Gram-Charlier, Edgeworth or Cornish-Fisher expansion or to fit e.g. the. Pearson ..... For the sets (l)-(6) the central limit theorem applies if n -> oo and this.
f -Hi
Faculteit der Economische Wetenschappen en Econometrie
ET
Serie Research Memoranda 05348
An approximation to the distribution of quadratic forms in many normal variables
J.M. Sneek J. Smits
Research Memorandum 1990-49 October 1990
vrije Universiteit
amsterdam
AN APPROXIMATION TO THE DISTRIBUTION OF QUADRATIC FORMS IN MANY NORMAL VARIABLES
by J.M. Sneek J. Smits Free University of Amsterdam Faculty of Economics and Econometrics De Boelelaan 1105 1081 HV Amsterdam
Summary In this paper we seek to approximate to the distribution of
general
large quadratic forms in normal variables in at most ö(n ) arithmetic operations. The main idea is to split the quadratic form containing
the
dominant
approximated
using the
are
through
obtained
eigenvalues normal
and
distribution.
a
remaining The
part
dominant
a generalized power method,
expensive job of finding
in a part
thus
that
is
eigenvalues avoiding
the
all eigenvalues. In special cases the method
may involove only 0(n) operations.
1.
In
INTRODUCTION
this
paper
the
problem
of
approximating
the
probability
P(ÖiPft *
Ixfaej ,
(13)
where k is much smaller than n, in practice always less than 10 if warming up has
taken
place
approximately
long
satisfies
enough.
This
V
(13)
that
a fc-th order homogeneous
i.e. there exists a vector y = ( f t , ^ V " ! % ) '
We note that
implies
- fiY
sucn
(vector)
« 0.
there is a 1-1 correspondence
between
^ lv ..,i^ fc .
difference
{y }
equation,
tnat
w?
and the coefficients
'-...-
the sequence
The coëfficiënt
(14) the values Alv..,Afc in
vector
m+l,
but detmi^0.
If
the
(m-l)-th In practice
the difference equations are not holding exactly and furthermore the order of an approximate difference
equation will be lower as we progress through the
sequence {s t }, because in (13) the large lambdas become more and more dominant. In
BEGUIN,
and
GOURIEROUX
(1980) a detailed discussion (in the
MONTFORT
context of determining the order of ARMA(p,g) models) is given of the corner method, which can be used to determine the order m and the point in the sequence where the difference
equation starts to hold. Knowing the
mate) order m and possibly after renumbering the sequence {st}
(approxi-
the vector n / 2 + log(n/2 + 2) , i = l,...,n/2
.
, t = 1 , . . . , n.
as
percentile
points
uniform
distribution,
to
the
mirror
image
(l)-(3)
but
including
like
from
set (2) of
a
to
(2)
density, a
but
then
negative shifted
exponential
to
their
mirror
image
theorem
applies
if
set (1)
the
for
right.
negative
A's, which makes them symmetrie around zero. For
the
implies
sets
(l)-(6)
that
given
the k
central
the
use
limit of
k
dominant
n -> oo and
eigenvalues
this
becomes
less
influential if n-»oo. The sets (l)-(3) above were also shifted to the left and right by adding a constant to all the A's, but as in all cases the approximations improved
or remained
very similar we do not report
the results.
In table 1 we report results when Q in (3) is approximated by Q
in (4). The
table is organized as follows. The columns 2-11 correspond to the different sets {AJ and given n and
(ii)
Q2 =
X A i,nX?(l)
1 >A^(/X,(T2)
j'= k +1
then the approximation becomes arbitrary accurate: proof
If the first condition holds then Q2 becomes negligible compared to Q%
as one can prove that P ( | Q 2 | < e | Q i l ) - > 1 . for all e > 0 . If the second holds then there is nothing to prove.
19
condition
lemma 3
Let
^ E-\j,n—*°°5
n
the —*°°
sequencess tnen
f°
r
{^n}jmi an
be
normalized
such
y bounded sequence k(n)ax
S
s e t
0.0113 0.0107 0.0103 0.0098 0.0095 0.0093 0.0090 0.0088 0.0086 0.0082 0.0078 0.0074
0.0115 0.0135 0.0117 0.0102 0.0093 0.0087 0.0081 0.0075 0.0070 0.0060 0.0052 0.0045
8 1 1 1 3 3 3 3 3 3 3 3
e
max
5
set
0.0113 0.0100 0.0087 0.0080 0.0078 0.0076 0.0074 0.0072 0.0070 0.0067 0.0065 0.0063
0.0115 0.0084 0.0062 0.0096 0.0089 0.0083 0.0077 0.0071 0.0066 0.0057 0.0049 0.0046
8 8 8 1 1 1 1 1 1 1 3 3
e
e m a x always a t p t a r g e t - 0 . 0 5
24
TABLE 3 34 iterations *i
0 0 0 0 0 0 0 0 0 0 0 0
368435 310321 276326 252207 233498 218212 205288 194092 184217 175384 167393 160098
30 iterations
K-K
*i-*i
*i
0.0000008 0.0000520 0.0034475 0.0138658 -0.0037015 0.0105486 0.0000990 -0.0109916 0.0129975 0.0067024 0.0211043 0.0338830
0 138388 0 137991 0 137589 0 137181 0 136769 0 136350 0 135926 0 135497 0 135061 0 134619 0 134171 0 .133717
0.001798 0.001896 0.001497 0.007521 0.008028 0.008010 0.019393 0.021067 0.021893 0.033813 0.036207 0.037429
39 iterations Ai-Xi *i
-0 191243 0 191243 -0 186402 0 186402 -0 181560 0 181560 -0 176719 0 176719 0 171877 -0 171877 -0 167035 0 .167035
-0.000301 0.002490 -0.000983 0.000612 -0.005685 0.004358 -0.007053 -0.000209 0.004311 -0.005306 -0.011238 0.007160
dominating eigenvalues Aj^ for sets (2) , (3) and (4) for n=80 difference AA-XL between exact and approximated values
25
TABLE 4A n-40 Ptarg
0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
k-O 0.0001 0.0010 0.0079 0.0282 0.0827 0.8938 0.9375 0.9618 0.9792 0.9865
set (1)
k-4 0.0004 0.0020 0.0112 0.0339 0.0887 0.8944 0.9414 0.9671 0.9845 0.9912
k-8 0.0004 0.0019 0.0108 0.0333 0.0881 0.8944 0.9411 0.9666 0.9840 0.9908 n-80
0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
0.0008 0.0028 0.0128 0.0355 0.0892 0.8947 0.9403 0.9651 0.9821 0.9890
0.0011 0.0035 0.0143 0.0377 0.0913 0.8952 0.9420 0.9672 0.9842 0.9908
0 0 0 0 0 0 0 0 0 0
0.0010 0.0034 0.0147 0.0390 0.0933 0.8959 0.9447 0.9705 0.9871 0.9931
•fc-12
0.0008 0.0031 0.0141 0.0381 0.0925 0.8958 0.9442 0.9699 0.9867 0.9928
0.0017 0.0051 0.0181 0.0431 0.0965 0.8974 0.9469 0.9725 0.9885 0.9940
0.0013 0.0042 0.0164 0.0410 0.0947 0.8969 0.9459 0.9715 0.9877 0.9935
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
set (1)
0010 0034 0142 0375 0911 8952 9419 9670 9840 9906
0.0014 0.0042 0.0158 0.0397 0.0931 0.8958 0.9436 0.9690 0.9857 0.9920
0013 0040 0155 0394 0928 8957 9433 9686 9854 9918
0017 0049 0172 0416 0947 8965 9449 9704 9868 9929
0015 0044 0163 0404 0936 8961 9441 9694 9861 9923
n-160 set (1) 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
0.0017 0.0046 0.0165 0.0403 0.0931 0.8958 0.9427 0.9677 0.9844 0.9908
0.0018 0.0050 0.0171 0.0411 0.0938 0.8961 0.9434 0.9685 0.9851 0.9914
0.0018 0.0049 0.0170 0.0410 0.0937 0.8960 0.9433 0.9684 0.9850 0.9913
0.0020 0.0053 0.0177 0.0419 0.0944 0.8963 0.9440 0.9692 0.9857 0.9919
0.0020 0.0052 0.0175 0.0416 0.0942 0.8963 0.9438 0.9690 0.9855 0.9917
0.0022 0.0056 0.0183 0.0426 0.0951 0.8966 0.9446 0.9699 0.9863 0.9923
0.0020 0.0053 0.0178 0.0420 0.0945 0.8964 0.9441 0.9693 0.9858 0.9920
tailprobabilities p a e f c u a j_ for k exact and approximated A's
26
TABLE 4B n-40 set (2) Ptarg
k-O
0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
0.0000 0.0002 0.0035 0.0192 0.0720 0.8945 0.9355 0.9587 0.9758 0.9834
k-4 0.0005 0.0022 0.0124 0.0363 0.0920 0.8953 0.9450 0.9713 0.9880 0.9938
k-8
0.0004 0.0022 0.0122 0.0360 0.0918 0.8952 0.9449 0.9712 0.9879 0.9938
0.0016 0.0050 0.0182 0.0438 0.0977 0.8979 0.9481 0.9737 0.9893 0.9946
k-12
0.0015 0.0046 0.0176 0.0430 0.0970 0.8978 0.9478 0.9734 0.9892 0.9945
0.0029 0.0072 0.0217 0.0474 0.0995 0.8991 0.9492 0.9745 0.9897 0.9948
0.0024 0.0064 0.0204 0.0460 0.0985 0.8988 0.9488 0.9741 0.9895 0.9947
0.0016 0.0048 0.0174 0.0422 0.0957 0.8968 0.9464 0.9722 0.9883 0.9940
0.0024 0.0062 0.0199 0.0452 0.0978 0.8980 0.9479 0.9734 0.9891 0.9945
0.0021 0.0057 0.0190 0.0441 0.0970 0.8976 0.9474 0.9730 0.9888 0.9943
0.0020 0.0053 0.0180 0.0425 0.0954 0.8966 0.9455 0.9712 0.9875 0.9934
0.0025 0.0062 0.0195 0.0444 0.0968 0.8974 0.9468 0.9723 0.9884 0.9940
0.0023 0.0060 0.0191 0.0439 0.0964 0.8973 0.9465 0.9720 0.9881 0.9938
11-80 set (2) 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
0.0002 0.0012 0.0082 0.0282 0.0819 0.8946 0.9378 0.9618 0.9789 0.9861
0.0009 0.0032 0.0141 0.0379 0.0922 0.8952 0.9439 0.9699 0.9869 0.9931
0.0009 0.0032 0.0141 0.0379 0.0922 0.8952 0.9439 0.9699 0.9869 0.9930
0.0017 0.0049 0.0176 0.0425 0.0960 0.8969 0.9465 0.9723 0.9884 0.9940
n-160 set (2) 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
0.0008 0.0028 0.0125 0.0348 0.0881 0.8952 0.9402 0.9647 0.9816 0.9885
0.0015 0.0043 0.0161 0.0401 0.0933 0.8958 0.9438 0.9694 0.9862 0.9925
0.0015 0.0043 0.0161 0.0400 0.0933 0.8958 0.9438 0.9694 0.9862 0.9925
0.0020 0.0054 0.0181 0.0427 0.0955 0.8967 0.9457 0.9713 0.9876 0.9935
tailprobabilities p a c t u a i for k exact and approximated A's
27
rt f»
o o o o o o o o o o VO VO VO VO VO M ó o o o vO VO ^J UI o o Ui to t-* o UI o UI o o o o Ui o m
O
o o o o o o o o o o o o o M o o o UI to o o o o o Ui o UI
o o o o o o o o o o o o o to o UI to o o o o o Ui o Ui
O
VO VO vo VO VO M VO VO •vl UI Ui O Ui
VO VO VO VO VO M VO VO ~J UI UI UI
1
M
*ö
i-l
o C
rt Hfl> (0
•d B o
e
N> 00
Ml O
(ö O rt
§
•8 H
o X pj rt
o» o-
o o o o o o o o o o o o o o o o o o o o1 o H O
o o o o o o o o o o o o
o o o o o
o o o o o
VO VO VO VO 00 00 »-J Ui co VO UI I-1 to. O N UI 00 00 to I-1 N> VO VO 00 00 VO CV 00
vO VO VO VO VO o o ^J ON Ui co o to o UI 00 CO •p- t-> VO }-> VO ON •p- to ON to •p-
o o o o o o o o o o VO VO VO VO 00 o o o o o vg
o o o o o o ó o o o VO VO vO VO 00 o o o o o VO 00 »J •p» VO VO •p- t-> UI VO •p- VO vO VO •p- 00 o •p- o I-1 o VO 00 UI t- •p- ON CO 00 UI o o o o o o o o o o VO VO vO VO 00 o o o o o VO 00 --J •P- VO VO •p- t- o o Ui vO •p- VO VO VO •p- 00 •pM o vO 00 Ui M •p- ON co 00 UI
VO 00 4> VO VO •p- t-* •P- o •p- VO •p- 00 -J ON to ^1 o M 00 ON CO UI VO Ol CO ON UI o
o
O
o o o o o o o o
vO VO VO VO 00 o o o o o VO 00 ->l •p- VO VO J> t-1 o-• •p- VO •p- 00 -«J ON to ^J o •p- ( 00 O N
o co m
VO ON CO ON Cn
o o o o o o o o o o VO VO VO VO 00 o o o o o VO 00 ^1 •P- VO VO •p- to o tOo •p- VO •p- VO VO VO o> t-> ON VO 00 O N co o co -J M 00 -J o o o o o o o o o o VO VO VO VO 00 o o o o o VO 00 vj •p- VO VO •p- N> o o •p- VO •p- vo 00 00 Ul o ON tO VO 00 UI o --J ON 00 CO •P- UI o o o o o o o o o o vO VO vO vO 00 o o o o o VO 00 VO VO •«J •p-
•p-
to
o o
Ol VO •p- VO VO VO 00 to •~J co VO 00 ON •p- 00 l-> ON VO 4>
o o o o o o o o o o o vO VO VO VO 00 o o o o o VO 00 VO •p» -J •p- VO
fo
o o
•p- VO •p- VO VO VO --J M ~J CO VO 00 ON CO M t-1 ON tO O
o
O
o
00 O Dl 0> et M O
1
o o o o o o o o VO 00 o o o o o CO VO 00 to ~J •p- to 00 o -J Mo o o UI M ho VO t- to
O
1
1
o o o o o o o o o o o o o ON •p- VO VO CO M o o 00 to •po UI to to o •p- ON 00 to ON UI UI ON
vO VO VO vO 00 VO 00 to UI t-> -~J
1
1
O
VO vo VO 00 -J ON ON VO M CO O ^J
o
H 00
o
O
o o o o o o o o vO 00 o o o o o •p- vO VO CO M o o UI to to to •po ON 00 o ON •p- UI ON ( •
VO VO VO VO 00 ON to UI 00 M ON •p-
01
o o o o o o o o o VO vO VO VO 00 t-1 o o o VO VO -J •p- VO NJ o o •p00 to -J UI •p- vo VO o VO ON 00 00 00 VO 00 o o o o o o o o o o o o vO VO VO VO 00 M o o o VO VO •~J •p- vO o •p- to o UI o •p- vo vO o 00 to X J o o vO VO -vl UI ^J --J 00 o o o o o o o o VO VO VO VO 00 ( *o o VO VO »J •p- VO •p- to UI VO VO o VO •pUI o o o o o VO VO •p- Ui o o o o o o o o o vO VO vO VO 00 }-• o o VO VO ^J •p- VO •p- to UI VO o VO CO o UI VO o CO ~J VO VO •po o o
o o o co
O VO VO
co
CO
•^J
o o o c o to
VO VO CO ^1
o o o o o 00 o •p-
VO t-1
o o o o o 00 o co -J VO
0
o V
fll
rt
H
O
o o o o o o o o o VO VO VO 00 o o o o o 00 •vj •p- VO VO •p- M o 00 M ON ON Ui t- ON o •p- M o •»J o ON H» to ON CO •po o o o o o o o o VO VO vO 00 o o o o o 00 V J •p- vO VO •p- lo -J M Ul ON •p- M ON o 4> tvo ON VO ON vO o 4> to •p1
1
1
o o o o o o o o o o VO VO VO vO 00 o o o o o vo oo ^J •p- vO VO •p- l- o o •P- vo co ~~J 00 ^J •p- vo ON to •Po CO oo o ^J vo ^1 ( •co o o o o o o o o o o VO vO VO VO oo o o o o o VO 00 •>J •p- VO VO •p- I-1 o o •P- oo to -J -J ON eo oo UI N> l-