysis at the Y-site may be calculated from the simple equation (i.e., Fe3 þ (apfu)¼ Fetot  (3  Mg)  Ca) based on the 24.5 oxygens normalization scheme. Users must be aware, however, that Fe3 þ values calculated from this equation makes direct assumptions about the exchange vector for Fe3 þ , which are not universally accepted. Using this approach to allocate ferric iron content at Y and Z sites is also impossible without taking into account the Mössbauer effect spectroscopy (Fuchs et al., 1995). WinTcac calculates the ferric iron content of microprobe-derived tourmaline analysis based on criteria given by Lynch and Ortega (1997) by clicking the Fe3 þ estimation for 24.5 oxygens normalization option from the pull-down menu of Normalization ) Structural formulae in the Start-up Screen.

3. Worked examples The following examples show how WinTcac can be used for a variety of calculations and classifications of tourmalinesupergroup analyses. A list of the specific calculation steps in the Calculation Screen of the program is given in Table 3. Validity of program outputs has been tested for numerous tourmaline data sets, and results are given in Table 4. Once the tourmaline analyses are processed by clicking the Calculate icon (i.e., ∑) in the Data Entry Section of the program, all the estimation output is displayed in columns 1–179 (see Table 3) of the Calculation Screen. Pressing the Ctrlþ F keys or clicking the Open File to Calculate option from the Calculate menu also executes to calculate these selected data file with the extension of “.tou”.

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

3.1. Calculation of tourmaline data and the IMA-2011 classification diagrams Representative tourmaline-supergroup mineral analyses with their estimations based on 31 anions by the program are given in Table 4. WinTcac first calculates cations of tourmaline analyses and

79

then distributes the recalculated values into the T, Z, Y, and X sites (see rows 17–36 in Table 4). Stoichiometric estimation of H2O (wt%), B2O3 (wt%), and Li2O (wt%) contents of electron-microprobe tourmaline data are listed in columns 96–98 in the Calculation Screen. Calculation of OH, F, and Cl (apfu) as well as OH and O contents (apfu) at V-site and OH, F, Cl, and O contents (apfu) at W-site (see

Fig. 3. Diagrams for establishing tourmaline subgroups within the alkali-, calcic-, and X-vacant groups (from Henry et al., 2011). (a) Determination of subgroups 1–4 for alkali- and calcic groups. (b) Determination of subgroups 1–4 for alkali- and X-vacant groups. Data used in these figures are taken from Henry (2011).

Fig. 4. Classification of alkali-group tourmaline species in the ternary 2Li1 þ –YFe2 þ –YMg2 þ subsystem (from Henry et al., 2011). (a) Dominance of OH1  at the W-site. (b) Dominance of F1  at the W-site. (c) Dominance of O2  at the W-site. Data used in these figures are taken from Henry (2011).

80

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

rows 59–65 in Table 4) are displayed in columns from 99 to 110 in the Calculation Screen. WinTcac defines primary tourmaline groups (row 98 in Table 4) and general tourmaline species (row 100 in Table 4) based on the dominant occupancy at the X-site (see Fig. 1a) and anion occupancy at the W-site (see Fig. 1b). Estimation of

various parameters (see rows 66–92 in Table 4) used in classification of tourmaline-supergroup minerals are listed in columns from 113 to 142 in the Calculation Screen. These parameters include dominant cation at the X-site (e.g., Na1 þ , K1 þ ,Ca2 þ , Pb2 þ ; see row 66 in Table 4), dominant divalent cation at the Y-site (e.g., Mg2 þ ,

Fig. 5. Classification of calcic-group tourmaline species on the ternary 2Li1 þ –YFe2 þ –YMg2 þ subsystem (from Henry et al., 2011). (a) Dominance of OH1  at the W-site. (b) Dominance of F1  at the W-site. (c) Dominance of O2  at the W-site. Data used in these figures are taken from Henry (2011).

Fig. 6. Classification of vacant-group tourmaline species in the ternary 2Li1 þ –YFe2 þ –YMg2 þ subsystem (from Henry et al., 2011). (a) Dominance of OH1  at the W-site. (b) Dominance of O2  at the W-site. Data used in these figures are taken from Henry (2011).

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

Mn2 þ , Fe2 þ ; see row 67 in Table 4), dominant trivalent cation at the Y-site (e.g., Al3 þ , V3 þ , Fe3 þ , Cr3 þ ; see row 69 in Table 4), dominant divalent cation at the Z-site (e.g., Mg2 þ , Fe2 þ ; see row 71 in Table 4), dominant trivalent cation at the Z-site (e.g., Al3 þ , Cr3 þ , V3 þ , Fe3 þ ; see row 73 in Table 4 and Fig. 2), dominant cation at the T-site (e.g., Si4 þ , Al3 þ , B3 þ ; see row 80 in Table 4), and dominant anion at the V-site (e.g., OH1 , O2  ; see row 81 in Table 4). Following the group name (see row 98 in Table 4), WinTcac identifies tourmaline-subgroups (see row 99 in Table 4) and corresponding tourmaline species (see row 100 in Table 4) using the estimated parameters in columns from 113 to 142 in the Calculation Screen. Although the IMA-CNMNC recognized 18 tourmaline minerals for alkali, calcic, and vacant groups (Henry et al., 2011), recently recognized species [e.g., Tsilaisite (Bosi et al., 2012b), Fluor-elbaite (Bosi et al., 2013a), Oxy-vanadium-dravite (Bosi et al., 2013b), Oxy-dravite (Bosi and Skogby, 2013), Oxyschorl (Bačík et al., 2013), Oxy-chromium-dravite (Bosi et al., 2012a), Vanadio-oxy-darvite (Bosi et al., in press-a, in press-b), Vanadio-oxy-chromium-darvite (Bosi et al., in press-a, in press-b), and Darrellhenryite (Novák et al., 2013)] based on the full characterization of physical, chemical, and structural properties are determined by WinTcac program with their estimated calculation and classification parameters (Table 5). This program automatically uses 31 anions normalization scheme for the complete tourmaline data. Various calculation parameters such as allocations of sites, Si excess, cation charge, compositional variations [e. g., R1 ¼NaþCa (apfu), R2¼ Fetot þMg þMn (apfu), R3 ¼Al þ1.33Ti (apfu), Al-in-R2 ¼ Alþ 1.33TiþSi-12 (apfu) (London and Manning, 1995), Mgn ¼Mg þFe2 þ þMn þ2Li-Ti (apfu), Aln ¼ Alþ Fe3 þ þ2Ti–Li (apfu), Nan ¼NaþK (apfu), OHn ¼OH þF (apfu) (Henry and Dutrow, 1990)], and some important ratios [e.g., Fetot/(Fetot þMg), Al/ (Al þFetot þ Mg), Ca/(Ca þ Fetot þMg)] are listed in columns from 146 to 175 in the Calculation Screen. WinTcac provides the user a visual representation of useful diagrams for establishing the appropriate tourmaline-subgroups minerals within the alkali, calcic and vacant groups (see Fig. 3a and b). A visual classification of alkali (see Fig. 4a–c), calcic (see Fig. 5a–c), and vacant group (see Fig. 6a and b) tourmaline analyses are displayed in various ternary diagrams. The program allows the user to display some specific diagrams, which are useful for establishing the appropriate tourmaline subgroups and generalized tourmaline species in binary plots (see Figs. 7 and 8).

Fig. 7. Alternative diagram useful for tourmaline subgroups within the alkali-, calcic-, and vacationing groups (from Henry et al., 2011). Data used in this figure are taken from Henry (2011).

81

Fig. 8. Plot of generalized tourmaline species in the Mg/(Mgþ Fe) vs. X□/ (X□ þNa1 þ þ K1 þ ) diagram (from Henry et al., 2011). Data used in this figure are taken from Henry (2011).

Calculation of all tourmaline analyses by WinTcac is carried out in two windows called Data Entry Screen (see Fig. 9a) and Calculation Screen (see Fig. 9b).

3.2. Compositions of tourmaline data on classification, environmental, miscellaneous, and substitution diagrams WinTcac displays total 88 plots for classification, environmental, miscellaneous, and substitution diagrams. These plots are viewed by the Golden Software's Grapher program by selecting diagram types from the pull-down menu of Graph in the Calculation Screen of WinTcac. Fifteen tourmaline classification diagrams (see Figs. 1–8) proposed by the IMA-2011 nomenclature scheme can be displayed by WinTcac from the pull-down menu of Graph ) Classification Diagrams of IMA (2011) Nomenclature Scheme options in the Calculation Screen. Since tourmaline-supergroup minerals have a large compositional range of major and trace elements, they are used as an indicator of the host environment. For example, tourmaline from granitic pegmatitites show high Li contents (e.g., Neiva and Gomes, 2012; Ertl et al., 2012), whereas Ni-, Cr-, and V-bearing tourmalines are associated with basic, ultramafic, and metamorphic rocks, (e.g., Henry and Dutrow, 2001; Baksheev and Kudryavtseva, 2004; Bačík et al., 2011). Because tourmaline is resistant to chemical weathering and mechanical abrasion, Henry and Guidotti (1985) proposed to use the composition of detrial tourmaline grains in provenance studies to correlate with tourmaline composition and host-rock type (e.g., Henry and Dutrow, 1992; Morton et al., 2005; Nascimento et al., 2007). These diagrams (see Fig. 10a and b), also called as the environmental diagrams (e.g., van Hinsberg et al., 2011a), are displayed by selecting diagram types from the pulldown menu of Graph ) Environmental Diagrams options in the Calculation Screen. Pirajno and Smithies (1992) proposed that the FeO/(FeOþMgO) ratio (i.e., proximity index ¼Fe#) of tourmaline can be used as a discriminatory tool for granite–greisen–endocontact systems in granite-related Sn–W deposits based on their compilation of tourmaline analyses. The proximity index may be used as a first approximation to identify the relative distance of the granite-related Sn–W deposits to the source of their hydrothermal fluids. WinTcac allows the user to display the modified form of proximity index diagram (see Fig. 11) by selecting the third

82

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

Fig. 9. (a) Screenshot of the WinTcac Data Entry Screen showing data edits of tourmaline-supergroup analyses. (b) Screenshot of the WinTcac Calculation Screen displaying the results of estimated tourmaline analyses.

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

83

Fig. 10. Compositional diagram of tourmalines used for illustrating the host rock type. (a) The ternary Al–Fetot–Mg plot (from Henry and Guidotti, 1985). (b) The ternary Ca–Fetot–Mg plot (from Henry and Guidotti, 1985). Data used in these figures are taken from Yavuz et al. (2008).

substitutions (e.g., Foit Jr. and Rosenberg, 1977; Gallagher, 1988; Burt, 1989; Henry and Dutrow, 1990, 1996, 2001; Kazachenko et al., 1993; London and Manning, 1995; Jiang et al., 2004; Baksheev and Kudryavtseva, 2004; Buriánek and Novák, 2007; Arif et al., 2010; Yavuz et al., 2011; Ertl et al., 2013). These substitution mechanisms that make the tourmaline crystal chemistry difficult to characterize are used in different binary plots to reveal the specific features of tourmaline composition. WinTcac allows the user to display 55 different substitution diagrams from the pull-down menu of Graph ) Substitution Diagrams options in the Calculation Screen. Fig. 13 shows some of selected substitution diagrams with their exchange vectors.

4. Summary and availability of WinTcac

Fig. 11. Plot of tourmaline composition from granite-related hydrothermal deposits in the MgO (wt%) vs. FeO/(FeO þ MgO) diagram (from Pirajno and Smithies, 1992). Data used in this figure are taken from Yavuz et al. (2008).

diagram type from the pull-down menu of Graph ) Environmental Diagrams options in the Calculation Screen. WinTcac allows to display recalculated tourmaline analyses in different classification diagrams used by several authors (e.g., Jiang et al., 1996; Hawthorne and Henry, 1999; Selway et al., 1999; Dutrow and Henry, 2000; Novák and Taylor, 2000; Henry and Dutrow, 2001; Tindle et al., 2005; Arif et al., 2010; Bosi et al., 2012a, 2012b, 2013b; Bačík et al., 2013). These diagrams (see Fig. 12) can be displayed by selecting diagram types from the pull-down menu of Graph ) Miscellaneous Diagrams options in the Calculation Screen of WinTcac. The crystallography of tourmaline-supergroup minerals enables to accommodate a wide range of major, minor, and trace elements in the structure and causes isovalent and coupled

WinTcac is a user-friendly software package for tourmalinesupergroup minerals developed for personal computers running the Windows operating system. The program calculates structural formulae of tourmaline analyses according to the IMA-2011 nomenclature scheme for different normalization options. WinTcac generates mainly two windows: the first (i.e., Data Entry Screen) appears on the screen with several pull-down menus and equivalent shortcuts, and the second (i.e., Calculation Screen) allows the user to display the structural formulae at the T, Z, Y, and X sites with tourmaline classification parameters, groups, subgroups, names, and dominant cations at each site. By selecting options or clicking buttons on the start-up screen, the user can enter and load tourmaline analyses in the Data Entry Screen and make necessary arrangements for a desired calculation scheme. All the estimated tourmaline data in the Calculation Screen are sent to the Microsoft Excel file (i.e., output.xlsx). WinTcac display recalculated tourmaline data in a variety of binary and ternary classifications, environmental, substitution, and miscellaneous diagrams in the Calculation Screen by using the Golden Software's Grapher program. WinTcac is a compiled program that consists of a self-extracting setup file, including support files, help file, data files (i.e., tou, xls,

84

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

Fig. 12. (a) Plot of tourmaline composition in the Fe/(Fe þ Mg) at the Y-site vs. Ca/(Naþ Ca) at the X-site diagram (from Jiang et al., 1996). (b) Variation of tourmaline in the Fe/ (Feþ Li) vs. X-vacancy/(NaþX-vacancy) diagram (from Dutrow and Henry, 2000). (c) Variation of tourmaline in the Al/(Al þ Fe) at the Y-site vs. Na/(Na þX-vacancy) at the X-site (from Selway et al., 1999). (d) Variation of tourmaline in the Al/(Al þ Fe2 þ ) at the Y-site vs. Ca/(Ca þ Na) at the X-site (from Tindle et al., 2005). (e) Ternary diagram for the V–Cr–Al subsystem used for showing the dominant occupancy at the Y-site for oxy-tourmaline species (revised from Bosi et al., 2012a). (f) Ternary elbaite-schorl (oxyschorl)-dravite (oxy-dravite) subsystem used for determination of dominant occupancy at the Y-site (from Bačík et al., 2013). Data used in these figures are taken from Henry (2011).

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

85

Fig. 13. (a) Variation of tourmaline composition. (a) Mg vs. Fetot (apfu) diagram (revised from London and Manning, 1995). (b) R3 þ vs. (R1 þ þ R2 þ ) (apfu) diagram (revised from Manning, 1982). (c) Ca (apfu) vs. X-site vacancy diagram (from Henry and Dutrow, 1990). (d) Ca vs. Na (apfu) diagram (from Henry and Dutrow, 1990). (e) Altot vs. Fetot (apfu) diagram (from Williamson et al., 2000). (f) Y þ ZR2 þ vs. R3 þ (apfu) diagram (from Novák et al., 2011). Data used in these figures are taken from Yavuz et al. (2008).

and xlsx), and Grapher plot document files (i.e., grf files). The program and its associated files are installed into the directory of “C:\Program Files\WinTcac” during an installation. The selfextracting setup file is approximately 25 MB and can be obtained in the journal server or from corresponding author on request.

Acknowledgments We thank Darrell J. Henry for providing us representative tourmaline analyses, which are used to test during the development of WinTcac program. The authors are grateful to Vincent

86

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

J. van Hinsberg and Ekkehart Tillmanns for their constructive comments and critiques.

Appendix A. Supplementary material Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.cageo.2013.10.012. References Abu El-Enen, M.M., Okrusch, M., 2007. The texture and composition of tourmaline in metasediments of the Sinai, Egypt: Implications for the tectonometamorphic evolution of the Pan-African basement. Mineral. Mag. 71, 17–40. Arif, M., Henry, D.J., Moon, C.J., 2010. Cr-bearing tourmaline associated with emerald deposits from Swat, NW Pakistan: genesis and its exploration significance. Am. Mineral. 95, 799–809. Bačík, P., Méres, Š., Uher, P., 2011. Vanadium-bearing tourmaline in metacherts from Chvojnıca, Slovak Republic: crystal chemıstry and multistage evolution. Can. Mineral. 49, 195–206. Bačík, P., Cempírek, J., Uher, P., Novák, M., Ozdín, D., Filip, J., Škoda, R., Breiter, K., Klementová, M., Ďuďa, R.A., Groat, L.A., 2013. Oxy-schorl, Na(Fe22 þ Al) Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice Czech Republic. Am. Mineral. 98, 485–492. Baksheev, I.A., Kudryavtseva, O.E., 2004. Nickeloan tourmaline from the Berezovskoe gold deposit, Middle Urals, Russia. Can. Mineral. 42, 1065–1078. Bone, Y., 1988. The geological setting of tourmalinite at Rum Jungle, N.T., Australia— genetic and economic implications. Miner. Depos. 23, 34–41. Bosi, F., Reznitskil, L., Skogby, H., 2012a. Oxy-chromium-dravite, NaCr3(Cr4Mg2) (Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am. Mineral. 97, 2024–2030. Bosi, F., Skogby, H., Agrosi, G., Scandale, E., 2012b. Tsilaisite, NaMn3Al6(Si6O18) (BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d'Oggi, San Pietro in Campo, island of Elba, Italy. Am. Mineral. 97, 989–994. Bosi, F., Andreozzi, G.B., Skogby, H., Lussier, A.J., Abdu, Y., Hawthorne, F.C., 2013a. Fluor-elbaite, Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup. Am. Mineral. 98, 297–303. Bosi, F., Reznitskii, L.Z., Sklyarov, E.V., 2013b. Oxy-vanadium-dravite, NaV3(V4Mg2) (Si6O18)(BO3)3(OH)3O: crystal structure and redefinition of the “vanadiumdravite” tourmaline. Am. Mineral. 98, 501–505. Bosi, F., Skogby, H., 2013. Oxy-dravite, Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am. Mineral. 98, 1442–1448. Bosi, F., Skogby, H., Reznitskii, L., Hålenius, U., Vanadio-oxy-dravite, NaV3(Al4Mg2) (Si6O18)(BO3)3(OH)3O a new mineral species of the tourmaline supergroup. Am. Mineral., http://dx.doi.org/10.2138/am.2013.4605, in press-a. Bosi, F.,Reznitski, L., Skogby, H., Hålenius, U., Vanadio-oxy-chromium-dravite NaV3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O a new mineral species of the tourmaline supergroup. Am. Mineral., http://dx.doi.org/10.2138/am.2014.4568, in press-b. Buriánek, D., Novák, M., 2007. Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: examples from the Bohemian Massif, Czech Republic. Lithos 95, 148–164. Burt, D.M., 1989. Vector representation of tourmaline compositions. Am. Mineral. 74, 826–839. Clark, C.M., 2007. Tourmaline: structural formula calculations. Can. Mineral. 45, 229–237. Deb, M., Tiwary, A., Palmer, M.R., 1997. Tourmaline in Proterozoic massive sulfide deposits from Rajasthan, India. Miner. Depos. 32, 94–99. Droop, G.T.R., 1987. A general equation for estimating Fe3 þ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 51, 431–435. Dutrow, B.L., Henry, D.J., 2011. Tourmaline: a geological DVD. Elements 7, 301–306. Dutrow, B.L., Henry, D.J., 2000. Complexly zoned fibrous tourmaline, Cruzeiro Mine, Minas Gerais, Brazil: a record of evolving magmatic and hydrothermal fluids. Can. Mineral. 38, 131–143. Ertl, A., Giester, G., Schüssler, U., Brätz, H., Okrusch, M., Tillmanns, E., Bank, H., 2013. Cu- and Mn-bearing tourmalines from Brazil and Mozambique: crystal structures, chemistry and correlations. Mineral. Petrol. 107, 265–279. Ertl, A., Marschall, H.R., Giester, G., Henry, D.J., Schert, H.-P., Ntaflos, T., Luvizotto, G. L., Nasdala, L., Tillmanns, E., 2010. Metamorphic ultrahigh-pressure tourmaline: structure, chemistry, and correlations to P–T conditions. Am. Mineral. 95, 1–10. Ertl, A., Schuster, R., Hughes, J.M., Ludwig, T., Meyer, H.P., Finger, F., Dyar, M.D., Ruschel, K., Rossman, G.R., Klötzli, U., Brandstätter, F., Lengauer, C.L., Tillmanns, E., 2012. Li-bearing tourmalines in Variscan granitic pegmatites from the Moldanubian nappes, Lower Austria. Eur. J. Mineral. 24, 695–715. Esmaeily, D., Trumbull, R.B., Haghnazar, M., Krienitz, M.-S., Wiedenbeck, M., 2009. Chemical and boron isotopic composition of hydrothermal tourmaline from scheelite-quartz veins at Nezamabad, western Iran. Eur. J. Mineral. 21, 347–360. Foit Jr., F.F., Rosenberg, P.E., 1977. Coupled substitutions in tourmaline group. Contrib. Mineral. Petrol. 62, 109–127. Foit Jr., F.F., Fuchs, Y., Myers, P.E., 1989. Chemistry of alkali-deficient schorls from two tourmaline-dumortierite deposits. Am. Mineral. 74, 1317–1324.

Fuchs, Y., Lagache, M., Linares, J., Maury, R., Varret, F., 1995. Mössbauer and optical spectrometry of selected schorl-dravite tourmalines. Hyperfine Interact. 96, 245–258. Gallagher, V., 1988. Coupled substitutions in schorl-dravite tourmaline: new evidence from SE Ireland. Mineral. Mag. 52, 637–650. Hawthorne, F.C., Henry, D.J., 1999. Classification of the minerals of the tourmaline group. Eur. J. Mineral. 11, 201–215. Henry, D.J., 2011. Spreadsheet for determining the tourmaline species based on an ordered distribution of elements in the tourmaline formula. 〈http:// www.minsocam.org/msa/ammin/toc/2011/MJ11_Data/Henry_p895_11_Tourma lineSpecies.xls〉. (accessed 21.10.12). Henry, D.J., Dutrow, B.L., 1990. Ca substitution in Li-poor aluminous tourmaline. Can. Mineral. 28, 111–124. Henry, D.J., Dutrow, B.L., 1992. Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contrib. Mineral. Petrol. 112, 203–218. Henry, D.J., Dutrow, B.L., 1996. Metamorphic tourmaline and its petrologic applications. In: Grew, E.S., Anovitz, L.M. (Eds.), Boron: Mineralogy, Petrology, and Geochemistry, Reviews in Mineralogy, vol. 33. Mineralogical Society of America, Chantilly, Virginia, pp. 503–557. Henry, D.J., Dutrow, B.L., 2001. Compositional zoning and element partitioning in nickeloan tourmaline from a metamorphosed karstbauxite from Samos, Greece. Am. Mineral. 86, 1130–1142. Henry, D.J., Dutrow, B.L., 2012. Tourmaline at diagenetic to low-grade metamorphic conditions: its petrologic applicability. Lithos 154, 16–32. Henry, D.J., Guidotti, C.V., 1985. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am. Mineral. 70, 1–15. Henry, D.J., Lu, G., McCabe, C., 1994. Epigenetic tourmaline in sedimentary redbeds: an example from the Silurian Rose Hill Formation, Virginia. Can. Mineral. 32, 599–605. Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., Pezozotta, F., 2011. Nomenclature of the tourmaline-supergroup minerals. Am. Mineral. 96, 895–913. Jiang, S.Y., Palmer, M.R., Li, Y.-H., Xue, C.-J., 1995. Chemical compositions of tourmaline in the Yindongzi–Tongmugou Pb–Zn deposits, Qinling, China: implications for hydrothermal ore-forming processes. Miner. Depos. 30, 225–234. Jiang, S.Y., Palmer, M.R., McDonald, A.M., Slack, J.F., Leitch, C.H.B., 1996. Feruvite from the Sullivan Pb–Zn–Ag deposit, British Columbia. Can. Mineral. 34, 733–740. Jiang, S.Y., Yu, J.M., Lu, J.J., 2004. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic-hydrothermal fluid evolution and ore genesis. Chem. Geol. 209, 193–213. Kazachenko, V.T., Butsik, L.A., Sapin, V.I., Kitaev, I.V., Barinov, N.N., Narnov, G.A., 1993. Vanadian-chromian tourmaline and vanadian muscovite in contactmetamorphosed carbonaceous rocks, Primorye, Russia. Can. Mineral. 31, 347–356. Kawakami, T., 2001. Tourmaline breakdown in the migmatite zone of the Ryoke metamorphic belt, SW Japan. J. Metamorph. Geol. 19, 61–75. Keller, P., Robles, E.R., Pérez, A.P., Fontan, F., 1999. Chemistry, paragenesis and significance of tourmaline in pegmatites of the Southern Tin Belt, central Namibia. Chem. Geol. 158, 203–225. London, D., Manning, D.A.C., 1995. Chemical variation and significance of tourmaline from southwest England. Econ. Geol. 90, 495–519. Lynch, G., Ortega, J., 1997. Hydrothermal alteration and tourmaline-albite equilibria at the Coxheat porphyry Cu–Mo–Au deposit, Nova Scotia. Can. Mineral. 35, 79–94. Manning, D.A.C., 1982. Chemical and morphological variation in tourmalines from the Hub Kapong batholith of peninsular Thailand. Mineral. Mag. 45, 139–147. Manning, D.A.C., 1986. Contrasting styles of Sn–W mineralization in peninsular Thailand and SW England. Miner. Depos. 21, 44–52. Morton, A.C., Whitham, A.G., Fanning, C.M., 2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 182, 3–28. McGuire, A.V., Dyar, M.D., Ward, K.A., 1989. Neglected Fe3 þ /Fe2 þ ratios—a study of Fe3 þ content of megacrysts from alkali basalts. Geology 17, 687–690. Mlynarczyk, M.S.J., Williams-Jones, A.E., 2006. Zoned tourmaline associated with cassiterite: implications for fluid evolution and tin mineralization in the San Rafael Sn–Cu deposit, southeastern Peru. Can. Mineral. 44, 347–365. Nascimento, M.S., Góes, A.M., Macambira, M.J.B., Brod, J.A., 2007. Provenance of Albian sandstones in the São Luís-Grajaú Basin (northern Brasil) from evidence of Pb–Pb zircon ages, mineral chemistry of tourmaline and palaeocurrent data. Sediment. Geol. 201, 21–42. Neiva, A.M.R., Silva, M.M.V.G., Gomes, M.E.P., 2007. Crystal chemistry of tourmaline from Variscan granites, associated tin-tungsten- and gold deposits, and associated metamorphic and metasomatic rocks from northern Portugal. Neues Jahrb. Mineral. Abh. 184, 45–76. Neiva, A.M.R., Gomes, C.A.A.L., 2012. Tourmaline-group minerals in the Naipa Li– Cs–Ta granitic pegmatite group, Mozambique: tracers of magmatic to postmagmatic evolution trends. Neues Jahrb. Mineral. Abh. 189, 1–20. Novák, M., Ertl, A., Povondra, P., Galiová, M.V., Rossman, G.R., Pristacz, H., Prem, M., Giester, R., Gadas, P., Škoda, R., 2013. Darrellhenryite, Na(LiAl2)

F. Yavuz et al. / Computers & Geosciences 63 (2014) 70–87

Al6(BO3)3Si6O18(OH)3O, a new mineral from the tourmaline supergroup. Am. Mineral. 98, 1886–1892. Novák, M., Škoda, R., Flip, J., Macek, I., Vaculovič, T., 2011. Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebič pluton, Czech Republic: an electron microprobe, mössbauer and LA-ICP-MS study. Can. Mineral. 49, 359–380. Novák, M., Taylor, M.C., 2000. Foitite: formation during late stages of evolution of complex granitic pegmatites at Dobrá Voda, Czech Republic, and Pala, California, USA. Can. Mineral. 38, 1399–1408. Papike, J.J., Cameron, K.L., Baldwin, K., 1974. Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. Geol. Soc. Am. Abstr. Progr. 6, 1053–1054. Pesquera, A., Torres, F., Gil-Crespo, P., Torres-Ruiz, J., 2008. TOURCOMP: a program for estimating end-member proportions in tourmalines. Mineral. Mag. 72, 1021–1034. Pirajno, F., Smithies, R.H., 1992. The FeO/(FeO þ MgO) ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. J. Geochem. Explor. 42, 371–381. Roda, E., Pesquera, A., Velasco, F., 1995. Tourmaline in granitic pegmatites and their country rocks, Fregeneda area, Salamanca, Spain. Can. Mineral. 33, 835–848. Selway, J.B., Novák, M., Černý, P., Hawthorne, F.C., 1999. Compositional of tourmaline in lepidolite-subtype pegmatites. Eur. J. Mineral. 1, 569–584. Skewes, M.A., Holmgren, C., Stern, C.R., 2003. The Donoso copper-rich, tourmalinebearing breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids. Miner. Depos. 38, 2–21. Slack, J.F., Coad, P.R., 1989. Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: evidence from tourmalines and chlorites. Can. J. Earth Sci. 26, 694–715. Slack, J.F., Palmer, M.R., Stevens, B.P.J., Barnes, R.G., 1993. Origin and significance of tourmaline-rich rocks in the Broken Hill District, Australia. Econ. Geol. 88, 505–541. Slack, J.F., Trumbull, R.B., 2011. Tourmaline as a recorder of ore-forming processes. Elements 7, 321–326. Taylor, B.E., Slack, J.F., 1984. Tourmalines from Appalachian–Caledonian massive sulfide deposits: textural, chemical, and isotopic relationships. Econ. Geol. 79, 1703–1726. Tindle, A.G., Breaks, F.W., Selway, J.B., 2002. Tourmaline in petalite-subtype granitic pegmatites: evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada. Can. Mineral. 40, 753–788. Tindle, A.G., Selway, J.B., Breaks, F.W., 2005. Liddicoatite and associated species from the McCombe spodumene-subtype rare-element granitic pegmatite, northwestern Ontario, Canada. Can. Mineral. 43, 769–793.

87

Torres-Ruiz, J., Pesquera, A., Gil-Crespo, P.P., Velilla, N., 2003. Origin and petrogenetic implications of tourmaline-rich rocks in the Sierra Nevada (Beltic Cordillera, southeastern Spain). Chem. Geol. 197, 55–86. Trumbull, R.B., Krientiz, M.-S., Gottesmann, B., Wieddenbeck, M., 2008. Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rock: the Erongo granite and tourmalinites in the Damara Belt, Namibia. Contrib. Mineral. Petrol. 155, 1–18. van den Bleeken, G., Corteel, C., Van den Haute, P., 2007. Epigenetic to low-grade tourmaline in the Gdoumont metaconglomerates (Belgium): a sensitive probe of its chemical environment of formation. Lithos 95, 165–176. van Hinsberg, V.J., Henry, D.J., Dutrow, B.L., 2011a. Tourmaline as petrologic forensic mineral: a unique recorder of its geologic past. Elements 7, 327–332. van Hinsberg, V.J., Henry, D.J., Marschall, H.R., 2011b. Tourmaline: an ideal indicator of its host environment. Can. Mineral. 49, 1–16. van Hinsberg, V.J., Schumacher, J.C., 2011. Tourmaline as a petrogenetic indicator mineral in the Haut-Allier metamorphic suite, Massif Central, France. Can. Mineral. 49, 177–194. Warnaars, F.W., Holmgren, C., Barassi, F., 1985. Porphyry copper and tourmaline breccias at Los Bronces-Rio Blanco, Chile. Econ. Geol. 80, 1544–1565. Williamson, B.J., Spratt, J., Adams, J.T., Tindle, A.G., Stanley, C.J., 2000. Geochemical constraints from zoned hydrothermal tourmalines on fluid evolution and Sn mineralization: an example from fault breccias at Roche, SW England. J. Petrol. 41, 1139–1453. Yavuz, F., 1997. TOURMAL: software package for tourmaline, tourmaline-rich rocks and related ore deposits. Comput. Geosci. 23, 947–959. Yavuz, F., 2007. WinAmphcal: a windows program for the IMA-04 amphibole classification. Geochem. Geophys. Geosyst. 8, 1–12, http://dx.doi.org/10.1029/ 2006GC001391. Yavuz, F., Fuchs, Y., Karakaya, N., Karakaya, M.Ç., 2008. Chemical composition of tourmaline from the Asarcık Pb–Zn–Cu 7 U deposit, Şebinkarahisar, Turkey. Mineral. Petrol. 94, 195–208. Yavuz, F., Gültekin, A.H., Karakaya, M.Ç., 2002. CLASTOUR: a computer program for classification of the minerals of the tourmaline group. Comput. Geosci. 28, 1017–1036. Yavuz, F., Jiang, S.Y., Karakaya, N., Karakaya, M.Ç., Yavuz, R., 2011. Trace-element, rare-earth element and boron isotopic compositions of tourmaline from a veintype Pb–Zn–Cu 7U deposit, NE Turkey. Int. Geol. Rev. 53, 1–24. Yavuz, F., İskenderoğlu, A., Jiang, S.Y., 1999. Tourmaline compositions from the Salikvan porphyry Cu–Mo deposit and vicinity, northeastern Turkey. Can. Mineral. 37, 1007–1023. Yavuz, F., Yavuz, V., Sasmaz, A., 2006. WinClastour—a Visual Basic program for tourmaline formula calculation and classification. Comput. Geosci. 32, 1156–1168.

Suggest Documents