Apr 9, 2010 - ... Melanie Mitchell, David J. Nettleton, Volker Nissen, Ari Nissinen, ...... C. E. Henderson, W. D. Potter, R. W. McClendon, and G. Hoogenboom.
An Indexed Bibliography of Genetic Algorithms in Agriculture compiled by
Jarmo T. Alander Department of Electrical Engineering and Automation University of Vaasa P.O. Box 700, FIN-65101 Vaasa, Finland phone: +358-6-324 8444, fax: +358-6-324 8467
Report Series No. 94-1-AGRO (Updated 2010/04/09 16:29 ) available via anonymous ftp: site ftp.uwasa.fi directory cs/report94-1 file gaAGRObib.pdf
c 1994-2010 Jarmo T. Alander Copyright c Cover image: 2007 Jarmo Alander, All rights reserved. Cucurbita pepos fruits (ornamental variation).
Trademarks Product and company names listed are trademarks or trade names of their respective companies.
Warning While this bibliography has been compiled with the utmost care, the editor takes no responsibility for any errors, missing information, the contents or quality of the references, nor for the usefulness and/or the consequences of their application. The fact that a reference is included in this publication does not imply a recommendation. The use of any of the methods in the references is entirely at the user’s own responsibility. Especially the above warning applies to those references that are marked by trailing ’†’ (or ’*’), which are the ones that the editor has unfortunately not had the opportunity to read. An abstract was available of the references marked with ’*’.
Contents 1 Preface 1.1 Your contributions erroneous or missing? 1.1.1 How to cite this report? . . . . . . 1.2 How to get this report via Internet? . . 1.3 Acknowledgement . . . . . . . . . . . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
2 Introduction
1 2 2 2 2 4
3 Statistical summaries 3.1 Publication type . . . . . 3.2 Annual distribution . . . . 3.3 Classification . . . . . . . 3.4 Authors . . . . . . . . . . 3.5 Geographical distribution 3.6 Conclusions and future . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
5 5 5 6 6 8 8
4 Indexes 4.1 Books . . . . . . . . . 4.2 Journal articles . . . . 4.3 Theses . . . . . . . . . 4.3.1 PhD theses . . 4.3.2 Master’s theses 4.4 Report series . . . . . 4.5 Patents . . . . . . . . 4.6 Authors . . . . . . . . 4.7 Subject index . . . . . 4.8 Annual index . . . . . 4.9 Geographical index . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
9 9 9 11 11 11 11 11 13 20 21 22
. . . . . . . . . . .
. . . . . . . . . . .
Bibliography
23
Appendixes
45
A Bibliography entry formats
45
i
List of Tables 2.1
Queries used to extract this subbibliography from the source database.
3.1 3.2 3.3 3.4 3.5
Distribution of publication type. . . . . . . . . . . . . . . . . . Annual distribution of contributions. . . . . . . . . . . . . . . The most popular subjects. . . . . . . . . . . . . . . . . . . . . The most productive genetic algorithms in agriculture authors. The geographical distribution of the authors working on genetic
A.1 Indexed genetic algorithm special bibliographies available online
ii
. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . algorithms in
4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . agriculture
5 6 6 6 8
. . . . . . . . . . . . . .
49
Chapter 1
Preface “ Living organism are consummate problem solvers. They exhibit a versatility that puts the best computer programs to shame. ” John H. Holland, [1]
The material of this bibliography has been extracted from the genetic algorithm bibliography [2], which when this report was compiled (April 9, 2010) contained 21162 items and which has been collected from several sources of genetic algorithm literature including Usenet newsgroup comp.ai.genetic and the bibliographies [3, 4, 5, 6]. The following index periodicals and databases have been used systematically • A: International Aerospace Abstracts: Jan. 1995 – Sep. 1998 • ACM: ACM Guide to Computing Literature: 1979 – 1993/4 • BA: Biological Abstracts: July 1996 - Aug. 1998 • CA: Computer Abstracts: Jan. 1993 – Feb. 1995 • CCA: Computer & Control Abstracts: Jan. 1992 – Dec. 1999 (except May -95) • ChA: Chemical Abstracts: Jan. 1997 - Dec. 2000 • CTI: Current Technology Index Jan./Feb. 1993 – Jan./Feb. 1994 • DAI: Dissertation Abstracts International: Vol. 53 No. 1 – Vol. 56 No. 10 (Apr. 1996) • EEA: Electrical & Electronics Abstracts: Jan. 1991 – Apr. 1998 • EI A: The Engineering Index Annual: 1987 – 1992 • EI M: The Engineering Index Monthly: Jan. 1993 – Apr. 1998 (except May 1997) • Esp@cenet patents – Apr. 2002 • IEEE: IEEE and IEE Journals – Fall 2002 • N: Scientific and Technical Aerospace Reports: Jan. 1993 - Dec. 1995 (except Oct. 1995) • NASA NASA ADS www bibliography database: – Dec. 2002 • P: Index to Scientific & Technical Proceedings: Jan. 1986 – Dec 1999 (except Nov. 1994) • PA: Physics Abstracts: Jan. 1997 – June 1999 • PubMed: National Library of Medicine Jan. 2000 – Oct. 2000 • SPIE Web The International Society for Optical Engineering – June 2002 1
2
1.1
Genetic algorithms in agriculture
Your contributions erroneous or missing?
The bibliography database is updated on a regular basis and certainly contains many errors and inconsistences. The editor would be glad to hear from any reader who notices any errors, missing information, articles etc. In the future a more complete version of this bibliography will be prepared for the genetic algorithms in agriculture research community and others who are interested in this rapidly growing area of genetic algorithms. When submitting updates to the database, paper copies of already published contributions are preferred. Paper copies (or ftp ones) are needed mainly for indexing. We are also doing reviews of different aspects and applications of GAs where we need as complete as possible collection of GA papers. Please, do not forget to include complete bibliographical information: copy also proceedings volume title pages, journal table of contents pages, etc. Observe that there exists several versions of each subbibliography, therefore the reference numbers are not unique and should not be used alone in communication, use the key appearing as the last item of the reference entry instead. Complete bibliographical information is really helpful for those who want to find your contribution in their libraries. If your paper was worth writing and publishing it is certainly worth to be referenced right in a bibliographical database read daily by GA researchers, both newcomers and established ones. For further instructions and information see ftp.uwasa.fi/cs/GAbib/README.
1.1.1
How to cite this report?
You can use the BiBTEX file GASUB.bib, which is available in our ftp site ftp.uwasa.fi in directory cs/report94-1 and contains records for GA subbibliographies for citing with LATEX/BibTEX.
1.2
How to get this report via Internet?
Versions of this bibliography are available via anonymous ftp or www from the following site: media ftp
country Finland
site ftp.uwasa.fi
directory /cs/report94-1
file gaAGRObib.pdf
The directory also contains some other indexed GA bibliographies shown in table A.1. In case you do not find a proper one please let us know: it may be easy to tailor a new one.
1.3
Acknowledgement
The editor wants to acknowledge all who have kindly supplied references, papers and other information on genetic algorithms in agriculture literature. At least the following GA researchers have already kindly supplied their complete autobibliographies and/or proofread references to their papers: Dan Adler, Patrick Argos, Jarmo T. Alander, James E. Baker, Wolfgang Banzhaf, Helio J. C. Barbosa, Hans-Georg Beyer, Christian Bierwirth, Peter Bober Joachim Born, Ralf Bruns, I. L. Bukatova, Thomas B¨ack, Chhandra Chakraborti, Nirupam Chakraborti, David E. Clark, Carlos A. Coello Coello, Yuval Davidor, Dipankar Dasgupta, Marco Dorigo, J. Wayland Eheart, Bogdan Filipiˇc, Terence C. Fogarty, David B. Fogel, Toshio Fukuda, Hugo de Garis, Robert C. Glen, David E. Goldberg, Martina Gorges-Schleuter, Hitoshi Hemmi, Vasant Honavar, Jeffrey Horn, Aristides T. Hatjimihail, Heikki Hy¨otyniemi Mark J. Jakiela, Richard S. Judson, Bryant A. Julstrom, Charles L. Karr, Akihiko Konagaya, Aaron Konstam, John R. Koza, Kristinn Kristinsson, Malay K. Kundu, D. P. Kwok, Jouni Lampinen, Jorma Laurikkala, Gregory Levitin, Carlos B. Lucasius, Timo Mantere, Michael de la Maza, John R. McDonnell, J. J. Merelo, Laurence D. Merkle, Zbigniew Michalewics, Melanie Mitchell, David J. Nettleton, Volker Nissen, Ari Nissinen, Tatsuya Niwa, Tomasz Ostrowski, Kihong Park, Jakub Podg´orski, Timo Poranen, Nicholas J. Radcliffe, Colin R. Reeves, Gordon Roberts, David Rogers, David Romero, Sam Sandqvist, Ivan Santib´an ˜ez-Koref, Marc Schoenauer, Markus Schwehm, Hans-Paul Schwefel, Michael T. Semertzidis, Davil L. Shealy, Moshe Sipper, William M. Spears, Donald S. Szarkowicz, El-Ghazali Talbi, Masahiro Tanaka, Leigh Tesfatsion,
Acknowledgement
3
Peter M. Todd, Marco Tomassini, Andrew L. Tuson, Kanji Ueda, Jari Vaario, Gilles Venturini, HansMichael Voigt, Roger L. Wainwright, D. Eric Walters, James F. Whidborne, Stefan Wiegand, Steward W. Wilson, Xin Yao, Xiaodong Yin, and Ljudmila A. Zinchenko. The editor also wants to acknowledge Elizabeth Heap-Talvela for her kind proofreading of the manuscript of this bibliography and Tea Ollanketo and Sakari Kauvosaari for updating the database. Prof. Timo Salmi and the Computer Centre of University of Vaasa is acknowledged for providing and managing the online ftp site ftp.uwasa.fi, where these indexed bibliographies are located.
Chapter 2
Introduction “Many scientist, possibly most scientist, just do science without thinking too much about it. They run experiments, make observations, show how certain data conflict with more general views, set out theories, and so on. Periodically, however, some of us—scientists included—step back and look at what is going on in science.” David L., Hull, [7]
The table 2.1 gives the queries that have been used to extract this bibliography. The query system as well as the indexing tools used to compile this report from the BiBTEX-database [8] have been implemented by the author mainly as sets of simple awk and gawk programs [9, 10]. string agriculture forestry environmen pollution horticulture food food Food pomology vegetables meat fish drinking drinking Drinking water diet fermentation fruit tomato potato
field ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE TITLE JOURNAL ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE TITLE TITLE ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE
class Agriculture Forestry Environmental sciences Environmental sciences Agriculture FOOD Title: food Journal: Food Pomology Vegetables Meat Fish Drinking Drinking Drinking Water Diet Fermentation Fruits Tomato Potato
Table 2.1: Queries used to extract this subbibliography from the source database. You might also find the bibliography [11], containing more general biology related references, interesting.
4
Chapter 3
Statistical summaries 3.1
This chapter gives some general statistical summaries of genetic algorithms in agriculture literature. More detailed indexes can be found in the next chapter.
Publication type
This bibliography contains published contributions including reports and patents. All unpublished manuscripts have been omitted unless accepted for publication. In addition theses, PhD, MSc etc., are also included whether or not published somewhere.
References to each class (c.f table 2.1) are listed below: • Agriculture 76 references ([12]-[87])
Table 3.1 gives the distribution of publication type of the whole bibliography. Observe that the number of journal articles may also include articles published or to be published in unknown forums.
• Diet 2 references ([88]-[89]) • Drinking 3 references ([90]-[92]) • Environmental sciences 54 references ([93][146])
type book section of a book part of a collection journal article proceedings article report PhD thesis MSc thesis others total
• FOOD 34 references ([147]-[180]) • Fermentation 26 references ([181]-[206]) • Fish 12 references ([207]-[218]) • Forestry 17 references ([219]-[235]) • Fruits 2 references ([236]-[237]) • Journal: Food 15 references ([238]-[252])
number of items 1 2 2 201 127 8 9 4 5 359
Table 3.1: Distribution of publication type.
• Meat 1 references ([253]-[253]) • Title: food 5 references ([254]-[258]) • Tomato 3 references ([259]-[261])
3.2
Annual distribution
• Water 109 references ([262]-[370]) Table 3.2 gives the number of genetic algorithms in agriculture papers published annually. The annual distribution is also shown in fig. 3.1. The average annual growth of GA papers has been approximately 40 % during late 70’s - early 90’s.
Observe that each reference is included (by the computer) only to one of the above classes (see the queries for classification in table 2.1; the textual order in the query gives priority for classes). 5
6
Genetic algorithms in agriculture year 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 total
items 2 7 19 34 28 26 13 10 15 10 5
year 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009
items 1 7 21 40 26 27 13 16 17 22 359
Table 3.2: Annual distribution of contributions.
3.3
Classification
Every bibliography item has been given at least one describing keyword or classification by the editor of this bibliography. Keywords occurring most are shown in table 3.3.
Total others
359 0
Table 3.3: The most popular subjects.
3.4
Authors
Table 3.4 gives the most productive authors.
total number of authors Simpson, Angus R. Dandy, Graeme C. Walters, Godfrey A. Goodacre, Royston Savic, Dragan A. Broadhurst, David Hashimoto, Y. Morimoto, T. Baerdemaeker, Josse De Ellis, David I. He, Yong Minsker, Barbara S. Murphy, Laurence J. 7 authors 20 authors 103 authors 691 authors
834 14 10 8 7 7 6 6 6 5 5 5 5 5 4 3 2 1
Table 3.4: The most productive genetic algorithms in agriculture authors.
Authors
7
6Genetic algorithms in agriculture ccc c ccc c cc 1000 c c number of papers c c (log scale) c c cc cc c 100 cc cc sss s c ss ccc s s s sss c ss c c cc ccc s sc 10 ss cc c c s c c c cc c c c s 1c cc s 1960
2010/04/09
1970
1980 YEAR
1990
2000
Figure 3.1: The number of papers applying genetic algorithms in agriculture (•, N = 359 ) and total GA papers (◦, N = 21162 ). Observe that the last few years are most incomplete in the database.
8
3.5
Genetic algorithms in agriculture
Geographical distribution
Table 3.5 gives the geographical distribution of authors, when the country of the author was known. Over 80% of the references of the GA source database are classified by country. 2010/04/09
country Total United States United Kingdom Japan China Finland Germany Taiwan France Spain Australia Italy Brazil South Korea Ireland Mexico Canada Denmark Sweden Belgium Bulgaria Others
special n % 357 100.00 78 21.85 42 11.76 34 9.52 31 8.68 16 4.48 14 3.92 14 3.92 10 2.80 10 2.80 9 2.52 8 2.24 7 1.96 6 1.68 4 1.12 4 1.12 3 0.84 3 0.84 3 0.84 2 0.56 2 0.56 31 8.68
comparison δ[%] ∆[%] −5.59 +1.59 −2.64 +3.66 +0.70 −2.95 +1.76 +0.24 +0.92 +0.08 −0.62 +1.00 −0.59 +0.88 +0.52 −0.72 +0.56 +0.30 −0.26 +0.47 −2.57
−20 +16 −22 +73 +19 −43 +81 +9 +49 +3 −22 +104 −26 +367 +87 −46 +200 +56 −32 +522 −23
all N 19977 5482 2032 2429 1002 755 1373 432 511 376 488 572 192 454 47 120 312 55 108 163 18 2236
% 100.00 27.44 10.17 12.16 5.02 3.78 6.87 2.16 2.56 1.88 2.44 2.86 0.96 2.27 0.24 0.60 1.56 0.28 0.54 0.82 0.09 11.25
Table 3.5: The geographical distribution of the authors working on genetic algorithms in agriculture (n) compared (δ and ∆) to all authors in the field of GAs (N ). In the comparison column: δ% = nNT otal %special−%all and ∆ = (1 − N nT otal ) × 100%. ∆ is the relative (%) deviation from the expected number of special papers. Observe that joint papers may have authors from several countries and that not all authors have been attributed to a country.
3.6
Conclusions and future
The editor believes that this bibliography contains references to most genetic algorithms in agriculture contributions upto and including the year 1998 and the editor hopes that this bibliography could give some help to those who are working or planning to work in this rapidly growing area of genetic algorithms.
Chapter 4
Indexes 4.1
Books
Autom. Electr. Power Syst. (China), Autom. Tech. Prax. (Germany),
The following list contains all items classified as books. Evolutionary Algorithms and Agricultural Systems,
Automatisierungstechnik,
[92]
Biodiversity Science,
[36]
Biologcal Invasions,
[210]
Bioprocesses and Biosystems Engineering,
[16]
BioSystems,
Journal articles
[25, 30, 32, 33, 35]
Biotechnol Prog,
[199]
Biotechnol. Bioeng.,
[183]
Biotechnology and Bioengineering,
The following list contains the references to every journal article included in this bibliography. The list is arranged in alphabetical order by the name of the journal.
Adaptive Behavior,
[226]
Chemometrics and Intelligent Laboratory Systems, Composite Structures,
[349]
[52]
Comput. Electron. Agric. (Netherlands),
[229]
Computer,
Agricultural Sciences in China,
[204]
Computers and Electronics in Agriculture,
[34]
Agricultural Water Management,
[69, 72, 73, 80]
[104]
Computers and Chemical Engineering,
[140]
[165]
[295]
Comput. Artif. Intell. (Slovakia),
[257]
Advances in Water Resources,
[185, 188, 190]
Canadian Journal of Forest Research,
Comput. Electron. Agric., Acta Forestalia Fennica,
[184]
[213]
Biosystems Engineering,
4.2
[340]
[178]
[148, 26, 29, 43,
168, 49, 68, 71]
[18]
Control Eng. Pract.,
[55]
AI Applications,
[234]
Eng. Anal. Bound. Elem. (UK),
AIChE J.,
[192]
Eng. Intell. Syst. Electr. Eng. Commun. (UK),
Anal. Chem.,
[135]
Engineering Applications of Artificial Intelligence, [141, 171]
Analytica Chimica Acta,
Environ. Model. Softw. (UK),
[266, 149, 137, 154, 297, 162, 164,
191, 169, 254, 173]
[321, 362]
[120]
Environmental Science & Technology,
Analytical and Bioanalytical Chemistry,
[163]
Applied and Environmental Microbiology,
Expert Systems Appl. (UK),
[147]
Food and Bioprocess Technology,
Applied Optics,
[356, 357]
Food Science & Technology,
Applied Spectroscopy,
[12, 159]
Food & Beverage Asia,
Aquatic Ecology,
[138] [142]
[238]
[219]
[222]
Genetic Programming and Evolvable Machines,
Atmospheric Environment Part A General Topics, Australian Journal of Experimental Agriculture, Autom. Electr. POwer Syst. (China),
[248]
[249]
Forest Ecology and Management, Forest Science,
[343]
[353]
Applied Intelligence,
Atmospheric Environment,
[106]
European Journal of Operational Research,
[15, 151]
[132]
Ground Water,
[58]
40, 42, 45, 47]
9
[236]
[292, 338]
Guang pu Xue yu Guang pu fen xi = Guang pu,
[337]
[116]
[37, 39,
10
Genetic algorithms in agriculture
Huaxue Fanying Gongcheng Yu Gongyi,
Lebensm.-Wiss. u.-Technol.,
[181]
[153]
Hydroinformatics’98,
[351]
Materials Research Innovations,
Hydrol. Sci.,
[331]
Mathematics and Computers in Simulalation,
IEEE Control Systems Magazine,
[17, 19]
IEEE Transactions on Evolutionary Computation,
[267]
IEEE Transactions on Geoscience and Remote Sensing, [22, 31]
Image and Vision Computing, [215]
Memoirs of the Faculty of Engineering, Fukui University,
Int. J. Prod. Econ. (Netherlands), International Journal of Control,
[216]
[333]
[126] [300] [239]
[99]
International Transactions in Operational Research,
[207]
Internet Electronic Journal of Molecular Design,
[289]
[44] [20]
[251]
Phytochemistry,
[259]
Proc. World Congr., Int. Fed. Autom. Control,
Radiophys. Quantum Electron. (USA),
[255]
[158]
[220]
SPE Reservoir Eval. Eng.,
[336]
[13]
The Analyst, [193]
[155, 28]
Journal of Computing in Civil Engineering, Journal of Experimental Botany,
[157]
The Arabian Journal for Science and Engineering,
[293]
The Journal of the Acoustical Society of America,
[360]
[287]
Tietov¨ ayl¨ a,
[237]
Journal of Food Composition and Analysis,
[100]
[347]
Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy, [38]
[243]
Journal of Agricultural Engineering Research,
[224]
Transactions of the ASAE,
[252]
[24, 156]
Transactions of the Institute of Electronics, Information and Communication Engineers A (Japan), [64]
[246, 247] [240]
Transactions of the Society of Instrument and Control Engineers (Japan), [51]
[242, 244]
Journal of Food Science C: Food Chemistry,
[250]
[304]
Journal of Management in Engineering, [187]
[326]
Journal of the American Water Resources Association, [291, 354]
[296]
VLSI Design,
[260]
Water Research,
[90, 364, 131]
Water Resour. Res.,
[350]
Water Resources Bulletin, Water Resources Research,
Journal of the American Water Works Association, Journal of the Korean Fisheries Society,
Urban Water Journal,
[98]
Journal of Network and Computer Applications,
[285]
[212]
Journal of Water Resource Planning and Management, [332]
[134] [136, 272, 275, 280, 307, 102, 312,
320, 329, 365]
Water Sci. Technol.,
[123]
Water Science and Technology,
[118]
WSEAS Transactions on Signal Processing,
Journal of Water Resources Planning and Management, [269, 276, 306, 341]
[197]
Proceedings of the National Academy of Sciences of the United States of America, [14]
Soil Biology & Biochemistry, [330]
Journal of Chemical Technology and Biotechnology,
Journal of Molecular Catalysis,
[286]
Sensors and Actuators B,
Journal of Agricultural and Food Chemistry,
Journal of Food Microbiology,
[303]
Physics Letters A,
Silva Fennica,
J. Water resour. Plann. Manage.,
Journal of Food Engineering,
[170]
[245] [125]
J. Water Resour Plann Manage,
Journal of Chemometrics,
[334, 348]
Sensing and Instrumentation for Food Quality and Safety,
J. Environ. Eng. (Reston, Va.), J. Sci. Food Agric.,
[97]
[200]
International Journal of Power and Energy Systems,
[361]
[88]
Proc. Inst. Mech. Eng. I, J. Syst. Control Eng. (UK),
International Journal of Food Properties,
J. Mol. Model.,
NeuroComputing,
Pharmaceutical Research,
International Journal of Food Science and Technology, [241]
ITB Journal of Science,
Methods of Information in Medicine,
Pattern Recognition,
Int. Commun. Heat Mass Transf. (UK),
Journal of Hydrology,
[172, 174, 175]
New Rev. Appl. Expert Syst. (UK),
[21]
Industrial Robot: An International Journal,
Journal of Food Quality,
[358]
Meat Science,
[121]
IEEE Transactions on Systems, Man, and Cybernetics— Part C: Applications and Reviews, [91]
J. Agric. Engng Res.,
Meas Control (UK),
[205]
[217]
IEEE Transactions on Power Systems,
Ind. Robot (UK),
[302]
total 201 articles in 140 series
[305]
Theses
4.3
11
Theses
4.5
The following two lists contain theses, first PhD theses and then Master’s etc. theses, arranged in alphabetical order by the name of the school.
4.3.1
PhD theses
Patents
The following list contains the names of the patents of genetic algorithms in agriculture. The list is arranged in alphabetical order by the name of the patent. Controller for wide area wastewater sending system,
Case Western Reserve University,
Method and apparatus for preforming mutations in a genetic algorithm-based underwater tracking system,
[298]
Helsinki University of Technology,
[127]
National Chung Hsing University,
[152]
[271]
[344]
Method for water use planning process using genetic algorithm, [270] Operation support apparatus of water treatment plant,
Oregon State University, [66]
[283]
Stanford University,
[367]
Swedish University of Agricultural Sciences, University of Helsinki,
[235]
University of Raleigh,
[160]
Utah State University,
[56]
[221]
total 5 patents
total 9 thesis in 9 schools
4.3.2
Master’s theses
This list includes also “Diplomarbeit”, “Tech. Lic. Theses”, etc.
Chaoyang Univesity of Technology, Helsinki University of Technology, Izmir Institute of Technology, University of Georgia,
[301] [96]
[189]
[223]
total 4 thesis in 4 schools
4.4
Report series
The following list contains references to all papers published as technical reports. The list is arranged in alphabetical order by the name of the institute.
Santa Fe Institute,
[258]
University of Exeter,
[317]
University of Hawaii at Manoa, University of Vaasa,
Problem solving arithmetic device and method introduction concept of state transition, [261]
[335]
[83]
total 4 reports in 4 institutes
12
Genetic algorithms in agriculture
Authors
4.6
13
Authors
The following list contains all genetic algorithms in agriculture authors and references to their known contributions.
Achim, Moise,
Bao, Yidan,
[95]
[173]
Brown, Linfield C.,
[125] [183]
Agbanhan, J.,
[208]
Barba, Dominique,
[251]
Brown, W. A.,
Agbanhan, Julien,
[216, 215, 217]
Barbosa, Helio J. C.,
[347]
Broyart, B.,
[153]
Ahlfeld, David P.,
[93]
Barkdoll, B. D.,
[269]
Bruten, J.,
[211]
Brzozowski, D.,
[137]
Budilova, E. V.,
[255]
Burn, Donald H.,
[276]
Butler, R. M.,
[67]
Butler, Ralph M.,
[232]
Buydens, L. M. C.,
[266, 297]
Callaghan, V.,
[79]
Camcho, Emilio,
[18]
Campbell, John,
[192]
Canpolat, Necati,
[66]
Aishima, Tetsuo,
[252]
Barrett, David,
[324]
Alander, Jarmo T.,
[83, 262]
Bastos, Bernardo,
[84]
Alippi, Cesare,
[104]
Baylog, John G.,
[344]
Beckwith, Stephen,
[294]
Allen, Paul,
[170, 172,
174, 175]
Beheshti, Abolghasem,
Alvarez, A.,
[286]
Alvarez, Seraf´ın,
[18]
Alves, Teresa P.,
[188]
Aly, Alaa H.,
[365]
Al-Zahrani, Muhammad A., Andrade, J. M.,
[250]
Bellon-Maurel, V´ eronique,
[12, 185]
Bennett III, Forrest H., [256]
[293]
[163]
Berkholz, R.,
[202, 203]
Bertram, Robert R.,
[315, 327]
Bertrand, Dominique,
[251]
Cao, Fang,
[43, 173]
Bettenhausen, Kurt D., [200]
Carneiro, Renato L.,
[164]
Bettinger, Pete,
[220]
Carreon, Edgard,
[335]
Bienvenu, G.,
[339]
Andres-Tono, B. de,
[194]
Andr´ es-Toro, B. de,
[201]
Carr-West, M.,
[79]
Andrestoro, B.,
[195]
Blasco, X.,
[33]
Cartwright, Hugh M.,
[146, 132]
Angelov, P.,
[202, 203]
Bogardi, J. J.,
[322]
Castillo, Luis,
[343]
Anon.,
[249]
Boggess, J. E.,
[75]
Cede˜ no, Walter,
[314, 326]
Antsaklis, Panos,
[17]
Borchardt, D.,
[138]
C ¸ elik, Elif Sinem,
[189]
Aoyagi, Yuji,
[217]
Borgefors, Gunilla,
[150]
Chan, W. T.,
[355]
Aral, M. M.,
[109]
Boschetti, Fabio,
[209]
Chang, N. B.,
[144]
Ariana, Diwan,
[245]
Boston, Kevin,
[220]
Chang, Ni-Bin,
[110, 118, 123]
Chang, Soon Heung,
[333]
Chang, Y. K.,
[184]
Chase, Donald V.,
[294]
Chauchot, Pierre,
[295]
Chaudhry, F. H.,
[336]
Chelland, Kirsty,
[246]
Chemin, Yann,
[31]
Arif, Chusnul,
[44]
Bottoli, Carla B. G.,
[164]
Arnold, E.,
[92]
Boulos, P. E.,
[285]
Arruda, L´ ucia V. R.,
[186]
Bounsaythip, Catherine, [233]
Asakura, T.,
[208]
Boyle, Roger D.,
[21]
Asakura, Toshiyuki,
[216, 215, 217]
Braga, Jez W. B.,
[164]
Atkinson, R. M.,
[351, 358]
Braga, Washington,
[84]
Atkinson, R.,
[346]
Brandon, Karen,
[174]
Attakitmongcol, Kitti,
[305]
Brdys, Mietek A.,
[91]
Baek, Won-Pil,
[333]
Brede, M.,
[209]
Breemen, A. N. van,
[131]
Baerdemaeker, Josse De, [161, 32, 35,
Ballerini, Lucia,
Brezmes, J.,
[158]
Brezocnik, Miran,
[302]
[156] [150]
Broadhurst, David, Bao, Y. D.,
[39]
154, 157, 253, 100]
[110, 118,
144, 123]
176, 68]
Bajic, S. J.,
Chen, H. W., Chen, Hong-wen,
[181]
Chen, Li,
[90]
Chen, Pingfu,
[210]
Chen, Y. M.,
[37, 47, 65]
Chen, Yongming,
[248]
Chen, Yu-Ming,
[334, 72]
[151, 259,
14
Genetic algorithms in agriculture
Cheng, A. H. D.,
[321]
De Weijer, A. P.,
[266]
Figueroa, Jos´ e Alonso,
Chepurnov, S. A.,
[255]
Depczynski, Uwe,
[149]
Flask, Christopher Alan, [298]
Chia-Shun, Lai,
[81]
Deschaetzen, W. B. F., [345]
Fleming, P. J.,
[177]
Chiou, Ji-Pyng,
[204]
Deschaetzen, W.,
[346]
Flowers, Woodie C.,
[113] [130]
[328]
Cho, Byoung-Kwan,
[159, 38]
Dewey, John,
[223, 225]
Fogarty, Terence C.,
Cho, Seong In,
[13]
DiGregorio, S.,
[117]
Foong, W. K.,
[273, 279]
Chtioui, Younes,
[251]
Dixit, Vivechana,
[159, 38]
Forina, Michele,
[243]
Chudley, J.,
[300]
Djuriˇsi´ c, Aleksandra B., [356]
Foy, Mark,
[54]
Chung, B. H.,
[184]
Dorado, J.,
[163]
Frantzen, M.,
[199]
Chung, Woodam,
[220]
Douglas, Craig C.,
[303]
Franzen, David,
[30]
Cieniawski, Scott E.,
[312]
Dowla, Farid U.,
[106]
Freyer, Stephan,
[200]
Clarke, Sarah J.,
[157]
Draper, John,
[100]
Friedl, A.,
[191]
F¨ ul¨ op, Andr´ as,
[166]
Furuhashi, Takeshi,
[197]
Furukawa, Seiji,
[283]
Furuya, Tatsumi,
[71]
Cliff, D.,
Du, Cheng-Jin,
[170]
Coello Coello, Carlos A., [328]
Eheart, J. Wayland,
[308, 102]
Cogdill, R. P.,
[156]
Elliot, Geoffrey N.,
[100]
Colley, M.,
[79]
Ellis, David I.,
[211]
[238, 151,
154, 157, 253]
Collignan, A., Coombs, David, Cooper, D. G.,
Gal, B.,
[88]
El-Rayes, Khaled,
[98]
Galv´ an, B.,
[288]
Ely, D. M.,
[274]
Ganjali, Mohammad Reza,
Enbody, R.,
[81]
Garc´ıa-Gimeno, Rosa Mari´ a,
Erickson, Mark,
[140]
Garcia, E. L. M.,
[347]
Eriksson, Ljusk Ola,
[219]
Garrett, C. A.,
[359]
Espinoza, F. P.,
[277]
Gates, Gregory B.,
[143]
Esteban-D´ıez, Isabel,
[162, 243]
Gautam, Ramesh,
[30]
Etschmann, M. M. W., [187]
Gayo, Javier,
[160]
Ewald, Grzegorz,
[91]
Geladi, Paul,
[262]
Fabro, Jo˜ ao A.,
[186]
Gestal, M.,
[163]
Fan, H. Y.,
[97]
Gilbert, R. J.,
[236]
Fang, Alex,
[48, 49]
Gilbert, Richard J.,
[15]
Fang, Bai-shan,
[181]
Gineste, Bernard,
[295]
Fang, Junlong,
[41]
Gironsierra, J. M.,
[195]
Fanlun, Xiong,
[53]
Giron-Sierra, J. M.,
[194]
Faruque, Abdullah,
[135]
Gironsierra, J. M.,
[196]
Ferkinhoff, David J.,
[344]
Gir´ on-Sierra, J. M.,
[201]
Goddard, J.,
[59, 61]
[153] [246]
Corno, Fulvio,
[214]
Correig, X.,
[158]
Craessaerts, Geert,
[32, 35]
Craw, S.,
[80]
Cruz, I. Lopez,
[59]
Culver, T. B.,
[342]
Cunha, J. B.,
[26]
Dagorn, Laurent,
[213]
Dai, Bin,
[303]
Dai, Liangying,
[34, 36]
Daida, Jason M.,
[315, 327]
da Costa Filho, Paulo Augusto, [169] Dalgleish, F. R.,
[250]
[183]
[300]
Dandy, Graeme C.,
[306, 50, 310, 313, 316, 318, 319, 320, 60, 369]
[240]
Daniell, T. M.,
[323]
Fernandezconde, C.,
[195]
Davidson, C. E.,
[137]
Fernandez-Conde, C.,
[194]
Davies, Zoe S.,
[15]
Fernandezconde, C.,
[196]
Goltz, M. N.,
Deandrestoro, B.,
[196]
Fern´ andez-Conte, C.,
[201]
G´ omez-Carracedo, M. P.,
Dekker, Laura,
[101]
Fern´ andez Blanco, P.,
[201]
Gonz´ alez, Antonio,
[343]
Delay, F.,
[275]
Ferreira, Ana P.,
[188]
Gonz´ alez, B.,
[288]
de Moura Oliveira Coelho, J. P., [26]
Fhang, K. Y.,
[273, 279]
Gonz´ alez-S´ aiz, Jos´ e-Mari´ a,
De Noord, O. E.,
Figu` eres, Gilles,
[28]
Goodacre, Rouston,
[266]
Goldberg, David E.,
[136, 268,
277, 311] [359] [163]
[162, 243]
[236, 182]
Authors
15
Goodacre, Royston,
[238, 151,
Herdy, M.,
[178]
Jackman, Patrick,
259, 154, 157, 237, 253]
Goodman, Erik D., Grabec, I.,
[170, 172,
174, 175]
Herrero, J. M.,
[33]
Herrin, G.,
[290]
[267, 81] [205]
Jackson, Bernie,
[218]
Jacucci, Gianni,
[54]
Jain, A. K.,
[267]
Jallas, E.,
[75]
Jeffers, J. N. R.,
[234]
Jeffkins, Paul,
[190]
Jensen, T. C.,
[156]
Jetter, Kurt,
[149]
Ji, B. P.,
[42]
Ji, Baoping,
[244]
Ji, B.,
[242]
Jiang, Mon-Fong,
[62]
Jiewen, Zhao,
[165]
Jin, Jian,
[168]
Jing, Ding,
[53]
Jitaru, Maria,
[95]
John, David St.,
[105]
Herv´ as-Mart´ınez, C´ esar, [240] Graetz, David,
[220]
Hewitt, Christopher J., [246] Grayman, Walter, Grefenstette, John J., Griffith, Gareth W.,
[294] [133] [15]
Grosenbaugh, Mark,
[324]
Groumpos, Peter P.,
[17]
Guan, J.,
[109]
Guerreiro, J. N. C.,
[347]
Guo, J.,
[325]
Gurierri, R.,
[290]
Guthke, R.,
[202, 203]
Guyer, Daniel,
[148, 245]
Gwo, Jin-Ping,
[280]
Hagan, S.,
[77]
Hagras, H.,
[79]
Halhal, Driss,
[332]
Hill, M. C.,
[274]
Hilton, A. B. C.,
[342]
Hiltunen, Teri,
[141, 142]
Hirafuji, M.,
[77]
Hirotsuji, Junji,
[283]
Ho, Hsin-Hsien,
[301]
Hoffmann, Wesley C.,
[48, 49]
H¨ ogberg, Anders,
[150]
Honda, Hiroyuki,
[197]
Honda, Kiyoshi,
[31]
Hoogenboom, G.,
[147]
Hoogerboom, G.,
[179]
Horn, Jeffrey,
[140]
Horton, B.,
[58]
Johnson, Helen E.,
[236, 259]
Hoshi, T.,
[64]
Johnson, Timothy,
[370]
Hall, M. A.,
[236]
Hovland, P.,
[81]
Johnson, Virginia M.,
[106]
Han, Dong-Hai,
[40, 45]
Hruska, Zuzana,
[168]
Jokinen, Olli,
[233]
Hanai, Taizo,
[197]
Hu, Zong-ding,
[181]
Jones, David D.,
[23, 29]
Hancs´ ok, Jen¨ o,
[166]
Huang, C. L.,
[107, 329]
Jones, R. W.,
[156]
Hannan, Brian C.,
[315]
Huang, Chun-Hsiang,
[264]
Jong, K. De,
[128]
Harremoes, Poul,
[364]
Huang, Junqi,
[359]
Jukes, Ken,
[130]
Harris, Stephen P.,
[146, 132]
Huang, S. H.,
[325]
Junior, P. A. D.,
[145]
Harrison, C.,
[286]
Huang, Yanbo,
[48, 49]
Kalafallah, Ahmed,
[98]
Harrouni, K. El,
[321]
Hughell, David A.,
[231]
Kaluarachchi, Jagath J., [350]
Hashimoto, Yasushi,
[19, 176, 68]
Hashimoto, Y.,
[24, 55, 85,
73, 78, 82]
Hassanli, A. M., Hatou, K.,
[50] [24]
Haupt, M.,
[124]
He, Y.,
[37, 39, 47]
He, Yong,
Hughes, S. M.,
[183]
Kao, Shuh-Ji,
[90]
Hurburgh, Jr., C. R.,
[156]
Karanta, Ilkka,
[233]
Husbands, Philip,
[370]
Karim, M. N.,
[206]
Hy¨ otyniemi, Heikki,
[129]
Karpouzos, D. K.,
[275, 362]
Ic, Aleksandra B.,
[357]
Karppinen, Ari,
[141, 142]
Idlebi, Niba,
[103]
Katsifarakis, K. L.,
[275, 362]
Iida, Y.,
[76]
Kawano, Hiroshi,
[299]
Iizuka, Keiko,
[252]
Kell, Douglas B.,
[167, 43, 46,
248, 173]
[236, 182, 15,
151]
Heidari, M.,
[134]
Ileanˇ a, Ioan,
[95]
Heigold, P. C.,
[134]
Ilvonen, Mikko,
[96]
Heißner, Adolf,
[86, 70, 87]
Irudayaraj, Joseph M. K.,
Henderson, C. E.,
[147, 179]
Ito, Hiroyasu,
[261]
Hentschke, Reinhard,
[361]
Izui, Y.,
[116]
Kelle, R.,
[199]
Kemsley, E. Katherine, [246] [159]
Kermanshahi, B., Kettunen, Arto, 229, 230]
[112] [227, 228,
16
Genetic algorithms in agriculture
Khu, S. T.,
[355]
Li, Yongxin,
[254]
Mardle, S. J.,
[207]
Kim, Han-Gon,
[333]
Li, Yuanqian,
[254]
Marenbach, P.,
[200]
Kim, Hee Joon,
[212]
Liebmann, B.,
[191]
Mariano, C. E.,
[74]
Kingdon, Jason,
[101]
Liles, W.,
[128]
Marsily, G. de,
[275] [190] [33]
Kita, Hajime,
[115]
Lim, H. C.,
[184]
Martin, Elaine,
Kitto, Rob,
[313]
Lin, Min-Der,
[307, 143]
Mart´ınez, M.,
Kivinen, Veli-Pekka,
[222, 224, 226]
Lin, Ping,
[248]
Mart´ınez-Meyer, Enrique,
Knight, B.,
[349, 348, 353]
Lin, P.,
[37, 47]
Matouˇsek, Radek,
[94]
Ko, N.,
[282]
Lin, Tseng-Hsien,
[265]
Matthews, K. B.,
[80]
Kobayashi, Takeshi,
[197]
Lin, Wen-Shin,
[152]
Mayer, A. S.,
[107, 329]
Koelle, Edmundo,
[294]
Lingireddy, Srinivasa,
[363, 366]
Mayer, Alex,
[140]
Koivo, Heikki N.,
[129]
Linke, H.,
[92]
Mayer, David G.,
[16] [135, 137]
[14]
Kolehmainen, Mikko,
[141, 142]
Liong, S. Y.,
[355]
Mayfield, Howard T.,
Koljonen, Janne,
[262]
Liu, J.,
[156]
Mayoh, Brian,
[114]
Kong, Young Sae,
[212]
Liu, Zhenhua,
[27]
McClelland, J. F.,
[156]
Kouichi, Tokimori,
[283]
Llobet, E.,
[158]
McClendon, R. W.,
[147, 179]
Koza, John R.,
[257, 258]
Lo, S. M.,
[97]
McDonald, D.,
[209]
Kozmann, G.,
[88]
Lodder, Robert A.,
[303]
McKinion, J. M.,
[52]
Kuhn, Leslie A.,
[267]
Lopez, I.,
[61]
McKinney, Daene C.,
[307]
McKinney, Deane C.,
[143, 119]
McLeod, Georgina,
[246]
McNyset, Kristina M.,
[210]
Meadows, Guy A.,
[315, 327]
Meier, R. W.,
[269]
Melssen, W. J.,
[297]
Mendoza, Fernando,
[175]
Menezes, Jos´ e C.,
[188]
Merry, Roger J.,
[15]
Messager, Tanguy,
[295]
Meyer, George E.,
[23, 29]
Kukkonen, Jaakko,
[142]
Lopezorozco, J. A.,
[195]
Kumsawat, Prayoth,
[305]
Lopez-Orozco, J. A.,
[194]
Kunimi, Masaki,
[271]
Lopezorozco, J. A.,
[196]
Kuo, Sheng-Feng,
[56]
L´ opez-Orozco, J. A.,
[201]
Kuppusamy, K.,
[99]
Loula, A. F. D.,
[347]
Kurata, K.,
[76]
Lu, Fadian,
[219]
Kurek, Wojciech,
[91]
Lu, Renfu,
[245]
Labadie, J. W.,
[330]
Lu, Weizhen,
[97]
Lacey, Ronald E.,
[48, 49]
Luciano, Giorgio,
[247]
Lakshmiramanan, R.,
[99]
Lund, Donald E.,
[327]
Lamont, G. B.,
[359]
Lund, Donald,
[315]
Lan, Yubin,
[48, 49]
Lundstr¨ om, Kerstin,
[150]
Lavine, Barry K.,
[135, 137]
Lyzenga, David R.,
[315, 327]
Leardi, Riccardo,
[155, 247]
Ma, Tianyun,
[167]
Lee, Chi Won,
[212]
Magee, Derek R.,
[21]
Michalewicz, Zbigniew, [260] Mignot, Bernard,
[103]
Mikkola, Topi,
[233]
Milutin, D.,
[322]
Min, Geon Hong,
[212]
Minami, Mamoru,
[216, 215, 217]
Minami, M.,
[208]
Minami, Yoshlyuki,
[71]
Lee, Dong Gyu,
[333]
Maier, Frederick,
[225]
Lee, Jae Hoon,
[13]
Maier, H. R.,
[273, 279]
Lee, K.,
[282]
Makino, Yoshio,
[20]
Lestander, Torbj¨ orn,
[221]
Makki, R. Z.,
[260]
Lexing, Liu,
[337, 340]
Malik, Kamal A.,
[38]
Li, Can,
[254]
Malta, S. M. C.,
[347]
Missotten, Bart,
[32, 35]
Li, F.,
[108]
Manela, Mauro,
[192]
Moied, Khurram,
[293]
Li, Peng-Fei,
[45]
Mankowski, R.,
[290]
Molt, K.,
[149]
Minsker, Barbara S.,
[263, 136,
268, 272, 277]
Authors
17
Montague, Gary,
[190]
Norouzi, Parviz,
[250]
Pourbasheer, Eslam,
[250]
Monteiro, Thibaud,
[171]
Nørgaard, Lars,
[155]
Preis, Ami,
[304]
Montesinos, Pilar,
[18]
Nute, Donald,
[225]
Punch, III, William F., [267, 81]
Moores, Anthony J.,
[135, 137]
Obach, M.,
[138]
Purwanto, W.,
[73]
Morgan, R.,
[108]
Ogawa, Toshiyuki,
[270]
Pyrz, Mariusz,
[295]
Mori, Naoki,
[115]
Okamura, H.,
[112]
Qian, Jiang,
[361]
Morimoto, Tetsuo,
[19, 176, 68]
Olmos, A.,
[153]
Qing, Z. S.,
[42]
Olson, Richard L.,
[52]
Qing, Zhaoshen,
[244]
Ormsbee, Lindell E.,
[363, 366]
Qing, Z.,
[242]
Orr, C. H.,
[285]
Qiu, Zhengjun,
[167]
Oˇsmera, Pavel,
[94]
Qu, Lingli,
[254]
Ostfeld, Avi,
[296, 304]
Ramos, C.,
[33]
Otobe, K.,
[77]
Ranjithan, S.,
[102, 312]
Ouazar, Driss,
[321, 332]
Rantam¨ aki, Minna,
[142]
Oudenhuijzen, M.,
[297]
R¨ as¨ anen, Petri,
[227, 228, 229]
¨ Ozdemir, Durmu¸s,
[241]
Rauch, Wolfgang,
[364]
Padera, B.,
[263]
Rauscher, H. Michael,
[225]
Pain, Jean Pierre,
[247]
Raymer, Michael L.,
[267]
Pan, Lu,
[45]
Reddy, Srinivasa L.,
[309]
Panigrahi, Suranjan,
[30]
Reed, Patrick M.,
[268, 272]
Parks, G. T.,
[368]
Reis, L. F. R.,
[336]
Morimoto, T.,
[24, 55, 85,
73, 78, 82]
Moriyama, Hiroyuki,
[193]
Moriyama, T.,
[112]
Morley, M. S.,
[351]
Morley, M.,
[346]
Morshed, Jahangir,
[350]
Muddappa, S.,
[260]
Mullen, D. S.,
[67]
Mullen, David S.,
[232]
Mulligan, Ann E.,
[93, 125]
Murase, Haruhiko,
[19]
Murata, H.,
[217]
Murphy, Laurence J.,
[313, 316,
318, 320, 60]
Murphy, Laurie J.,
[306, 310, 369]
Parsons, D. J.,
[25]
Rendas, M. J.,
[339]
Murphy, Lawrence J.,
[319]
Pascoe, S.,
[207]
Rettenmaier, H.,
[200]
Na, J.-G.,
[184]
Pei, Min,
[81]
Reyn´ es, Christelle,
[28]
Naeem, W.,
[300]
Peralta, Richard C.,
[365]
Riahi, Siavash,
[250]
Nakada, Masashirou,
[271]
Pesonen, Mauno,
[227, 228, 229]
Ribeiro-Filho, J.,
[103]
Nakanishi, Hiromi,
[289]
Petit, Michel,
[213]
Ribeiro Filho, Jos´ e L.,
[104]
Ndiritu, J. G.,
[323]
Petridis, M.,
[348]
Rice, James P.,
[257, 258]
Neto, Joao Camargo,
[23]
Pinchuk, R. J.,
[183]
Rippke, G. R.,
[156]
Neto, Jo˜ ao Camargo,
[29]
Pinder, G.,
[284]
Ritter, J.,
[135]
Ngadi, Michael,
[161]
Pizarro, Consuelo,
[162, 243]
Ritzel, Brian J.,
[102]
Nicot, Jean-Philippe,
[119]
Pohlheim, Hartmut,
[86, 70, 87]
Rivera, S. L.,
[206]
Nie, Pengcheng,
[167, 173]
Polign´ e, I.,
[153]
Ro, J. J.,
[285]
Nieken, U.,
[200]
Poon, P. W.,
[368]
Roger, Jean-Michel,
[12, 185]
Niem¨ oller, A.,
[149]
Popa, Maria,
[95]
Rogers, Leah Lucille,
[106, 367]
Nishikawa, Yoshikazu,
[115]
Pope, Gary A.,
[119]
Roise, Joseph P.,
[231]
Niska, Harri,
[141, 142]
Poppi, Ronei J.,
[164]
Roughgarden, Jonathan, [257, 258]
Nissan, E.,
[349, 348, 353]
Porto, R. M.,
[336]
Roupec, J.,
[94]
Nissinen, Ari S.,
[129]
Potocnik, P.,
[205]
Rowland, J. J.,
[236, 253]
Noguchi, N.,
[51, 69]
Potter, W. D.,
[147, 179]
Rowland, Jem J.,
[151]
Norden, Alison,
[190]
Potter, Walter D.,
[225]
Ruuskanen, Juhani,
[141, 142]
Poulter, Graham,
[246]
Saarenmaa, Liisa,
[235]
Nordling, Torbj¨ orn E. M.,
[262]
18
Genetic algorithms in agriculture
Sabatier, Robert,
Simpson, Angus R.,
[28]
[273, 279, 287, 306, 310, 311, 57, 313, 316, 318, 319, 320, 60, 369]
Sablayrolles, Jean-Marie, [185]
Takahashi, K.,
[112]
Takeuchi, Toshihiko,
[122] [126]
Sakuma, Akiyuki,
[122]
Smalley, J. Bryan,
[263, 136]
Takeuchi, T.,
Sakuma, A.,
[126]
Smilde, A. K.,
[266]
Takizawa, Takeshi,
[271]
Samuelsen, Scott,
[105]
Smith, Aileen R.,
[236, 259]
Tamayo, Simon,
[171]
Smith, John,
[335]
Tamiz, M.,
[207]
Tan, C. L.,
[273, 279]
Tan, Chih-Hung,
[90]
Tanaka, K.,
[77]
Tang, Lie,
[168]
Tapp, Henri,
[246]
Tekeuchi, T.,
[82]
S´ anchez-Cordero, Victor, [14] Sanchis, J.,
[33]
Smith, M. R.,
[358]
Satake, Takaaki,
[71]
Snellen, Mirjam,
[360]
Sauer, Nathalie,
[171]
Snellen, M.,
[352]
ˇ Sauperl, Olivera,
[302]
Somasundaram, P.,
[99]
Song, Yong-Hua,
[108]
Sonza Reorda, Matteo,
[214]
Te Beest, D.,
[25]
Soper, A. J.,
[349, 348, 353]
Savic, A. D.,
[358]
Savic, Dragan A.,
[294, 317,
331, 341, 345, 346, 351]
Terao, H.,
[51, 69]
Savola, Juha,
[233]
Soufian, M.,
[198, 198]
Terekhin, A. T.,
[255]
Sayes, Wouter,
[32, 35]
Souza, Sabrina de,
[28]
Tetlow, S.,
[300]
Schleiter, Ingrid M.,
[138]
Squillero, Giovanni,
[214]
Tettamanzi, Andrea G. B.,
Schrader, J.,
[187]
Srikaew, Arthit,
[305]
Tewari, Jagdish C.,
Schroeder, Kirk,
[315]
Srinivasan, Dipti,
[121]
Theodorou, Michael K., [15]
Scullion, John,
[100]
Stanhope, Stephen A.,
[327]
Theodossiou, N.,
[362]
Seah, H. Y.,
[273, 279]
Stani´ c, Boˇ zidar V.,
[356]
Thomasma, Scott A.,
[225]
Thomson, Steven J.,
[48, 49]
Thornhill, Nina,
[192]
Tian, Lei,
[22]
Tiedeman, C. R.,
[274]
Torii, Toru,
[19]
Torii, T.,
[55]
Tout, K.,
[103]
Trelea, I. C.,
[153]
Treleaven, Philip C.,
[104]
Self, Guy,
[247]
Stanic, Idar V.,
[357]
Sell, D.,
[187]
Steyer, Jean-Philippe,
[185]
Stimpson, Sarah,
[190] [361]
Sequeira, Ronaldo Antonio,
[52]
[121]
[159, 38]
Sequeira, R.,
[75]
St¨ ockelmann, Elmar,
Serra, R.,
[117]
Stonier, R.,
[63]
Sessions, John,
[220]
Stork, David G.,
[218]
Setiawan, Budi I.,
[44]
Stretta, Jean-Michel,
[213]
Shaw, K. J.,
[177]
Sturgess, D.,
[63]
[42]
Sugawara, Michihiko,
[289]
Triadaphillou, Sophia,
[190]
Sugihara, Kazuo,
[335]
Triantafyllou, Michael,
[324]
Suhardiyanto, Herry,
[44]
Tryby, M.,
[290]
Trystram, G.,
[153]
Tsai, F. T.,
[278, 281]
Tsai, Frank T.-C.,
[292]
Tseng, Shian-Shyong,
[62]
Tu, Chu-Kuei,
[265]
Shi, B. L., Shi, Bolin,
[244]
Shih, T. K.,
[180]
Shimano, S.,
[116]
Shimizu, Kazuyuki,
[193]
Sun, Ne-Zheng,
[292]
Shoemaker, C. A.,
[111]
Sun, N.,
[278]
Sun, Da-Wen,
[170, 172,
174, 175]
Shu, Lily H.,
[113]
Sun, Qian,
[45]
Sibbald, A. R.,
[80]
Surkan, Alvin J.,
[23]
Tu, K.,
[24]
Siderius, M.,
[286]
Sutton, R.,
[300]
Tu, M.,
[281]
Sigrimis, Nick,
[17]
Suzuki, H.,
[208]
Tu, Z. H.,
[42]
Sil´ oniz, Maria Isabel de, [240]
Suzuki, J.,
[73]
Tu, Zhenhua,
[244]
Simons, D. G.,
[352]
Swarup, K. S.,
[116]
Tung, Ching-pin,
[291]
Simons, Dick G.,
[360]
Swierenga, H.,
[266]
Twery, Mark,
[225]
Authors
19
Uchikawa, Yoshiki,
[197]
Wang, Shuwen,
[41]
Yang, Haiqing,
[46]
Uhrik, Carl,
[54]
Wang, Tai-Sheng,
[90]
Yang, Xiukun,
[148]
Urbas, Aaron,
[303]
Wang, Yunsheng,
[34, 36]
Yanxiao, Li,
[165]
Ustun, B.,
[297]
Wang, Zhiping,
[167]
Yao, Haibo,
[22, 168]
Valente, Marc,
[247]
Ward, Paddy,
[175]
Yao, Jiansong,
[46]
Valocchi, A. J.,
[268]
Wayland, Eheart J.,
[312]
Yazu, Yusuke,
[122]
Valocchi, Albert J.,
[272]
Werner, H.,
[138]
Yazu, Y.,
[126]
Valous, Nektarios A.,
[175]
Weuster-Botz, Dirk,
[199]
Yee, Nigel,
[239]
Varmuza, K.,
[191]
White, Anna-Marie,
[174]
Yeh, Ch.-H.,
[330]
Vasanyi, I.,
[88]
Wiley, E. O.,
[210]
Yeh, W. W.,
[278, 281]
Vasara, Petri,
[127]
Willers, Jeffrey L.,
[52]
Yeh, William W.-G.,
[292]
Vavak, Frantisek,
[130]
Williams, D.,
[108]
Yin, J. Y.,
[42]
Vemuri, V. Rao,
[314, 326]
Wilm´ anski, K.,
[131]
Yoon, J. H.,
[111]
Vesecky, John F.,
[315, 327]
Wilson, M.,
[135]
Yoshimi, M.,
[116]
Vidal, Bernard,
[28]
Wilson, Reginald H.,
[246]
Youbo, Lv,
[89]
Vilanova, X.,
[158]
Winson, M. K.,
[236]
Yu, J. J.,
[39]
Villani, M.,
[117]
Winter, G.,
[288]
Yuki, Hiroshi,
[271]
Vinaixa, M.,
[158]
Wolf, Christian,
[315, 327]
Yulianti, Jeanne S.,
[276]
Wagner, B. J.,
[274]
Worgan, Hilary,
[100]
Yuming, Chen,
[53]
Walker, David T.,
[327]
Wu, Di,
[167, 43, 173]
Zaera, N.,
[211]
Walker, Scott,
[218]
Wu, D.,
[37]
Wallace, David R.,
Zhang, Changli,
[41]
[113]
Wu, JaLing,
[264]
Walski, Thomas M.,
Zhang, Y.,
[284]
[290, 294]
Wu, Z. Y.,
[285, 287, 290]
Walters, G. A.,
[358]
Zhao, Jun,
[349, 348, 353]
W¨ ulfert, F.,
[266]
Zhao, Yingshi,
[27]
Xiao, Qiming,
[34, 36]
Zheng, Bo,
[254]
Zheng, Chunmiao,
[338, 354]
Zheng, C.,
[139]
Zhou, Xia,
[27]
Zhu, D. Z.,
[42]
Zhu, Dazhou,
[244]
Zongyuan, Mao,
[337, 340]
Zude, M.,
[242]
Walters, Godfrey A.,
[317, 321, 331, 332, 341, 345, 346, 351]
Wan, Fanghao,
[34, 36]
Xiaobo, Zou,
[165]
Wandrey, C.,
[199]
Xie, Bingyan,
[34, 36]
Wang, Ching-Hung,
[62]
Xing, Juan,
[161, 245]
Wang, Feng-Sheng,
[204]
Xingyi, Huang,
[165]
Wang, Jia-Hua,
[40, 45]
Xiong, F. L.,
[65]
Wang, Mingguang,
[338, 354]
Xiong, Fan-Lun,
[334]
Wang, Ning,
[161]
Yabushita, Satoshi,
[289]
Wang, P. P.,
[139]
Yamamoto, N.,
[64]
Wang, Q. J.,
[120]
Yang, H. Q.,
[37]
total 359 articles by 834 different authors
20
4.7
Genetic algorithms in agriculture
Subject index
All subject keywords of the papers given by the editor of this bibliography are shown next.
Annual index
4.8
21
Annual index
The following table gives references to the contributions by the year of publishing.
1990,
[131, 370]
1991,
[234]
1992,
[133, 257, 258, 367, 368, 235, 218]
1993,
[146, 132, 81, 134, 206, 369, 82]
2000,
[93, 263, 181, 264, 265, 147, 148, 219, 135, 236, 266, 136, 12, 267, 207, 268, 182, 183, 269, 13, 270, 271, 14, 15, 149, 272]
2001,
[273, 137, 274, 16, 275, 238, 276, 277, 278, 279, 138, 280, 94, 208, 281, 282, 17, 239, 18, 283, 284, 19, 20, 285, 286, 150, 287] [288, 139, 21, 151, 184, 185, 140, 95, 289, 96, 220, 240, 290]
1994,
[306, 307, 308, 50, 227, 101, 143, 260, 51, 309, 102, 52, 192, 103, 255, 228, 310, 311, 104]
2002,
1995,
[92, 53, 261, 54, 105, 106, 55, 229, 56, 312, 57, 107, 176, 313, 108, 314, 315, 316, 317, 318, 319]
2003,
[109, 58, 110, 59, 320, 60, 321, 61, 111, 62, 112, 230, 113, 114, 322, 115, 193, 211, 323, 177, 63, 116, 85, 64, 212, 324, 256, 325, 86, 326, 65, 327, 328, 130]
2004,
1996,
1997,
[194, 195, 329, 66, 330, 231, 331, 332, 67, 196, 117, 333, 334, 118, 197, 335, 213, 336, 337, 178, 338, 68, 232, 144, 119, 69, 145, 70, 120, 339, 198, 121, 71, 122, 199, 72, 340, 200, 73, 341]
1998,
[342, 201, 202, 179, 74, 343, 251, 344, 345, 75, 214, 346, 347, 123, 348, 349, 76, 124, 77, 350, 125, 203, 351, 352, 78, 353, 354, 355]
1999,
[356, 357, 358, 359, 360, 79, 87, 233, 204, 361, 362, 252, 363, 215, 216, 80, 205, 364, 180, 126, 127, 128, 365, 366, 217, 129]
[291, 292, 22, 259, 186, 23, 293, 221, 294, 295, 24, 97, 152] [262, 153, 84, 25, 154, 141, 187, 155, 156, 222]
2005,
[296, 188, 88, 297, 298, 157, 142, 299, 223, 26, 158, 237, 224, 159, 300, 27]
2006,
[98, 28, 253, 241, 301, 225, 160, 29, 161, 302, 99, 30, 226, 31, 83]
2007,
[303, 162, 189, 209, 32, 100, 33, 163, 210, 164, 190, 34, 242, 165, 243, 35, 36]
2008,
[304, 244, 91, 37, 38, 39, 40, 245, 41, 90]
2009,
[166, 42, 191, 167, 43, 246, 44, 45, 168, 46, 89, 247, 169, 305, 170, 248, 171, 47, 48, 254, 249, 172]
22
Genetic algorithms in agriculture
4.9
Geographical index
The following table gives references to the contributions by country.
• Australia: [369, 58, 323, 63, 120, 273, 279, 287, 209]
• Portugal: [188]
• Austria: [191]
• Romania: [95]
• Belgium: [32, 35]
• Russia: [255]
• Brazil: [336, 145, 347, 186, 84, 29, 164]
• Saudi Arabia: [293]
• Bulgaria: [202, 203]
• Singapore: [355]
• Canada: [113, 183, 276]
• Slovenia: [205, 302]
• China: [53, 65, 334, 337, 72, 340, 181, 219, 24, 27, 301, 34, 242, 165, 36, 244, 37, 39, 40, 41, 42, 167, 43, 45, 46, 89, 248, 47, 254, 173, 97]
• South Korea: [212, 333, 13, 282, 184, 38]
• Denmark: [114, 364, 155]
• Sweden: [150, 221]
• Finland: [235, 227, 228, 229, 230, 233, 127, 129, 96, 262, 141, 222, 142, 224, 226, 83]
• Switzerland: [169]
• France: [339, 251, 75, 12, 185, 295, 153, 28, 247, 171]
• Taiwan: [110, 62, 325, 330, 118, 144, 123, 204, 180, 264, 265, 291, 152, 90]
• Germany: [103, 92, 86, 178, 70, 199, 200, 124, 87, 361, 149, 138, 187]
• Thailand: [31, 305]
• Greece: [362, 17]
• The Czech Republic: [94]
• Hungary: [166]
• The Netherlands: [266, 297]
• India: [44]
• Turkey: [241, 189]
• Iran: [250]
• United Kingdom: [370, 368, 146, 132, 101, 192, 108, 317, 211, 177, 130, 331, 198, 341, 345, 346, 348, 349, 351, 353, 358, 79, 80, 236, 207, 182, 15, 238, 21, 151, 259, 25, 154, 157, 237, 300, 253, 100, 190, 246]
• Ireland: [170, 172, 174, 175] • Israel: [296, 304] • Italy: [104, 54, 117, 121, 214, 286] • Japan: [82, 51, 261, 55, 176, 112, 115, 193, 116, 85, 64, 197, 68, 69, 71, 122, 73, 76, 77, 78, 252, 215, 216, 126, 217, 270, 271, 208, 283, 19, 20, 289, 299]
• Spain: [288, 194, 195, 196, 343, 158, 162, 33, 163, 243]
• United States: [133, 257, 258, 367, 218, 81, 134, 308, 143, 260, 309, 102, 52, 105, 106, 56, 107, 314, 109, 111, 324, 256, 326, 327, 328, 329, 66, 231, 67, 338, 119, 342, 179, 344, 350, 125, 354, 359, 363, 366, 93, 263, 147, 148, 135, 267, 268, 137, 274, 278, 281, 284, 139, 292, 22, 298, 223, 159, 98, 225, 30, 303, 210, 245, 168, 48, 49]
206, 315, 335, 128, 277, 160,
• Marocco: [321, 332]
• New Zealand: [239, 220]
• Unknown country: [306, 307, 50, 310, 311, 312, 57, 313, 316, 318, 319, 320, 60, 322, 213, 232, 201, 352, 357, 360, 365, 136, 269, 272, 16, 275, 280, 18, 285, 140, 240, 290, 23, 294, 156, 88, 26, 161, 99, 249]
• Poland: [91]
• Yugoslavia: [356]
• Mexico: [59, 61, 74, 14]
Bibliography [1] John H. Holland. Genetic algorithms. Scientific American, 267(1):44–50, 1992. ga:Holland92a. [2] Jarmo T. Alander. An indexed bibliography of genetic algorithms: Years 1957-1993. Art of CAD Ltd., Vaasa (Finland), 1994. (over 3000 GA references). [3] David E. Goldberg, Kelsey Milman, and Christina Tidd. Genetic algorithms: A bibliography. IlliGAL Report 92008, University of Illinois at Urbana-Champaign, 1992. ga:Goldberg92f. [4] N. Saravanan and David B. Fogel. A bibliography of evolutionary computation & applications. Technical Report FAU-ME-93-100, Florida Atlantic University, Department of Mechanical Engineering, 1993. (ftp: //magenta.me.fau.edu/pub/ep-list/bib/EC-ref.ps.Z) ga:Fogel93c. [5] Thomas B¨ ack. Genetic algorithms, evolutionary programming, and evolutionary strategies bibliographic database entries. (personal communication) ga:Back93bib, 1993. [6] Thomas B¨ ack, Frank Hoffmeister, and Hans-Paul Schwefel. Applications of evolutionary algorithms. Technical Report SYS-2/92, University of Dortmund, Department of Computer Science, 1992. ga:Schwefel92d. [7] David L. Hull. Uncle Sam wants you. Science, 284(5417):1131–1133, 14. May 1999. [8] Leslie Lamport. LATEX: A Document Preparation System. User’s Guide and Reference manual. AddisonWesley Publishing Company, Reading, MA, 2 edition, 1994. [9] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Programming Language. AddisonWesley Publishing Company, Reading, MA, 1988. [10] Diane Barlow Close, Arnold D. Robbins, Paul H. Rubin, and Richard Stallman. The GAWK Manual. Cambridge, MA, 0.15 edition, April 1993. [11] Jarmo T. Alander. Indexed bibliography of genetic algorithms in biosciences. Report 94-1-BIO, University of Vaasa, Department of Information Technology and Production Economics, 1995. (ftp://ftp.uwasa. fics/report94-1/gaBIObib.pdf) gaBIObib. [12] Jean-Michel Roger and V´eronique Bellon-Maurel. Using genetic algorithms to select wavelengths in nearinfrared spectra: Application to sugar content prediction in cherries. Applied Spectroscopy, 54(9):1313–1320, September 2000. ga00aJMRoger. [13] Seong In Cho and Jae Hoon Lee. Autonomous speedsprayer using differential global positioning systems, genetic algorithm and fuzzy control. Journal of Agricultural Engineering Research, 76(2):111–119, June 2000. ga00aSeongInCho. [14] Victor S´ anchez-Cordero and Enrique Mart´ınez-Meyer. Museum specimen data predict crop damage by tropical rodents. Proceedings of the National Academy of Sciences of the United States of America, 97(13):7074– 7077, 20. June 2000. ga00aVSanchez-Cordero. [15] Zoe S. Davies, Richard J. Gilbert, Roger J. Merry, Douglas B. Kell, Michael K. Theodorou, and Gareth W. Griffith. Efficient improvement of silage additives by using genetic algorithms. Applied and Environmental Microbiology, 66(4):1435–1443, April 2000. ga00aZoeSDavies. [16] David G. Mayer. Evolutionary Algorithms and Agricultural Systems, volume 647 of The International Series in Engineering and Computer Science. Springer-Verlag, Berlin, 2001. †www /Google ga01aDGMayer. [17] Nick Sigrimis, Panos Antsaklis, and Peter P. Groumpos. Advances in control of agriculture and the environment. IEEE Control Systems Magazine, 21(5):8–12, October 2001. ga01aNSigrimis. [18] Pilar Montesinos, Emilio Camcho, and Seraf´ın Alvarez. Seasonal furrow irrigation model with genetic algorithms (OPTIMEC). Agricultural Water Management, 52(1):1–16, 12. December 2001. †www /Elsevier ga01aPMontesinos.
23
24
Genetic algorithms in agriculture
[19] Yasushi Hashimoto, Haruhiko Murase, Tetsuo Morimoto, and Toru Torii. Intelligent systems for agriculture in Japan. IEEE Control Systems Magazine, 21(5):71–85, October 2001. ga01aYasushiHashimoto. [20] Yoshio Makino. Selection of packaging conditions for shredded cabbage by genetic algorithms. J. Agric. Engng Res., 78(3):261–271, ? 2001. (www.idealibrary.com) ga01aYoshioMakino. [21] Derek R. Magee and Roger D. Boyle. Detecting lameness using ‘re-sampling condensation’ and ‘multistream cyclic hidden Markov models. Image and Vision Computing, 20(8):581–594, 1. June 2002. * www /ScienceDirect ga02aDRMagee. [22] Haibo Yao and Lei Tian. A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 41(6):1469–1478, June 2003. ga03aHaiboYao. [23] Joao Camargo Neto, George E. Meyer, David D. Jones, and Alvin J. Surkan. Adaptive image segmentation using a fuzzy neural network and genetic algorithm for weed detection. In ?, editor, Proceedings of the 2003 ASAE Annual Meeting, page paper number 033088, ?, ? 2003. ASABE. †ASABE ga03aJCNeto. [24] T. Morimoto, K. Tu, K. Hatou, and Y. Hashimoto. Dynamic optimization using neural networks and genetic algorithms for tomato cool storage to minimize water loss. Transactions of the ASAE, 46(4):1151–1159, ? 2003. †www /CAT.INIST ga03aTMorimoto. [25] D. J. Parsons and D. Te Beest. Optimising fungicide applications on winter wheat using genetic algorithms. Biosystems Engineering, 88(4):401–410, ? 2004. ga04aDJParsons. [26] J. P. de Moura Oliveira Coelho and J. B. Cunha. Greenhouse air temperature predictive control using the particle swarm optimisation algorithm. Computers and Electronics in Agriculture, 49(?):330–344, ? 2005. †[372] ga05aJPCoelho. [27] Zhenhua Liu, Yingshi Zhao, and Xia Zhou. The study of the combining finite element with genetic algorithms method for soil moisture. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’05), volume 6, pages 4489–4492, ?, 25.-29. July 2005. IEEE, Piscataway, NJ. ga05aZhenhuaLiu. [28] Christelle Reyn´es, Sabrina de Souza, Robert Sabatier, Gilles Figu`eres, and Bernard Vidal. Selection of discriminant wavelength intervals in NIR spectrometry with genetic algorithms. Journal of Chemometrics, 20(?):136–145, ? 2006. ga06aCReynes. [29] Jo˜ ao Camargo Neto, George E. Meyer, and David D. Jones. Individual leaf extractions from young canopy images using Gustafson-Kessel clustering and genetic algorithm. Computers and Electronics in Agriculture, 51(1-2):66–85, April 2006. †www /ACM ga06aJoaoCamargoNeto ⇒ http://portal.acm.org/citation. cfm?id=1669080. [30] Ramesh Gautam, Suranjan Panigrahi, and David Franzen. Neural network optimization of remotely sensed maize leaf nitrogen with a genetic algorithm and linear programming using five performance parameters. Biosystems Engineering, 95(3):359–370, ? 2006. ga06aRameshGautam. [31] Yann Chemin and Kiyoshi Honda. Spatiotemporal fusion of rice actual evapotranspiration with genetic algorithms and an agrahydrological model. IEEE Transactions on Geoscience and Remote Sensing, 44(11):3462– 3469, November 2006. ga06aYChemin. [32] Geert Craessaerts, Wouter Sayes, Bart Missotten, and Josse De Baerdemaeker. A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part I: Selection of relevant input variables for identification of sieve losses. Biosystems Engineering, 98(?):–, ? 2007. † ga07aGeertCraessaert. [33] J. M. Herrero, X. Blasco, M. Mart´ınez, C. Ramos, and J. Sanchis. Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms. Biosystems Engineering, 98(?):335–346, ? 2007. ga07aJMHerrero. [34] Yunsheng Wang, Bingyan Xie, Fanghao Wan, Qiming Xiao, and Liangying Dai. The potential geographic distribution of radopholus similis in China. Agricultural Sciences in China, 6(12):1444–1449, ? 2007. * www /Google ga07aYunshengWang. [35] Geert Craessaerts, Wouter Sayes, Bart Missotten, and Josse De Baerdemaeker. A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part II: Selection of relevant input variables for identification of material other than grain (MOG) content in the grain bin. Biosystems Engineering, 98(?):297–303, ? 2007. ga07bGeertCraessaert. [36] Yunsheng Wang, Bingyan Xie, Fanghao Wan, Qiming Xiao, and Liangying Dai. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15(4):365–372, ? 2007. (in Chinese) * www /Google ga07bYunshengWang.
Bibliography
25
[37] H. Q. Yang, Y. He, Y. M. Chen, P. Lin, and D. Wu. [3-D modeling of origin discrimination of fragrant mushrooms using visible/near intrared spectra]. Guang pu Xue yu Guang pu fen xi = Guang pu, 28(6):1232– 1236, June 2008. (in Chinese) * PubMed ga08aHQYang. [38] Jagdish C. Tewari, Vivechana Dixit, Byoung-Kwan Cho, and Kamal A. Malik. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least squares combined with fiber optic NIR spectroscopy. Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy, 71(3):1119–1127, 1. December 2008. ga08aJCTewari. [39] J. J. Yu, Y. He, and Y. D. Bao. [nondestructive test on predicting sugar content and valid acidity of mango by spectroscopic technology]. Guang pu Xue yu Guang pu fen xi = Guang pu, 28(12):2839–2842, December 2008. (in Chinese) * PubMed ga08aJJYu. [40] Jia-Hua Wang and Dong-Hai Han. [analysis of near intrared spectra of apple SSC by genetic algorithm optimization]. Guang pu Xue yu Guang pu fen xi = Guang pu, 28(10):2308–2311, November 2008. (in Chinese) * www /ResearchGATE ga08aJia-HuaWang. [41] Junlong Fang, Changli Zhang, and Shuwen Wang. Application of genetic algorithm (GA) trained artificial neural network to identify tomatoes with physiological diseases. In ?, editor, Computer and Computer Technologies in Agriculture, Vol. II, volume 259 of IFIP, pages 1103–1111, ?, ? 2008. Springer-Verlag, Heidelberg. †www /Springer ga08aJunlongFang. [42] B. L. Shi, Z. S. Qing, B. P. Ji, Z. H. Tu, D. Z. Zhu, and J. Y. Yin. [using GA-dOSC method to eliminate interference of peel with prediction of apple firmness based on near infrared diffuse reflection spectra]. Guang pu Xue yu Guang pu fen xi = Guang pu, 29(3):655–670, March 2009. * PubMed ga09aBLShi. [43] Fang Cao, Di Wu, and Yong He. Soluble solids content and pH prediction and varieties discrimination of grapes based on visible-near infrared spectroscopy. Computers and Electronics in Agriculture, ?(?):?, ? 2009. (in press) ga09aFangCao. [44] Herry Suhardiyanto, Chusnul Arif, and Budi I. Setiawan. Optimization of EC values of nutrient solution for tomato fruit quality in hydroponics system using artificial neural network and genetic algorithms. ITB Journal of Science, 41(1):38–49, ? 2009. ga09aHSuhardiyanto. [45] Jia-Hua Wang, Lu Pan, Qian Sun, Peng-Fei Li, and Dong-Hai Han. Nondestructive measurement of SSC in Western pear using genetic algorithms. Guang pu Xue yu Guang pu fen xi = Guang pu, 29(3):678–681, April 2009. * www /ResearchGATE ga09aJia-HuaWang. [46] Jiansong Yao, Haiqing Yang, and Yong He. Calibrating total acidity of tomato products using GA and Vis/NIR spectroscopy. In Proceedings of the 7th Asian Control Conference, volume ?, pages 1697–1700, Hong Kong (China), 27.-29. August 2009. IEEE, Piscataway, NJ. ga09aJiansongYao. [47] Y. M. Chen, P. Lin, and Y. He. [study on discrimination of producing area of olive oil using near infrared spectra based on genetic algorithms]. Guang pu Xue yu Guang pu fen xi = Guang pu, 29(3):671–674, April 2009. * PubMed ga09aYMChen. [48] Yanbo Huang, Yubin Lan, Steven J. Thomson, Alex Fang, Wesley C. Hoffmann, and Ronald E. Lacey. Technical development and applications of soft computing in agricultural and biological engineering. In ?, editor, Proceedings of the ASABE, volume ?, pages –, Reno, NV, 21.-24. June 2009. ASABE. * www /TKK ga09aYanboHuang ⇒ http://asae.frymulti.com/abstract.asp?aid=27010&t=2. [49] Yanbo Huang, Yubin Lan, Steven J. Thomson, Alex Fang, Wesley C. Hoffmann, and Ronald E. Lacey. Development of soft computing and applications in agricultural and biological engineering. Computers and Electronics in Agriculture, 71(2):107–127, May 2010. ga10aYanboHuang. [50] A. M. Hassanli and Graeme C. Dandy. Optimal layout model for pressure irrigation systems using genetic algorithms. Research Report R126, 1994. †Lazauskas/bib ga94aHassanli. [51] N. Noguchi and H. Terao. Creation of optimal route for agricultural vehicle and construction machinery by using a genetic algorithm. Transactions of the Society of Instrument and Control Engineers (Japan), 30(1):64–71, January 1994. (in Japanese) * CCA 40369/94 ga94aNoguchi. [52] Ronaldo Antonio Sequeira, Richard L. Olson, Jeffrey L. Willers, and J. M. McKinion. Automating the parametrization of mathematical models using genetic algorithms. Comput. Electron. Agric., 11(2-3):265– 290, November 1994. * (CCA298/95 EI M057088/95 ga94aSequeira. [53] Chen Yuming, Ding Jing, and Xiong Fanlun. Genetic algorithms for irrigation optimization. In Proceedings of the Artificial Intelligence in Agriculture, pages 145–150, Wegeningen (Netherlands), 29.-31. May 1995. Elsevier, Oxford, UK. †CCA15446/98 ga95aChYuming.
26
Genetic algorithms in agriculture
[54] Gianni Jacucci, Mark Foy, and Carl Uhrik. Genetic algorithms in the role of intelligent regional adaptation agents for agricultural support systems. In D. W. Pearson, N. C. Steele, and R. F. Albrecht, editors, Artificial Neural Nets and Genetic Algorithms, pages 428–431, Al`es (France), 19.-21. April 1995. SpringerVerlag, Wien New York. ga95aJacucci. [55] T. Morimoto, T. Torii, and Y. Hashimoto. Optimal control of physiological processes of plants in a green plant factory. Control Eng. Pract., 3(4):505–511, April 1995. * EI M116831/95 ga95aMorimoto. [56] Sheng-Feng Kuo. Decision support for irrigated project planning using a genetic algorithm. PhD thesis, Utah State University, 1995. * DAI Vol 56 No 9 ga95aS-FKuo. [57] Angus R. Simpson. New techniques for optimising the design and scheduling for irrigation systems. In ?, editor, ?, volume ?, page ?, Bundaberg, Queensland, Australia, 10. March 1995. ? †Lazauskas/bib ga95aSimpson. [58] B. Horton. A method of using a genetic algorithm to examine the optimum structure of the Australian sheep breeding industry: Open-nucleus breeding systems, MOET and AI. Australian Journal of Experimental Agriculture, 36(3):249–258, 1996. †BAb15441 ga96aBHorton. [59] I. Lopez Cruz and J. Goddard. Greenhouse climate control by evolutionary computation: genetic algorithms and evolutionary programs. In ?, editor, Proceedings of the Sixth International Conference on Computers in Agriculture, volume ?, pages 892–898, Cancun, Mexico, 11.-14. June 1996. American Soc. Agric. Eng, St. Joseph, MI (USA). †CCA96121/96 ga96aCruz. [60] Graeme C. Dandy, Angus R. Simpson, and Laurence J. Murphy. Genetic algorithm design of piped irregation systems. In ?, editor, ?, volume ?, page ?, Anaheim, CA, 22.-28. June 1996. ASCE, Anaheim, California. †Lazauskas/bib ga96aGraDandy. [61] I. Lopez and J. Goddard. Greenhouse climate control by evolutionary computation - genetic algorithms and evolutionary programs. In ?, editor, Proceedings of the Sixth International Conference on Computers in Agriculture, volume ?, pages 892–898, Cancun, Mexico, June 1996. Amer. Soc. Agricultural Engineers, St. Joseph. †P76009 ga96aILopez. [62] Mon-Fong Jiang, Ching-Hung Wang, and Shian-Shyong Tseng. Developing a sugar-cane breeding assistant system by a hybrid adaptive learning technique. In Proceedings of the 1996 IEEE International Conference on Systems, Man and Cybernetics, volume 2, pages 1196–1201, Beijing, China, 14.-17. October 1996. IEEE, Piscataway, NJ. †EI M038797/97 ga96aJiang. [63] R. Stonier and D. Sturgess. Genetic learning of the irrigation cycle for water flow in cropped soils. In ?, editor, Proceedings of the First Asia-Pacific Conference Simulated Evolution and Learning, pages 89–96, Taejon (Korea), 9.-12. November 1996. Springer-Verlag, Berlin (Germany). †CCA88712/97 ga96aStonier. [64] N. Yamamoto and T. Hoshi. Study on extracting the adaptive agricultural development area using genetic algorithm with complex PTYPE. Transactions of the Institute of Electronics, Information and Communication Engineers A (Japan), J79-A(3):650–657, March 1996. (in Japanese) †EEA 48429/96 ga96aYamamoto. [65] Y. M. Chen and F. L. Xiong. Improved genetic algorithms approach in management of irrigation networks system. In Y. M. Chae J. K. Lee, J. Liebowitz, editor, Proceedings of the Third World Congress on Expert Systems, volume I and II, page ?, Seoul (South Korea), 5.-9. February 1996. Cognizant Communications Corp., Elmsford. †P69301 ga96bYMChen. [66] Necati Canpolat. Optimization of seasonal irrigation scheduling by genetic algorithms (adaptive penalty). PhD thesis, Oregon State University, 1997. (UMI No. DA9734013) †ChA 345828p/97 ga97aCanpolat. [67] D. S. Mullen and R. M. Butler. Genetic algorithms in optimization of adjacency constrained timber harvest scheduling problems. In Proceedings of the Second Annual Conference, page 379, Stanford, CA, 13.-16. July 1997. Morgan Kaufmann Publishers, San Francisco, CA (USA). †CCA72454/98 ga97aDSMullen. [68] Tetsuo Morimoto, Josse De Baerdemaeker, and Yasushi Hashimoto. An intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithms. Computers and Electronics in Agriculture, 18(2-3):205–224, 1997. †BA126752 ga97aMorimoto. [69] N. Noguchi and H. Terao. Path planning of an agricultural mobile robot by neural network and genetic algorithm. Comput. Electron. Agric. (Netherlands), 18(2-3):187–204, 1997. †CCA80738/97 ga97aNoguchi. [70] Hartmut Pohlheim and Adolf Heißner. Optimal control of greenhouse climate using a short time climate model and evolutionary algorithms. In Proceedings of the Mathematics and Control Applications in Agriculture and Horticulture, pages 113–118, Hanover, Germany, 28. sept- 2. oct. ? 1997. Elsevier Science, Oxford (UK). †CCA54669/99 ga97aPohlheim.
Bibliography
27
[71] Tatsumi Furuya, Takaaki Satake, and Yoshlyuki Minami. Evolutionary programming for mix design. Computers and Electronics in Agriculture, 18(2):129–135, 1997. †BA121623 ga97aTFuruya. [72] Yu-Ming Chen. Management of water resources using improved genetic algorithms. Comput. Electron. Agric. (Netherlands), 18(2-3):117–127, 1997. †CCA86640/97 ga97aYu-MChen. [73] T. Morimoto, W. Purwanto, J. Suzuki, and Y. Hashimoto. Optimization of heat treatment for fruit during storage using neural networks and genetic algorithms. Comput. Electron. Agric. (Netherlands), 19(1):87–101, 1997. †CCA19870/98 ga97bMorimoto. [74] C. E. Mariano. Optimal-design of water distribution networks using genetic algorithms. In Computers in Agriculture, pages 146–158, 1998. †P84038 ga98aCEMariano. [75] E. Jallas, R. Sequeira, and J. E. Boggess. Evolutionary algorithms for knowledge discovery and model-based decision support [cotton crop irrigation]. In Proceedings of the 3rd IFAC/CIGR Workshop on Artificial Intelligence in Agriculture, pages 115–120, Makuhari, Japan, 24.-26. April 1998. Elsevier Science Ltd, Kidlington, UK. †CCA60185/99 ga98aEJallas. [76] K. Kurata and Y. Iida. Genetic-algorithm-based machine learning for crop management. In Proceedings of the 3rd IFAC/CIGR Workshop on Artificial Intelligence in Agriculture, pages 109–114, Makuhari, Japan, 24.-26. April 1998. Elsevier Science Ltd. (Kidlington, UK). †CCA60184/99 ga98aKKurata. [77] M. Hirafuji, S. Hagan, K. Otobe, and K. Tanaka. A global optimization algorithm for nonlinear biological systems using a hierarchical model of evolution and consciousness. In Proceedings of the 3rd IFAC/CIGR Workshop on Artificial Intelligence in Agriculture, pages 121–125, Makuhari, Japan, 24.-26. April 1998. Elsevier Science Ltd, Kidlington (UK). †CCA54172/99 ga98aMHirafuji. [78] T. Morimoto and Y. Hashimoto. An intelligent control technique based on fuzzy controls, neural networks and genetic algorithms for greenhouse automation. In Proceedings of the 3rd IFAC/CIGR Workshop on Artificial Intelligence in Agriculture, pages 61–66, Makuhari, Japan, 24.-26. April 1998. Elsevier Science Ltd, Kidlington (UK). †CCA60179/99 ga98aTMorimoto. [79] H. Hagras, V. Callaghan, M. Colley, and M. Carr-West. A fuzzy-genetic based embedded-agent approach to learning and control in agricultural autonomuos vehicles. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation, volume 2, pages 1005–1010, Detroit, MI (USA), 10.-15. May 1999. IEEE, Piscataway, NJ. †CCA79131/99 ga99aHHagras. [80] K. B. Matthews, A. R. Sibbald, and S. Craw. Implementation of a spatial decision support system for rural land use planning: integrating geographic information system and environmental models with search and optimisation algorithms. Comput. Electron. Agric. (Netherlands), 23(1):9–26, 1999. †CCA93980/99 ga99aMatthews. [81] William F. Punch, III, Erik D. Goodman, Min Pei, Lai Chia-Shun, P. Hovland, and R. Enbody. Further research on feature selection and classification using genetic algorithms. In Forrest [373], pages 557–564. ga:Enbody93a. [82] T. Morimoto, T. Tekeuchi, and Y. Hashimoto. Growth optimization of plant by means of the hybrid system of genetic algorithm and neural network. In IJCNN’93-NAGOYA Proceedings of 1993 International Joint Conference on Neural Networks, volume 3, pages 2979–2982, Nagoya (Japan), 25.-29. October 1993. IEEE. ga:TMorimoto93a. [83] Jarmo T. Alander. Indexed bibliography of genetic algorithms in agriculture. Report 94-1-AGRO, University of Vaasa, Department of Electrical Engineering and Automation, 2006. (ftp://ftp.uwasa.fics/ report94-1/gaAGRObib.pdf) gaAGRObib. [84] Bernardo Bastos and Washington Braga. Increasing greenhouse efficiency due to tube sizing and location. In ?, editor, Proceedings of the 10o Brazilian Congress of Thermal Sciences and Engineering - ENCIT 2004, volume ?, pages CIT04–0587, Rio de Janeiro (Brazil), 29. November- 3. December 2004. Brazilian Society of Mechanical Sciences and Engineering - ABCM. ga04aBernardoBastos. [85] T. Morimoto and Y. Hashimoto. Optimal control of plnt growth in hydroponics using neural networks and genetic algorithms. In ?, editor, Proceedings of the 2nd IFAC/ISHS Workshop: Mathematical & Control Applications in Agriculture & Horticulture, volume ?, page ?, ?, ? 1996. International Society for Horticultural Science. * www ga96aTMorimoto. [86] Hartmut Pohlheim and Adolf Heißner. Optimal control of greenhouse climate using genetic algorithms. In Oˇsmera [376], pages 112–119. ga96bPohlheim. [87] Hartmut Pohlheim and Adolf Heißner. Optimal control of greenhouse climate using real-world weather data and evolutionary algorithms. In Wolfgang Banzhaf, editor, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’99, pages 1672–1677, ?, ? 1999. Morgan Kaufmann, San Francisco, CA. ga99aHPohlheim.
28
Genetic algorithms in agriculture
[88] B. Gal, I. Vasanyi, and G. Kozmann. A novel artificial intelligence method for weekly dietary menu planning. Methods of Information in Medicine, 44(1):655–664, ? 2005. * www /TKK).*abstract onl ga05aBGal. [89] Lv Youbo. Multi-objective nutritional diet optimization based on quantum genetic algorithm. In ?, editor, Proceedings of the 2009 Fifth International Conference on Natural Computation, volume ?, page ?, Tianjian (China), 14.-16. August 2009. ? * Google ga09aLvYoubo. [90] Li Chen, Chih-Hung Tan, Shuh-Ji Kao, and Tai-Sheng Wang. Improvement of remote monitoring on water quality in subtropical reservoir by incorporating grammatical evolution with parallel genetic algorithms into satellite imagery. Water Research, 42(?):296–306, ? 2008. ga08aLiChen. [91] Grzegorz Ewald, Wojciech Kurek, and Mietek A. Brdys. Grid implementation of a parallel multiobjective genetic algorithm for optimized allocation of chlorination stations in drinking water distribution system: Chojnice case study. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 38(4):497–509, July 2008. ga08aGEwald. [92] E. Arnold and H. Linke. Application of genetic algorithm for optimal control of drinking water supply systems with pumps. Automatisierungstechnik, 43(3):142–147, 1995. * CCA 53737/95 ga95aArnold. [93] David P. Ahlfeld and Ann E. Mulligan. chapter 8.3.3 Nongradient solution methods, pages 167–169. Academic Press, San Diego, CA, 2000. ga00aAhlfeld. [94] J. Roupec, Pavel Oˇsmera, and Radek Matouˇsek. The behavior of genetic algorithms in dynamic environment. In Matouˇsek Radek and Oˇsmera Pavel, editors, 7th International Conference on Soft Computing, Mendel 2001, pages 84–90, Brno, Czech Republic, 6.- 8.June 2001. Brno University of Technology. ga01aJRoupec. [95] Maria Popa, Moise Achim, Maria Jitaru, and Ioan Ileanˇ a. Study regarding the metabolism of heavy metals in the organism of children in an intense polluted area. pages 57–61, 2002. ga02aMPopa. [96] Mikko Ilvonen. VALMA-annoslaskentamallin rajoitettu optimointi geneettisell¨ a algoritmilla [Constrained optimization of the VALMA dose assessment model by a genetic algorithm]. Licentiate thesis, Helsinki University of Technology, 2002. †www /TKK ga02aMikkoIlvonen. [97] Weizhen Lu, H. Y. Fan, and S. M. Lo. Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong. NeuroComputing, 51(?):387–400, ? 2003. †Wenjian Wang ga03aWeizhenLu. [98] Ahmed Kalafallah and Khaled El-Rayes. Optimizing airport construction site layouts to minimize wildlife hazards. Journal of Management in Engineering, 22(4):176–185, October 2006. ga06aAKalafallah. [99] P. Somasundaram, R. Lakshmiramanan, and K. Kuppusamy. New approach with evolutionary programming algorithm to emission constrained economic dispatch. International Journal of Power and Energy Systems, 26(3):?, ? 2006. †Google ga06aPSomasundaram. [100] Geoffrey N. Elliot, Hilary Worgan, David Broadhurst, John Draper, and John Scullion. Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biology & Biochemistry, 39(?):2888–2896, ? 2007. ga07aGeoffreyNElliot. [101] Jason Kingdon and Laura Dekker. Development needs for diverse genetic algorithm design. In ?, editor, IEE Computing and Control Division Colloquium on ’Applications of Genetic Algorithms’, volume Digest No. 1994/067, pages 3/1–3/11, London, 15. March 1994. IEE, London. * EI 164427/94 ga94aKingdon. [102] Brian J. Ritzel, J. Wayland Eheart, and S. Ranjithan. Using genetic algorithms to solve a multiple objective groundwater pollution containment problem. Water Resources Research, 30(5):1589–1603, May 1994. ga94aRitzel. [103] K. Tout, J. Ribeiro-Filho, Bernard Mignot, and Niba Idlebi. A cross-platform parallel genetic algorithm programming environment. In ?, editor, Proceedings of the 1994 World Transputer Congress, Transputer Applications and Systems ’94, pages 79–90, Como (Italy), 5.-7. September 1994. IOS Press, Amsterdam. * CCA 40639/95 ga94aTout. [104] Jos´e L. Ribeiro Filho, Philip C. Treleaven, and Cesare Alippi. Genetic-algorithm programming environments. Computer, 27(6):28–45, June 1994. ga94cRibeiroFilho. [105] David St. John and Scott Samuelsen. Optimal, active control of oxides of nitrogen (NOx ) emissions from a natural gas-fired burner using a simple genetic algorithm. In Proceedings of the 4th IEEE Conference on Control Applications, pages 673–678, New York, 28.-29. September 1995. IEEE, New York. ga95aJohn. [106] Leah Lucille Rogers, Farid U. Dowla, and Virginia M. Johnson. Optimal field-scale groundwater remediation using neural networks and genetic algorithm. Environmental Science & Technology, 29(5):1145–1156, May 1995. ga95aLLRogers.
Bibliography
29
[107] C. L. Huang and A. S. Mayer. Dynamic optimal-control for groundwater remediation management using genetic algorithms. In K. H. Jensen B. J. Wagner, T. H. Illangasekare, editor, Proceedings of the Models for Assessing and Monitoring Groundwater Quality, page ?, Boulder, CO, 2.-14. July 1995. Int. Assoc. Hydrological Sciences, Wallingford. †P67235 ga95bCLHuang. [108] Yong-Hua Song, F. Li, R. Morgan, and D. Williams. Environmentally constrained electric power dispatch with genetic algorithms. In ICEC’95 [374], pages 17–20. †prog. ga95bSong. [109] M. M. Aral and J. Guan. Optimal groundwater remediation design using differential genetic algorithm. In A. A. Aldama, J. Aparicio, C. A. Brebbia, W. G. Gray, I. Herrera, and G. F. Pinder, editors, Proceedings of the Computational Methods in Water Resources XI, volume 1, page ?, Cancun, Mexico, July 1996. Computational Mechanics Publications Ltd, Southampton. †P72653 ga96aAral. [110] Ni-Bin Chang and H. W. Chen. The application of genetic algorithm and nonlinear fuzzy programming for water pollution control in a river basin. In Proceedings of the 1996 Asian Fuzzy Systems and Information Processing, pages 224–229, Kenting, Taiwan, 11.-14. December 1996. IEEE, New York, NY. †CCA35011/97 ga96aChang. [111] J. H. Yoon and C. A. Shoemaker. Applications of salqr and evolutionary algorithms to optimization of graundwater bioremediation. In A. A. Aldama, J. Aparicio, C. A. Brebbia, W. G. Gray, I. Herrera, and G. F. Pinder, editors, Proceedings of the Computational Methods in Water Resources XI, volume 1, page ?, Cancun, Mexico, July 1996. Computational Mechanics Publications Ltd. Southampton. †P72653 ga96aJHYoon. [112] B. Kermanshahi, H. Okamura, T. Moriyama, and K. Takahashi. Genetic algorithm for economic load dispatch: coordinating economy and environment objectives. In ?, editor, Proceedings of the International Conference on Electrical Engineering, volume 2, pages 970–974, Beijing (China), 12.-15. August 1996. Int. Acad. Publishers, Beijing (China). †CCA16405/98 ga96aKermanshahi. [113] Lily H. Shu, David R. Wallace, and Woodie C. Flowers. Probabilistic methods in life-cycle design. In Proceedings of the 1996 IEEE International Symposium on Electronics and the Environment, pages 7–12, Dallas, TX, 6.-8. May 1996. IEEE, Piscataway, NJ. †EI M148719/96 ga96aLHShu. [114] Brian Mayoh. Artificial life and pollution control: Explorations of a genetic algorithm system on the highly parallel Connection Machine. In ?, editor, ?, volume 1181 of Lecture Notes in Computer Science, pages 68–79, ?, ? 1996. Springer Verlag, Berlin. ga96aMayoh. [115] Naoki Mori, Hajime Kita, and Yoshikazu Nishikawa. Adaption to a changing environment by means of the thermodynamical genetic algorithm. In Voigt et al. [377], pages 513–522. ga96aMori. [116] K. S. Swarup, M. Yoshimi, S. Shimano, and Y. Izui. Genetic algorithm approach to environmental constrained optimal economic dispatch. Eng. Intell. Syst. Electr. Eng. Commun. (UK), 4(1):11–23, 1996. †EEA70654/96 ga96aSwarup. [117] S. DiGregorio, R. Serra, and M. Villani. Environmental applications of genetic algorithms. page 310. [118] H. W. Chen and Ni-Bin Chang. Water-pollution control in the river basin by fuzzy genetic algorithmbased multiobjective programming modeling. Water Science and Technology, 37(8):55–65, 1997. †P80743 ga97aHWChen. [119] Jean-Philippe Nicot, Deane C. McKinney, and Gary A. Pope. Inverse modeling of field tracer data to characterize DNAPL contamination. In Proceedings of the 1997 24th Annual Water Resources Planning and Management Conference, pages 420–425, Houston, TX, 6.-9. April 1997. ASCE, New York, NY. †EI M097613/97 ga97aNicot. [120] Q. J. Wang. Using genetic algorithms to optimise model parameters. Environ. Model. Softw. (UK), 12(1):27– 34, 1997. †CCA106541/97 ga97aQJWang. [121] Dipti Srinivasan and Andrea G. B. Tettamanzi. An evolutionary algorithm for evaluation of emission compliance options in view of the Clean Air Act Amendments. IEEE Transactions on Power Systems, 12(1):336–341, February 1997. (Proceedings of the 1996 IEEE/PES Winter Meeting, Jan. 21.-25. 1996, Baltimore, MD) ga97aSrinivasan. [122] Toshihiko Takeuchi, Yusuke Yazu, and Akiyuki Sakuma. Integrated environmental management process applying genetic algorithm. In Proceedings of the 14th International Conference on Production Research, volume 2, pages 944–947, Osaka, Japan, 4.-8. August 1997. Osaka Institute of Technology & Setsunan University. † ga97aTakeuchi. [123] H. W. Chen and Ni-Bin Chang. Water pollution control in the river basin by fuzzy genetic algorithmbased multiobjective programming modeling. Water Sci. Technol., 37(8):55–63, ? 1998. †ChA 113085g/98 ga98aHWChen.
30
Genetic algorithms in agriculture
[124] M. Haupt. Evolutionary optimization of plastics processing and environmental engineering. In Proceedings of the Computational Intelligence: Industrial Application on Neural Networks, Evolutionary Algorithms and Fuzzy Control, volume 1381, pages 155–180, Berlin (Germany), 3.-4. March 1998. Verlag GMBH, Dusseldorf. †P80878 ga98aMHaupt. [125] Ann E. Mulligan and Linfield C. Brown. Genetic algorithms for calibrating water quality models. J. Environ. Eng. (Reston, Va.), 124(3):202–211, 1998. †ChA128:171782x ga98aMulligan. [126] T. Takeuchi, Y. Yazu, and A. Sakuma. Integrated environmental management process applying genetic algorithm. Int. J. Prod. Econ. (Netherlands), 60-61:229–234, 1999. †CCA59780/99 ga99aTTakeuchi. [127] Petri Vasara. Environmental benchmarking: A framework for environmental assessment. PhD thesis, Helsinki University of Technology, 1999. * TKKpaa ga99aVasara. [128] W. Liles and K. De Jong. The usefulness of tag bits in changing environments. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 2054–2060, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77260/99 ga99aWLiles. [129] Ari S. Nissinen, Heikki Hy¨ otyniemi, and Heikki N. Koivo. Classification of radiation spectra using map of linear classifiers. In ?, editor, Proceedings of the International Conference on Computational Intelligence for Modelling Control and Automation, volume ?, pages 128–133, Vienna (Austria), 17.-19. February 1999. IOS Press BV, Netherlands. ga99dAriNissinen. [130] Frantisek Vavak, Terence C. Fogarty, and Ken Jukes. A genetic algorithm with variable range of local search for tracking changing environments. In Voigt et al. [377], pages 376–385. ga9baVavak. [131] K. Wilm´ anski and A. N. van Breemen. Competitive adsorption of trichloroethylene and humic substances from groundwater on activated carbon. Water Research, 24(6):773–779, 1990. †BackBib ga:Breemen90a. [132] Hugh M. Cartwright and Stephen P. Harris. Analysis of the distribution of airborne pollution using genetic algorithms. Atmospheric Environment Part A General Topics, 27A(12):1783–1791, August 1993. ga:Cartwright93b. [133] John J. Grefenstette. Genetic algorithms for changing environments. In M¨ anner and Manderick [378], pages 137–144. ga:Grefenstette92b. [134] M. Heidari and P. C. Heigold. Determination of hydraulic conductivity tensor using a nonlinear least squares estimator. Water Resources Bulletin, 29(3):415–424, June 1993. ga:Heidari93a. [135] Barry K. Lavine, J. Ritter, Anthony J. Moores, M. Wilson, Abdullah Faruque, and Howard T. Mayfield. Source identification of underground fuel spills by solid-phase microextraction/high-resolution gas chromatography/genetic algorithms. Anal. Chem., 72(2):423–431, 15. January 2000. * PubMed10658340 ga00aGKLavine. [136] J. Bryan Smalley, Barbara S. Minsker, and David E. Goldberg. Risk-based in situ bioremediation design using a noisy genetic algorithm. Water Resources Research, 36(10):3043–3052, November 2000. †NASA ADS ga00aJBSmalley. [137] Barry K. Lavine, D. Brzozowski, Anthony J. Moores, C. E. Davidson, and Howard T. Mayfield. Genetic algorithm for fuel spill identification. Analytica Chimica Acta, 437(2):233–246, 27. June 2001. ga01aBarryKLavine. [138] Ingrid M. Schleiter, M. Obach, D. Borchardt, and H. Werner. Bioindication of chemical and hydromorphological habitat characteristics with benthic macro-invertebrates based on artificial neura networks. Aquatic Ecology, 35(2):147–158, June 2001. ga01aIMSchleiter. [139] C. Zheng and P. P. Wang. Remediation system design optimization: field demonstration at the Umatilla Army Deport. In ?, editor, American Geophysical Union, Spring Meeting 2002, volume ?, page ?, Washington, DC, 28.-31. May 2002. American Geophysical Union. †NASA ADS ga02aCZheng. [140] Mark Erickson, Alex Mayer, and Jeffrey Horn. Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA). Advances in Water Resources, 25(1):51–65, January 2002. †www /Elsevier ga02aMErickson. [141] Harri Niska, Teri Hiltunen, Ari Karppinen, Juhani Ruuskanen, and Mikko Kolehmainen. Evolving the neural network model for forecasting air pollution time series. Engineering Applications of Artificial Intelligence, 17(?):159–167, ? 2004. ga04aHarriNiska. [142] Harri Niska, Minna Rantam¨ aki, Teri Hiltunen, Ari Karppinen, Jaakko Kukkonen, Juhani Ruuskanen, and Mikko Kolehmainen. Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment, 39(?):6524–6536, ? 2005. ga05aHarriNiska.
Bibliography
31
[143] Deane C. McKinney, Gregory B. Gates, and Min-Der Lin. Aquifer remediation design: nonlinear programming and genetic algorithms. In ?, editor, Proceedings of the 21st Annual Conference on Water Policy and Management, pages 254–257, Denver, CO, 23.-26. May 1994. ASCE, New York. * EI M117155/95 ga94aMcKinney. [144] N. B. Chang and H. W. Chen. The application of fuzzy interval genetic algorithm for waterpollution control in the river basin. In Proceedings of the First International Conference on Operations and Quantitative Management, volume 1-2, pages 653–660, Jaipur, India, 5.-8. January 1997. Indiana University Northwest, Division Business & Economics. †P82171 ga97aNBChang. [145] P. A. D. Junior. Air-pollution monitoring using genetic algorithm, fuzzy-logic and neural networks. In Proceedings of the Management and Control of Production and Logistics, volume 1-2, pages 617–620, Cambinas, Brazil, 31. aug- 3. sep ? 1997. Elsevier Science Publ B V, Amsterdam. †P82958 ga97aPAJunior. [146] Hugh M. Cartwright and Stephen P. Harris. The application of genetic algorithm to two-dimensional strings: The source appointment problem. In Forrest [373], page 631. ga:Cartwright93a. [147] C. E. Henderson, W. D. Potter, R. W. McClendon, and G. Hoogenboom. Predicting aflatoxin contamination in peanuts: a genetic algorithm/neural network approach. Applied Intelligence, 12(3):183–192, May-June 2000. * www /ACM ga00aCEHenderson ⇒ http://portal.acm.org/citation.cfm?id=590912. [148] Daniel Guyer and Xiukun Yang. Use of genetic artificial neural networks and spectral imaging for defect detection on cherries. Computers and Electronics in Agriculture, 29(?):179–194, ? 2000. ga00aDanielGuyer. [149] Kurt Jetter, Uwe Depczynski, K. Molt, and A. Niem¨ oller. Principles and applications of wavelet transformation to chemometrics. Analytica Chimica Acta, 420(?):169–180, ? 2000. ga00bDepczynski. [150] Lucia Ballerini, Anders H¨ ogberg, Kerstin Lundstr¨ om, and Gunilla Borgefors. Color image analysis technique for measuring of fat in meat: an application for the meat industry. In Martin A. Hunt, editor, Machine Vision Applications in Industrial Inspection IX, volume SPIE-4301, pages 113–, San Jose, CA, 22. January 2001. The International Society for Optical Engineering, Bellingham, WA. * www /Google ga01bLuciaBallerini. [151] David I. Ellis, David Broadhurst, Douglas B. Kell, Jem J. Rowland, and Royston Goodacre. Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Applied and Environmental Microbiology, 68(6):2822–2828, June 2002. ga02aDavidIEllis. [152] Wen-Shin Lin. The Study on the Application of Bilinear Model Using Genetic Algorithms. PhD thesis, National Chung Hsing University, 2003. * www /Google scholar ga03aWen-ShinLin ⇒ http://etds.ncl. edu.tw/theabs/site/sh/detail_result.jsp?id=091NCHU0417027. [153] A. Olmos, I. C. Trelea, I. Polign´e, A. Collignan, B. Broyart, and G. Trystram. Optimal operating conditions calculation for a pork meat dehtdration-impregnation-soaking process. Lebensm.-Wiss. u.-Technol., 37(?):763–770, ? 2004. ga04aAOlmos. [154] David I. Ellis, David Broadhurst, and Royston Goodacre. Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning. Analytica Chimica Acta, 514(?):193–201, ? 2004. ga04aDavidEllis. [155] Riccardo Leardi and Lars Nørgaard. Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions. Journal of Chemometrics, 18(?):486–497, ? 2004. ga04aRLeardi. [156] R. P. Cogdill, C. R. Hurburgh, Jr., G. R. Rippke, S. J. Bajic, R. W. Jones, J. F. McClelland, T. C. Jensen, and J. Liu. Single-kernel maize analysis by near-infrared multispectral imaging. Transactions of the ASAE, 47(1):311–320, ? 2004. * Google ga04aRPCogdill. [157] David I. Ellis, David Broadhurst, Sarah J. Clarke, and Royston Goodacre. Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning. The Analyst, 130(12):1648–1654, ? 2005. ga05aDavidEllis. [158] M. Vinaixa, E. Llobet, J. Brezmes, X. Vilanova, and X. Correig. A fuzzy ARTMAP- and PLS-based MS e-nose for the qualitative and quantitative assessment of rancidity in crisps. Sensors and Actuators B, 106(?):677–686, ? 2005. †Google ga05aMVinaixa. [159] Vivechana Dixit, Jagdish C. Tewari, Byoung-Kwan Cho, and Joseph M. K. Irudayaraj. Identification and quantification of industrial grade glycerol adulteration in red wine with Fourier transform infrared spectroscopy using chemometrics and artificial neural networks. Applied Spectroscopy, 59(12):288A–308A, December 2005. * Google ga05aVivechanaDixit ⇒ http://www.ingentaconnect.com/content/sas/sas/2005/00000059/00000012/art00022?token= 00571da6b67a5e83ff25f573d257025707b2379462a403442552b657c4e7547543c7e386f642f466fa48803.
32
Genetic algorithms in agriculture
[160] Javier Gayo. Species Authenticity and Detection of Economic Adulteration of Atlantic Blue Crab Meat Using VIS/NIR Spectroscopy. PhD thesis, University of Raleigh, Biological and Agricultural Engineering, 2006. * Google ga06aJavierGayo ⇒ www.lib.ncsu.edu/theses/available/etd-05012006.../etd.pdf. [161] Juan Xing, Michael Ngadi, Ning Wang, and Josse De Baerdemaeker. Wavelength selection for surface defects detection on tomatoes by means of a hyperspectral imaging system. In ?, editor, Proceedings of the 2006 ASAE Meeting, volume ?, pages –, ?, ? 2006. ASAE. * Google ga06aJuanXing. [162] Consuelo Pizarro, Isabel Esteban-D´ıez, and Jos´e-Mari´ a Gonz´ alez-S´ aiz. Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy. Analytica Chimica Acta, 585(?):266–276, ? 2007. ga07aCPizarro. [163] M. P. G´ omez-Carracedo, M. Gestal, J. Dorado, and J. M. Andrade. Chemically driven variable selection by focused multimodal genetic algorithm in mid-IR spectra. Analytical and Bioanalytical Chemistry, 389(78):2331–2342, December 2007. ga07aMPGomez-Carracedo. [164] Renato L. Carneiro, Jez W. B. Braga, Carla B. G. Bottoli, and Ronei J. Poppi. Application of genetic algorithm for selection of variables for the BLLS method applied to determination of pesticides and metabolites in wine. Analytica Chimica Acta, ?(?):?, ? 2007. (in press) ga07aRLCarneiro. [165] Zou Xiaobo, Zhao Jiewen, Huang Xingyi, and Li Yanxiao. Use of FT-NIR spectrometry in non-invasive measurement of soluble solid contents (SSC) of ’Fuji’ apple based on different PLS models. Chemometrics and Intelligent Laboratory Systems, 87(?):69–77, ? 2007. ga07aZouXiaobo. [166] Andr´ as F¨ ul¨ op and Jen¨ o Hancs´ ok. Comparison of calibration models based on near infrared spectroscopy data for the determination of plant oil properties. In Proceedings of the The Ninth International Conference on Chemical & Process Engineering ICheaP-9, volume ?, page ?, Rome (Italy), 10.-13. May 2009. The Italian Association of Chemical Engineering. ga09aAndrasFulop. [167] Di Wu, Tianyun Ma, Pengcheng Nie, Zhiping Wang, Zhengjun Qiu, and Yong He. Use of in-situ visible and near-infrared spectroscopy for non-invasive discrimination of spirulina platensis. In ?, editor, Proceedings of the 2009 International Conference on Computational Intelligence and Security, volume 1, pages 330–334, Beijing (China), 11.-14. December 2009. ? * www /Google ga09aDiWu. [168] Jian Jin, Lie Tang, Zuzana Hruska, and Haibo Yao. Classification of toxigenic and atoxigenic strains of aspergillus flavus with hyperspectral imaging. Computers and Electronics in Agriculture, 69(?):158–164, ? 2009. ga09aJianJin. [169] Paulo Augusto da Costa Filho. Rapid determination of sucrose in chocolate mass using near infrared spectroscopy. Analytica Chimica Acta, 631(2):206–211, 12. January 2009. * PubMed ga09aPAdaCostaFilho. [170] Patrick Jackman, Da-Wen Sun, Cheng-Jin Du, and Paul Allen. Prediction of beef eating qualities from color, marbling and wavelet surface texture features using homogenous carcass treatment. Pattern Recognition, 42(5):751–763, May 2009. ga09aPatrickJackman. [171] Simon Tamayo, Thibaud Monteiro, and Nathalie Sauer. Deliveries optimization by exploiting production traceability information. Engineering Applications of Artificial Intelligence, 22(?):557–568, ? 2009. ga09aSimonTamayo. [172] Patrick Jackman, Da-Wen Sun, and Paul Allen. Comparison of various wavelet texture features to predict beef palatability. Meat Science, 83(1):82–87, ? 2009. †Google ga09bPatrickJackman. [173] Di Wu, Yong He, Pengcheng Nie, Fang Cao, and Yidan Bao. Hybrid variable selection in visible and nearinfrared spectral analysis for non-invasive quality determination of grape juice. Analytica Chimica Acta, 659(1-2):229–237, 5. February 2010. ga10aDiWu. [174] Patrick Jackman, Da-Wen Sun, Paul Allen, Karen Brandon, and Anna-Marie White. Correlation of consumer assessment of longissimus dorsi beef palatability with image colour, marbling and surface texture features. Meat Science, 84(3):564–568, March 2010. ga10aPatrickJackman. [175] Patrick Jackman, Da-Wen Sun, Paul Allen, Nektarios A. Valous, Fernando Mendoza, and Paddy Ward. Identification of important image features for pork and turkey ham classification using color and wavelet texture features and genetic selection. Meat Science, 84(4):711–717, April 2010. ga10bPatrickJackman. [176] Tetsuo Morimoto, Josse De Baerdemaeker, and Yasushi Hashimoto. Optimization of storage system of fruits using neural networks and genetic algorithms. In Proceedings of the 1995 IEEE International Conference on Fuzzy Systems, volume 1, pages 289–294, Yokohama (Japan), 20.-24. March 1995. IEEE, Piscataway, NJ. †EI M163865/95 ga95bMorimoto. [177] K. J. Shaw and P. J. Fleming. Initial study of multi-objective genetic algorithms for scheduling the production of chilled ready meals. In Oˇsmera [376], pages 143–148. ga96aShaw.
Bibliography
33
[178] M. Herdy. Evolution strategy with subjective selection for the optimisation of blends of coffee. Autom. Tech. Prax. (Germany), 39(9):18–24, 1997. In German †CCA91819/97 ga97aMHerdy. [179] C. E. Henderson, W. D. Potter, R. W. McClendon, and G. Hoogerboom. Using a genetic algorithm to select parameters for a neural network that predicts aflatoxin contamination in peanuts. In Proceedings of the 11th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, volume 1, pages 460–469, Benicassim, Spain, 1.-4. June 1998. Springer-Verlag, Berlin (Germany). ga98aCEHenderson. [180] T. K. Shih. Using food web as an evolution computing model for internet-based multimedia agents. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems, volume 2, pages 591–596, Florence, Italy, 7.-11. June 1999. IEEE Computer Society Press, Los Alamitos, California. †CCA84226/99 ga99aTKShih. [181] Bai shan Fang, Hong wen Chen, and Zong ding Hu. Medium optimization for production of xylitol by genetic algorithms. Huaxue Fanying Gongcheng Yu Gongyi, 16(2):122–126, ? 2000. †ChA 206839d/00 ga00aBai-shanFang. [182] Rouston Goodacre and Douglas B. Kell. Evolutionary computing for the characterisation and qualification of microbial systems from hyperspectral data. pages –. [183] R. J. Pinchuk, W. A. Brown, S. M. Hughes, and D. G. Cooper. Modeling of biological processes using self-cycling fermentation and genetic algorithms. Biotechnol. Bioeng., 67(1):19–24, 5. January 2000. * PubMed10581432 ga00aRJPinchuk. [184] J.-G. Na, Y. K. Chang, B. H. Chung, and H. C. Lim. Adaptive optimization of fed-batch culture of yeast by using genetic algorithms. Bioprocesses and Biosystems Engineering, 24(5):299–308, January 2002. ga02aJ-GNa. [185] Jean-Michel Roger, Jean-Marie Sablayrolles, Jean-Philippe Steyer, and V´eronique Bellon-Maurel. Pattern analysis techniques to process fermentation curves: Application to discrimination of enological alcoholic fermentations. Biotechnology and Bioengineering, 79(7):804–815, 30. September 2002. ga02aJean-MichelRoger. [186] Jo˜ ao A. Fabro and L´ ucia V. R. Arruda. Fuzzy-neuro predictive control, tuned by genetic algorithms, applied to a fermentation process. In Proceedings of the 2003 IEEE International Symposium on Intelligent Control, pages 194–199, Houston, TX, 5.-8. October 2003. IEEE, Piscataway, NJ. ga03aJAFabro. [187] M. M. W. Etschmann, D. Sell, and J. Schrader. Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. Journal of Molecular Catalysis, 29(?):187–193, ? 2004. ga04aMMWEtschmann. [188] Ana P. Ferreira, Teresa P. Alves, and Jos´e C. Menezes. Monitoring complex media fermentations with nearinfrared spectroscopy: comparison of different variable selection methods. Biotechnology and Bioengineering, 91(4):474–481, 20. August 2005. ga05aAnaPFerreira. [189] Elif Sinem C ¸ elik. Determination of aroma compounds and exopolysaccharides formation by lactic acid bacteria isolated from traditional yogurts. Master’s thesis, Izmir Institute of Technology, The Graduate School of Engineering and Sciences, 2007. ga07aESCelik ⇒ http://library.iyte.edu.tr/tezler/master/ biyoteknoloji/T000696.pdf. [190] Sophia Triadaphillou, Elaine Martin, Gary Montague, Alison Norden, Paul Jeffkins, and Sarah Stimpson. Fermentation process tracking through enhanced spectral calibration modeling. Biotechnology and Bioengineering, 97(3):554–567, 15. June 2007. ga07aSTriadaphillou. [191] B. Liebmann, A. Friedl, and K. Varmuza. Determination of glucose and ethanol in bioethanol production by near infrared spectroscopy and chemometrics. Analytica Chimica Acta, 642(1-2):171–178, 29. May 2009. ga09aBLiebmann. [192] Nina Thornhill, Mauro Manela, and John Campbell. Two methods of selecting smoothing splines applied to fermentation process data. AIChE J., 40(4):716–725, April 1994. * EI 156029/94 ga94aThornhill. [193] Hiroyuki Moriyama and Kazuyuki Shimizu. On-line optimization of culture temperature for ethanol fermentation using a genetic algorithm. Journal of Chemical Technology and Biotechnology, 66(3):217–222, July 1996. ga96aMoriyama. [194] B. de Andres-Tono, J. M. Giron-Sierra, J. A. Lopez-Orozco, and C. Fernandez-Conde. Using genetic algorithms for dynamic optimization: an industrial fermentation case. In Proceedings of the 36th IEEE Conference on Decision and Control, volume 1, pages 828–829, San Diego, CA (USA), 7.-11. July 1997. IEEE, New York, NY. †CCA27799/98 ga97aAndres-Tono.
34
Genetic algorithms in agriculture
[195] B. Andrestoro, J. M. Gironsierra, J. A. Lopezorozco, and C. Fernandezconde. Application of genetic algorithms and simulations for the optimization of batch fermentation control. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, volume 1, pages 392–397. [196] B. Deandrestoro, J. M. Gironsierra, J. A. Lopezorozco, and C. Fernandezconde. Using genetic algorithms for dynamic optimization - an industrial fermentation case. In Proceedings of the 36th IEEE Conference on Decision and Control, volume 1, pages 828–829. [197] Hiroyuki Honda, Taizo Hanai, Takeshi Furuhashi, Yoshiki Uchikawa, and Takeshi Kobayashi. Quality modeling of Ginjo sake by neural network. Proc. World Congr., Int. Fed. Autom. Control, pages 401–406, 1997. †ChA127:32910/97 ga97aHirHonda. [198] M. Soufian and M. Soufian. Parallel genetic algorithms for optimized fuzzy modelling with application to a fermentation process. In Proceedings of the Second International Conference on Genetic Algorithms in engineering Systems: Innovations and Applications, pages 123–128, Glasgow (UK), 2.-4. September 1997. IEE, London, UK. †CCA3660/98 ga97aSoufian. [199] Dirk Weuster-Botz, R. Kelle, M. Frantzen, and C. Wandrey. Substrate controlled fed-batch production of L-lysine with corynebacterium glutamicum. Biotechnol Prog, 13(4):387–393, 1997. †EI M170046/97 ga97aWeuster-Botz. [200] P. Marenbach, Kurt D. Bettenhausen, Stephan Freyer, U. Nieken, and H. Rettenmaier. Data-driven structured modelling of a biotechnological fed-batch fermentation by means of genetic programming. Proc. Inst. Mech. Eng. I, J. Syst. Control Eng. (UK), 211(15):325–332, 1997. †CCA19857/98 ga97bMarenbach. [201] B. de Andr´es-Toro, J. M. Gir´ on-Sierra, J. A. L´ opez-Orozco, C. Fern´ andez-Conte, and P. Fern´ andez Blanco. A fast genetic optimization for batch fermentation process. In Toshiomi Yoshida and Suteaki Shioya, editors, Computer Applications in Biotechnology (Proceedings of the 7th International Conference) CAB7, pages 61–66, Osaka (Japan), May 31.- June 4. 1998. IFAC Publications, Elsevier Science Ltd., Oxford (UK). †TKK/AS/Halme ga98aAndres-Toro. [202] P. Angelov, R. Guthke, and R. Berkholz. Optimal control of a fermentation process using neural networks and genetic algorithms. In Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, volume 3, pages 1591–1595, Aachen (Germany), 7.-10. September 1998. Verlag Mainz, Aachen (Germany). †CCA79373/99 ga98aAngelov. [203] P. Angelov, R. Guthke, and R. Berkholz. Optimal control of a fermatation process using neural networks and genetic algorithms. In ?, editor, Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT’98), volume 3, pages 1591–1595, Aachen (Germany), 7.-10. September 1998. Verlag Mainz, Aachen. * CCA 79373/99 ga98aPAngelov. [204] Ji-Pyng Chiou and Feng-Sheng Wang. Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process. Computers and Chemical Engineering, 23(9):1277–1291, 1999. ga99aJi-Chiou. [205] P. Potocnik and I. Grabec. Empirical of antibiotic fermentation process using neural networks and genetic algorithms. Mathematics and Computers in Simulalation, 49(4-5):363–379, 1999. †CCA93655/99 ga99aPotocnik. [206] S. L. Rivera and M. N. Karim. Use of micro-genetic algorithms in bioprocess optimization. In ?, editor, Proceedings of the 12th Triennial World Congress of the International Federation of Automatic Control, volume 3, pages 245–248, Sydney, NSW (Australia), 18.-23. July 1993 1993. Pergamon, Oxford (UK). * CCA 45495/95 ga:Rivera93a. [207] S. J. Mardle, S. Pascoe, and M. Tamiz. An investigation of genetic algorithms for the optimization of multiobjective fisheries bioeconomic models. International Transactions in Operational Research, 7(1):33–49, January 2000. ga00aMardle. [208] M. Minami, H. Suzuki, J. Agbanhan, and T. Asakura. Visual servoing to fish and catching using global/local GA search. In Proceedings. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, volume 1, pages 183–188, Como, Italy, 8.-12.July 2001. IEEE, Piscataway, NJ. * www/IEEE ga01aMMinami. [209] Fabio Boschetti, D. McDonald, and M. Brede. A rapid assessment agent based model for natural resource management. In ?, editor, Proceedings of the ModSim07 Conference, pages 2787–2792, Christchurch (New Zealand), December 2007. ? ga07aFBoschetti. [210] Pingfu Chen, E. O. Wiley, and Kristina M. McNyset. Ecological niche modeling as a predictive tool: silver and bighead carps in North America. Biologcal Invasions, 9(?):43–51, ? 2007. ga07aPingfuChen.
Bibliography
35
[211] N. Zaera, D. Cliff, and J. Bruten. (not) evolving collective behaviours in synthetic fish. In Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, pages 635–644, North Falmouth, MA (USA), 9.-13. September 1996. MIT Press, Cambridge, MA. †CCA43117/98 ga96aNZaera. [212] Young Sae Kong, Hee Joon Kim, Geon Hong Min, and Chi Won Lee. A study on the shelf sediments from Korea strait through decomposition of size curves into normal components. Journal of the Korean Fisheries Society, 29(3):386–392, 1996. In Korean with Korean and Engl. summ. †BAb139635 ga96aYounKong. [213] Laurent Dagorn, Michel Petit, and Jean-Michel Stretta. Simulation of large-scale tropical tuna movements in relation with daily remote sensing data: The artificial life approach. BioSystems, 44(3):167–180, 1997. †BA60417 ga97aLDagorn. [214] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. A new evolutionary algorithm inspired by the selfish gene theory. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 575–580, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA74631/98 ga98aFCorno. [215] Mamoru Minami, Julien Agbanhan, and Toshiyuki Asakura. Manipulator visual servoing and tracking of fish using a genetic algorithm. Ind. Robot (UK), 26(4):278–289, 1999. †CCA79957/99 ga99aMManami. [216] Mamoru Minami, Julien Agbanhan, and Toshiyuki Asakura. Manipulator visual servoing and tracking of fish using a genetic algorithm. Industrial Robot: An International Journal, 26(4):278–289, 1999. ga99aMamoruMinami. [217] Mamoru Minami, Julien Agbanhan, H. Murata, Toshiyuki Asakura, and Yuji Aoyagi. A proposal of new visual servoing method with gray-scale image and GA-tracking experiments to swimming fish. Memoirs of the Faculty of Engineering, Fukui University, 47(1):105–122, 1999. In Japanese †CCA63038/99 ga99bMMinami. [218] David G. Stork, Bernie Jackson, and Scott Walker. “Non-optimality” via pre-adaptation in simple neural systems. In Christopher G. Langton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen, editors, Artificial Life II, Proceedings of the Workshop on Artificial Life Held February, 1990 in Santa Fe, New Mexico, Proceedings Volume X, Santa Fe Institute Studies in the Sciences of Complexity, pages 409–429. Addison-Wesley, Reading, MA, 1992. ga:Stork92a. [219] Fadian Lu and Ljusk Ola Eriksson. Formation of harvest units with genetic algorithms. Forest Ecology and Management, 130(1-3):57–67, May 2000. ga00aFadianLu. [220] Pete Bettinger, David Graetz, Kevin Boston, John Sessions, and Woodam Chung. Eight heuristic planning techniques applied to three increasingly difficult wildlife planning problems. Silva Fennica, 36(2):561–584, ? 2002. ga02aPBettinger. [221] Torbj¨ orn Lestander. Multivariate NIR Studies of Seed-Water Interaction in Scots Pine Seeds (Pinus sylvestris L.). PhD thesis, Swedish University of Agricultural Sciences, Department of Silviculture, Ume˚ a. [222] Veli-Pekka Kivinen. A genetic algorithm approach to tree bucking optimization. Forest Science, 50(5):696– 710, October 2004. †www /ISI ga04aVPKivinen. [223] John Dewey. Searching for prescriptive treatment schedules with a genetic algorithm: A tool for forest management. Master’s thesis, University of Georgia, Graduate Faculty, 2005. ga05aJDewey. [224] Veli-Pekka Kivinen. Katkonnanohjausta geneettisell¨ a algoritmilla [Optimisation of cutting by genetic algorithm]. Tietov¨ ayl¨ a, ?(4):29–30, December 2005. ga05aV-PKivinen. [225] John Dewey, Frederick Maier, H. Michael Rauscher, Mark Twery, Walter D. Potter, Donald Nute, and Scott A. Thomasma. Prescriptive treatment optimization using a genetic algorithm: a tool for forest management. In A. Voinov, A. Jakeman, and A. Rizzoli, editors, Proceedings of the iEMSs Third Biennial Meeting: Summit on Environmental Modelling and Software, pages –, Burlington, USA, July 2006. International Environmental Modelling and Software Society. ga06aJDewey ⇒ http://www.iemss.org/iemss2006/ sessions/all.html. [226] Veli-Pekka Kivinen. A forest-level genetic algorithm based control system for generating stand-specific log demand distributions. Canadian Journal of Forest Research, 36(7):1705–1722, ? 2006. * www /Google scholar ga06aVPKivinen. [227] Arto Kettunen, Mauno Pesonen, and Petri R¨ as¨ anen. Nonindustrial private forest landowner’s choice of timber management strategy — modelling with genetic algorithm. In Jarmo T. Alander, editor, Proceedings of the Second Finnish Workshop on Genetic Algorithms and their Applications, volume Report Series 94-2, pages 151–169, Vaasa (Finland), 16.-18. March 1994. University of Vaasa, Department of Information Technology and Industrial Economics. (ftp://ftp.uwasa.fics/report94-2/Kettunen.ps.Z) ga94aKettunen.
36
Genetic algorithms in agriculture
[228] Arto Kettunen, Mauno Pesonen, and Petri R¨ as¨ anen. Nonindustrial private forest landowner’s choice of timber management strategy: predicting the cutting levels with genetic algorithm. In Christer Carlsson, Timo J¨ arvi, and Tapio Reponen, editors, Multiple Paradigms for Artificial Intelligence, Proceedings of Contributed Session Papers of the Conference on Artificial Intelligence Research in Finland [Suomen Teko¨ alytutkimuksen P¨ aiv¨ at STeP-94, pages 216–229, Turku, 29.-31. August 1994. Finnish Artificial Intelligence Society (FAIS). ga94bKettunen. [229] Mauno Pesonen, Arto Kettunen, and Petri R¨ as¨ anen. Non-industrial private forest landowners’ choises of timber management strategies: Genetic algorithm in predicting planned harvest rates. Acta Forestalia Fennica, 250(?):1–28?, ? 1995. ga95aPesonen. [230] Arto Kettunen. Adaptive and intelligent systems in wood procurement planning: optimization of rawmaterial flow for manufacturing of sawmill chips. In Jarmo T. Alander, editor, Proceedings of the Second Nordic Workshop on Genetic Algorithms and their Applications (2NWGA), Proceedings of the University of Vaasa, Nro. 11, pages 233–236, Vaasa (Finland), 19.-23. August 1996. University of Vaasa. (ftp://ftp. uwasa.fics/2NWGA/Kettunen.ps.Z) ga96aKettunen. [231] David A. Hughell and Joseph P. Roise. Simulated adaptive management for timber and wildlife under uncertainty. In J. Shaffer, editor, Proceedings of the 7th Symposium on Systems Analysis in Forestr Resources, pages 133–140, Traverse City, MI, May 1997. Society of American Foresters. ga97aDAHughell. [232] David S. Mullen and Ralph M. Butler. Genetic algorithms in optimization of adjacency constrained timber harvest scheduling problems. In John R. Koza, Kalyanmoy Deb, Marco Dorico, David B. Fogel, Max Garson, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, page ?, Stanford, CA, 13.-16. July 1997. Morgan Kaufmann, San Francisco, CA. †conf.prog ga97aMullen. [233] Ilkka Karanta, Topi Mikkola, Catherine Bounsaythip, Olli Jokinen, and Juha Savola. Genetic algorithms applied to a wood collection problem. In Proceedings of the 1999 IEEE International Conference on Systems, Man, and Cybernetics, volume 4, pages 635–639, ?, 12.-15. October 1999. IEEE, Piscataway, NJ. ga99aIKaranta. [234] J. N. R. Jeffers. Rule induction methods in forestry research. AI Applications, 5(2):37–44, ? 1991. †ga94aKettunen ga:Jeffers91a. [235] Liisa Saarenmaa. Induktiivinen oppiminen mets¨ anviljelyn tietokannan tulkinnassa [Inductive learning in interpretation of databases of forest cultivation]. PhD thesis, University of Helsinki, Department of Forest Ecology, 1992. ga:Saarenmaa92thesis. [236] Helen E. Johnson, R. J. Gilbert, M. K. Winson, Rouston Goodacre, Aileen R. Smith, J. J. Rowland, M. A. Hall, and Douglas B. Kell. Explanatory analysis of the metabolome using genetic programming of simple, interpretable rules. Genetic Programming and Evolvable Machines, 1(?):243–258, ? 2000. †[237] ga00aHEJohnson. [237] Royston Goodacre. Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. Journal of Experimental Botany, 56(410):245–254, January 2005. ga05aRGoodacre ⇒ http://jxb.oxfordjournals.org/cgi/reprint/56/410/245. [238] David I. Ellis and Royston Goodacre. Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Food Science & Technology, 12(11):414–424, ? 2001. ga01aDavidEllis. [239] Nigel Yee. Potato crisp moisture estimation using near infrared spectroscopy. International Journal of Food Properties, 4(2):247–260, July 2001. * Google ga01aNigelYee. [240] Rosa Mari´ a Garc´ıa-Gimeno, C´esar Herv´ as-Mart´ınez, and Maria Isabel de Sil´ oniz. Improving artificial neural networks with a pruning methodology and genetic algorithms for their applications in microbial growth prediction in food. Journal of Food Microbiology, 72(1-2):19–30, 30. January 2002. †www /Elsevier ga02aRMGarcia-Gimeno. ¨ [241] Durmu¸s Ozdemir. Genetic multivarate calibration for near infrared spectroscopic determination of protein, moisture, dry mass, hardness and other residues of wheat. International Journal of Food Science and Technology, 41((Supplement 2)):12–21, ? 2006. ga06aDurmusOzdemir. [242] Z. Qing, B. Ji, and M. Zude. Wavelength selection for predicting physicochemical properties of apple fruit based on near-infrared spectroscopy. Journal of Food Quality, 30(4):511–526, August 2007. †Google ga07aZQing.
Bibliography
37
[243] Consuelo Pizarro, Isabel Esteban-D´ıez, Jos´e-Mari´ a Gonz´ alez-S´ aiz, and Michele Forina. Use of near infrared spectroscopy and feature selection techniques for predicting the caffeine content and roasting color in roasted coffees. Journal of Agricultural and Food Chemistry, 55(?):7477–7488, ? 2007. ga07bCPizarro. [244] Bolin Shi, Baoping Ji, Dazhou Zhu, Zhenhua Tu, and Zhaoshen Qing. Study on genetic algorithms-based NIR wavelength selection for determination of soluble solids content in Fuji apples. Journal of Food Quality, 31(2):232–249, ? 2008. ga08aBolinShi. [245] Juan Xing, Daniel Guyer, Diwan Ariana, and Renfu Lu. Determining optimal wavebands using genetic algorithm for detection of internal insect infestation in tart cherry. Sensing and Instrumentation for Food Quality and Safety, 2(3):161–167, September 2008. ga08aJuanXing ⇒ http://www.springerlink.com/ content/c36h650374387153/. [246] Georgina McLeod, Kirsty Chelland, Henri Tapp, E. Katherine Kemsley, Reginald H. Wilson, Graham Poulter, David Coombs, and Christopher J. Hewitt. A comparison of variate pre-selection methods for use in partial least squares regression: A case study on NIR spectroscopy applied to monitoring beer fermentation. Journal of Food Engineering, 90(2):300–307, ? 2009. †Google ga09aGeorginaMcLeod ⇒ http: //www.elsevier.com/wps/find/journaldescription.cws_home/405862/description#description. [247] Marc Valente, Riccardo Leardi, Guy Self, Giorgio Luciano, and Jean Pierre Pain. Multivariate calibration of mango firmness using vis/NIR spectroscopy and acoustic impulse method. Journal of Food Engineering, 94(?):7–13, ? 2009. ga09aMarcValente. [248] Ping Lin, Yongming Chen, and Yong He. Indentification of geographical origin of olive oil using visible and near-infrared spectroscopy technique combined with chemometrics. Food and Bioprocess Technology, ?(?):?, December 2009. ga09aPingLin ⇒ http://www.springerlink.com/content/62522153226q42g5/. [249] Anon. X-rays ensure bone-free chicken fillet. Food & Beverage Asia, ?(?):40–41, April/May 2009. ga09bAnon ⇒ http://www.foodbeverageasia.com/FBA_archive/AprMay09/40to41.pdf. [250] Abolghasem Beheshti, Siavash Riahi, Eslam Pourbasheer, Mohammad Reza Ganjali, and Parviz Norouzi. Simultaneous spectrophotometric determination of 2-thiouracil and 2-mercaptobenzimidazole in animal tissue using multivariate calibration methods: concerns and rapid methods for detection. Journal of Food Science C: Food Chemistry, 75(2):C135–C139, ? 2010. ga10aABeheshti. [251] Younes Chtioui, Dominique Bertrand, and Dominique Barba. Feature selection by a genetic algorithm. Application to seed discrimination by artificial vision. J. Sci. Food Agric., 76(1):77–86, 1998. †ChA128:228216x ga98aChtioui. [252] Keiko Iizuka and Tetsuo Aishima. Differentiation of soy sauce by pattern recognition analysis of mid- and near-IR spectra. Journal of Food Composition and Analysis, 12(?):197–209, ? 1999. ga99aKeikoIizuka. [253] David I. Ellis, David Broadhurst, J. J. Rowland, and Royston Goodacre. Rapid detection method for microbial spoilage using FT-IR and machine learning. In A. van Amerongen, D. Barug, and M. Lauwaars, editors, Rapid Methods for Food and Feed Quality Determination, page ? Wageningen Academic Publishers, Wageningen (The Netherlands), 2006. (in press) †Ellis homepage ga06aDavidEllis. [254] Yongxin Li, Yuanqian Li, Bo Zheng, Lingli Qu, and Can Li. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophosesis with genetic algorithm-support vector regression optimization. Analytica Chimica Acta, 643(?):100–107, ? 2009. ga09aYongxinLi. [255] E. V. Budilova, A. T. Terekhin, and S. A. Chepurnov. A genetic algorithm for optimization of neural networks capable of learning to search for food in a maze. Radiophys. Quantum Electron. (USA), 37(9):749– 755, 1994. Translation of: Izv. Vyssh. Uchebn. Zaved. Radiofiz. (Russia) p. 1162-1172 †CCA26623/96 ga94bBudilova. [256] Forrest H. Bennett III. Emergence of a multi-agent architecture and new tactics for the ant colony food foraging problem using genetic programming. In Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, pages 430–439, North Falmouth, MA (USA), 9.-13. September 1996. MIT Press, Cambridge, MA. †CCA43017/98 ga96bBennettIII. [257] John R. Koza, James P. Rice, and Jonathan Roughgarden. Evolution of food foraging strategies for the Caribbean anolis lizard using genetic programming. Adaptive Behavior, 1(2):47–74, 1992. †[371] ga:Koza92h. [258] John R. Koza, James P. Rice, and Jonathan Roughgarden. Evolution of food foraging strategies for the Caribbean anolis lizard using genetic programming. Working Paper 92-06-028, Santa Fe Institute, 1992. ga:Koza92hh.
38
Genetic algorithms in agriculture
[259] Helen E. Johnson, David Broadhurst, Royston Goodacre, and Aileen R. Smith. Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62(?):919–928, ? 2003. ga03aHelenEJohnson. [260] S. Muddappa, R. Z. Makki, and Zbigniew Michalewicz. Pioneer: A new tool for coding of multi-level finite state machines based on evolution programming. VLSI Design, 2(2):105–116, 1994. * EI M014025/95 ga94aMuddappa. [261] Hiroyasu Ito. Problem solving arithmetic device and method introduction concept of state transition, 1995. (JP patent no. 7225752. Issued August 22 1995) * fi.espacenet.com ga95aHIto. [262] Torbj¨ orn E. M. Nordling, Janne Koljonen, Jarmo T. Alander, and Paul Geladi. Genetic algorithms as a tool for wavelength selection. In Jarmo T. Alander, Pekka Ala-Siuru, and Heikki Hy¨ otyniemi, editors, STeP2004, Proceedings of the 11th Finnish Artificial Intelligence Conference, volume 3, pages 99–113, Vantaa (Finland), 1.-3. September 2004. Finnish Artificial Intelligence Society (FAIS). (also ftp://ftp.uwasa.fi/ cs/report04-2/.ps) STeP04NIR. [263] Barbara S. Minsker, B. Padera, and J. Bryan Smalley. Efficient methods for including uncertainty and multiple objectives in water-resources management models using genetic algorithms. In L. R. Bentley, J. F. Sykes, C. A. Brebbia, W. G. Gray, and G. F. Pinder, editors, XIIIth International Conference on Computational Methods in Water Resources, volume 1-2, pages 567–572, Calgary, Canada, 25.-29.June 2000. A a Balkema, Rotterdam. †P89862 ga00aBSMinsker. [264] Chun-Hsiang Huang and JaLing Wu. Watermark optimization technique based on genetic algorithms. In Ping Wah Wong and Edward J. Delp, editors, Security and Watermarking of Multimedia Contents II, volume SPIE-3971, pages 516–523, ?, May 2000. The International Society for Optical Engineering. * www/SPIE Web ga00aC-HHuang. [265] Chu-Kuei Tu and Tseng-Hsien Lin. Applying genetic algorithms on fuzzy logic system for underwater acoustic signal recognition. In Proceedings of the 2000 International Symposium on Underwater Technology, 2000. UT 00, volume ?, pages 405–410, Tokyo, Japan, 23.-26.May 2000. IEEE, Piscataway, NJ. * www/IEEE ga00aC-KTu. [266] H. Swierenga, F. W¨ ulfert, O. E. De Noord, A. P. De Weijer, A. K. Smilde, and L. M. C. Buydens. Development of robust calibration models in near infra-red spectrometric applications. Analytica Chimica Acta, 411(1-2):121–135, ? 2000. * Google ga00aHSwierenga. [267] Michael L. Raymer, William F. Punch, III, Erik D. Goodman, Leslie A. Kuhn, and A. K. Jain. Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation, 4(2):164–171, July 2000. * ga00aMLRaymer. [268] Patrick M. Reed, Barbara S. Minsker, A. J. Valocchi, and David E. Goldberg. Efficient use of genetic algorithm for long-term groundwater monitoring design. In L. R. Bentley, J. F. Sykes, C. A. Brebbia, W. G. Gray, and G. F. Pinder, editors, XIIIth International Conference on Computational Methods in Water Resources, volume 1-2, pages 573–578, Calgary, Canada, 25.-29.June 2000. A a Balkema, Rotterdam. †P89862 ga00aPMReed. [269] R. W. Meier and B. D. Barkdoll. Sampling design for network model calibration using genetic algorithms. Journal of Water Resources Planning and Management, 126(4):245–, ? 2000. †[294] ga00aRWMeier. [270] Toshiyuki Ogawa. Method for water use planning process using genetic algorithm, 2000. (JP patent no. 2000305921. Issued November 2 2000) * fi.espacenet.com ga00aTOgawa. [271] Takeshi Takizawa, Masaki Kunimi, Masashirou Nakada, and Hiroshi Yuki. Controller for wide area wastewater sending system, 2000. (JP patent no. 2000105609. Issued April 11 2000) * fi.espacenet.com ga00aTTakizawa. [272] Patrick M. Reed, Barbara S. Minsker, and Albert J. Valocchi. Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation. Water Resources Research, 36(12):3731– 3742, December 2000. †NASA ADS ga00bPReed. [273] Angus R. Simpson, H. R. Maier, W. K. Foong, K. Y. Fhang, H. Y. Seah, and C. L. Tan. Selection of parameters for ant colony optimisation applied to the optimal design of water distribution systems. In ?, editor, Proceedings of the International Congress on Modelling and Simulation MODSIM, page ?, Canberra (Australia), ? 2001. ? †[294] ga01aARSimpson. [274] C. R. Tiedeman, D. M. Ely, M. C. Hill, and B. J. Wagner. Use of a simple genetic algorithm to design a hydraulic-head observation network that minimizes ground-water flow model prediction uncertainty. In ?, editor, American Geophysical Union, Fall Meeting 2001, volume ?, page ?, San Francisco, CA, 10.14. December 2001. American Geophysical Union. †NASA ADS ga01aCRTiedeman.
Bibliography
39
[275] D. K. Karpouzos, F. Delay, K. L. Katsifarakis, and G. de Marsily. A multipopulation genetic algorithm to solve the inverse problem in hydrogeology. Water Resources Research, 37(9):2291–2302, September 2001. †NASA ADS ga01aDKKarpouzos. [276] Donald H. Burn and Jeanne S. Yulianti. Waste-load allocation using genetic algorithms. Journal of Water Resources Planning and Management, 127(2):121–129, March/April 2001. †TTKK ga01aDonaldHBurn. [277] F. P. Espinoza, Barbara S. Minsker, and David E. Goldberg. An adaptive hybrid genetic algorithm for improved groundwater remediation design. In ?, editor, American Geophysical Union, Fall Meeting 2001, volume ?, page ?, San Francisco, CA, 10.-14. December 2001. American Geophysical Union. †NASA ADS ga01aFPEsinoza. [278] F. T. Tsai, N. Sun, and W. W. Yeh. Parameter structure identification with natural neighbor parameterization in groundwater modeling. In ?, editor, American Geophysical Union, Fall Meeting 2001, volume ?, page ?, San Francisco, CA, 10.-14. December 2001. American Geophysical Union. †NASA ADS ga01aFTTsai. [279] H. R. Maier, Angus R. Simpson, W. K. Foong, K. Y. Fhang, H. Y. Seah, and C. L. Tan. Ant colony optimization for the design of water distribution systems. In ?, editor, Proceedings of the World Water and Environmental Resources Congress, page ?, Orlando, FL, ? 2001. ? †[294] ga01aHRMaier. [280] Jin-Ping Gwo. In search of preferential flow paths in structured porous media using a simple genetic algorithm. Water Resources Research, 37(6):1589–1602, June 2001. †NASA ADS ga01aJ-PGwo. [281] M. Tu, F. T. Tsai, and W. W. Yeh. Optimization of water distribution and water quality by genetic algorithm and nonlinear programming. In ?, editor, American Geophysical Union, Fall Meeting 2001, volume ?, page ?, San Francisco, CA, 10.-14. December 2001. American Geophysical Union. †NASA ADS ga01aMTu. [282] N. Ko and K. Lee. Comparing the optimal pumping rate with the total pumping volume in pump-and-treat method. In ?, editor, American Geophysical Union, Fall Meeting 2001, volume ?, page ?, San Francisco, CA, 10.-14. December 2001. American Geophysical Union. †NASA ADS ga01aNKo. [283] Seiji Furukawa, Junji Hirotsuji, and Tokimori Kouichi. Operation support apparatus of water treatment plant, 2001. (JP patent no. 2001334284. Issued December 4) * fi.espacenet.com ga01aSFurukawa. [284] Y. Zhang and G. Pinder. Enabling technology for the least-cost design of groundwater-quality monitoring networks. In ?, editor, American Geophysical Union, Fall Meeting 2001, volume ?, page ?, San Francisco, CA, 10.-14. December 2001. American Geophysical Union. †NASA ADS ga01aYZhang. [285] Z. Y. Wu, P. E. Boulos, C. H. Orr, and J. J. Ro. Rehabilitation of water distribution system using genetic algorithms. Journal of the American Water Works Association, 93(11):74–, ? 2001. †[294] ga01aZYWu. [286] A. Alvarez, C. Harrison, and M. Siderius. Predicting underwater ocean noise with genetic algorithms. Physics Letters A, 280(4):215–220, February 2001. †NASA ADS ga01bAlvarez. [287] Z. Y. Wu and Angus R. Simpson. Competent genetic algorithm optimization of water distribution systems. Journal of Computing in Civil Engineering, 15(2):89–, ? 2001. †[294] ga01bZYWu. [288] B. Gonz´ alez, B. Galv´ an, and G. Winter. Optimal placement of wastewater outfalls by a flexible evolution algorithm. pages 436–441, 2002. ga02aBGonzalez. [289] Michihiko Sugawara, Hiromi Nakanishi, and Satoshi Yabushita. Calculation of the tunneling splittings in water trimer with a genetic algorithm. Internet Electronic Journal of Molecular Design, 1(9):450–461, September 2002. ga02aMichihikoSugawara. [290] Z. Y. Wu, Thomas M. Walski, R. Mankowski, G. Herrin, R. Gurierri, and M. Tryby. Calibrating water distribution model via genetic algorithms. In ?, editor, Proceedings of the AWWA Information Management and Technology Conference, page ?, Kansas City, MI, ? 2002. American Water Works Association. †[294] ga02aZYWu. [291] Ching pin Tung. Application of the genetic algorithm for optimizing operation rules of the LiYuTan Reservoir in Taiwan1. Journal of the American Water Resources Association, ?(?):?, June 2003. ga03aChing-pinTung. [292] Frank T.-C. Tsai, Ne-Zheng Sun, and William W.-G. Yeh. A combinatorial optimization scheme for parameter structure identification in ground water modeling. Ground Water, 41(2):156–169, March-April 2003. ga03aFrankTsai. [293] Muhammad A. Al-Zahrani and Khurram Moied. Optimizing water quality monitoring stations using genetic algorithms. The Arabian Journal for Science and Engineering, 28(1B):57–75, April 2003. ga03aMAAl-Zahrani.
40
Genetic algorithms in agriculture
[294] Thomas M. Walski, Donald V. Chase, Dragan A. Savic, Walter Grayman, Stephen Beckwith, and Edmundo Koelle. Appendix d: Model optimization techniques. In Advanced Water Distribution Modeling and Management, pages 643–684. Haestad Press, Waterbury, CT, 2003. ga03aTMWalski. [295] Tanguy Messager, Mariusz Pyrz, Bernard Gineste, and Pierre Chauchot. Optimal laminates of thin underwater composite cylindric vessels. Composite Structures, 58(4):529–537, December 2003. * www /ScienceDirect ga03aTMessager. [296] Avi Ostfeld. A review of modeling water quality in distribution systems. Urban Water Journal, 2(2):107– 114, June 2005. * Google ga05aAOstfeld ⇒ http://www.informaworld.com/smpp/content~content= a714021119&db=all. [297] B. Ustun, W. J. Melssen, M. Oudenhuijzen, and L. M. C. Buydens. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica Acta, 544(1-2):292–305, 15. July 2005. ga05aBUstun. [298] Christopher Alan Flask. Rapid Dixon Acquisitions for Water/Lipid Separation in MRI. PhD thesis, Case Western Reserve University, Department of Biomedical Engineering, 2005. * www /Google ga05aCAFlask ⇒ http://etd.ohiolink.edu/send-pdf.cgi/Flask%20Christopher%20Alan.pdf?case1100631509. [299] Hiroshi Kawano. Application of single neuron model to motion planning and control of under-actuated robot by MDP frame work. In Proceedings 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA2005), page ?, Espoo (Finland), 27.-30.June 2005. IEEE, Piscataway, NJ. ga05aHiroshiKawano. [300] W. Naeem, R. Sutton, J. Chudley, F. R. Dalgleish, and S. Tetlow. An online genetic algorithm based model predictive control autopilot design with experimental verification. International Journal of Control, 78(14):1076–1090, September 2005. * www /Google ga05aWNaeem. [301] Hsin-Hsien Ho. Using soft computation to predict the effluent quality from municipal and industrial wastewater treatment plants. Master’s thesis, Chaoyang Univesity of Technology, 2006. †www /Google scholar ga06aHsin-HsienHo ⇒ http://ethesys.lib.cyut.edu.tw/ETD-db/ETD-search/view_etd?URN= etd-0704106-142326. ˇ [302] Olivera Sauperl and Miran Brezocnik. Study of crosslinking efficiency of cotton cellulose by different physical-chemical methods and genetic programming. Materials Research Innovations, 10(1):45–62, ? 2006. †www /Langdon bib ga06aOSauperl. [303] Bin Dai, Aaron Urbas, Craig C. Douglas, and Robert A. Lodder. Molecular factor computing for predictive spectroscopy. Pharmaceutical Research, ?(?):?, ? 2007. ga07aBinDai. [304] Ami Preis and Avi Ostfeld. A coupled model tree-genetic algorithm scheme for flow and water quality predictions in watersheds. Journal of Hydrology, 349(3-4):364–375, ? 2008. * Google ga08aAmiPreis ⇒ http://cat.inist.fr/?aModele=afficheN&cpsidt=20065549. [305] Prayoth Kumsawat, Kitti Attakitmongcol, and Arthit Srikaew. An optimal robust digital image watermarking based on genetic algorithms in multiwavelet domain. WSEAS Transactions on Signal Processing, 5(1):42–51, January 2009. †www /ACM ga09aPKumsawat. [306] Angus R. Simpson, Graeme C. Dandy, and Laurie J. Murphy. Genetic algorithms compared to other techniques for pipe optimisation. Journal of Water Resources Planning and Management, 120(4):?, 1994. †Lazauskas/bib ga94aARSimpson. [307] Daene C. McKinney and Min-Der Lin. Genetic algorithm solution of groundwater management models. Water Resources Research, 30(6):1897–1906, June 1994. †NASA ADS ga94aDCMcKinney. [308] J. Wayland Eheart. Genetic algorithms and neural networks: do pluralized techniques hold any advantages for designing groundwater quality assurance systems. In ?, editor, Proceedings of the 21st Annual Conference on Water Policy and Management, pages 258–261, Denver, CO, 23.-26. May 1994. ASCE, New York. * EI M123303/95 ga94aEheart. [309] Srinivasa L. Reddy. Genetic algorithm in groundwater management. In ?, editor, Proceedings of the 1994 ASCE National Conference on Hydraulic Engineering, volume 1, pages 293–297, Buffalo, NY, 1.-5. August 1994. ASCE, New York. * EI M174319/94 ga94aReddy. [310] Laurie J. Murphy, Graeme C. Dandy, and Angus R. Simpson. Optimum design and operation of pumped water distribution systems. In ?, editor, Proceedings of the Hyraulics in Civil Engineering, page ?, Brisbane, Australia, ? 1994. ? †Lazauskas/bib ga94bLJMurphy. [311] Angus R. Simpson and David E. Goldberg. Pipeline optimisation via genetic algorithms: from theory to practice. In ?, editor, Proceedings of the 2nd International Conference on Water pipeline Systems, volume ?, pages 309–320, Edinburgh, Scotland, 24.-26. May 1994. ? †Lazauskas/bib ga94cARSimpson.
Bibliography
41
[312] Scott E. Cieniawski, Eheart J. Wayland, and S. Ranjithan. Using genetic algorithms to solve a multiobjective groundwater monitoring problem. Water Resources Research, 31(2):399–409, February 1995. †NASA ADS ga95aSECieniawski. [313] Angus R. Simpson, Graeme C. Dandy, Laurence J. Murphy, and Rob Kitto. Urban water distribution network optimisation: a case study. In ?, editor, Proceedings of the16th Federal Convention, Australian Water and Wastewater Assoc., volume 2, pages 167–174, Sydney, NSW (Australia), 2.-6. April 1995. ? †Lazauskas/bib ga95bSimpson. [314] V. Rao Vemuri and Walter Cede˜ no. A new genetic algorithm for multi-objective optimization in water resource management. In ICEC’95 [374], pages 495–500. †prog. ga95bVemuri. [315] Jason M. Daida, Donald Lund, Christian Wolf, Guy A. Meadows, Kirk Schroeder, John F. Vesecky, David R. Lyzenga, Brian C. Hannan, and Robert R. Bertram. Measuring topography of small-scale water surface waves. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, volume 3, pages 1881–1883, Firenze, Italy, 10.-14. July 1995. IEEE, Piscataway, NJ. †EI M187500/95 ga95cDaida. [316] Angus R. Simpson, Graeme C. Dandy, and Laurence J. Murphy. Optimal design of water distribution systems using genetic algorithm optimisation - an outline of background and proven experience. Optimatics Raport ?, 1995. †Lazauskas/bib ga95cSimpson. [317] Dragan A. Savic and Godfrey A. Walters. Genetic algorithm techniques for calibrating network models. Report 95/12, University of Exeter, 1995. †[294] ga95dSavic. [318] Angus R. Simpson, Graeme C. Dandy, and Laurence J. Murphy. Optimisation of Cobdogla irrigation area pipe network design using genetic algorithms. ? ?, 1995. †Lazauskas/bib ga95dSimpson. [319] Angus R. Simpson, Graeme C. Dandy, and Lawrence J. Murphy. Genetic algorithm optimization study of the year 2015 water distribution systems expansion plan for Fort Collins-Loveland water district. ? ?, 1995. †Lazauskas/bib ga95eSimpson. [320] Graeme C. Dandy, Angus R. Simpson, and Laurence J. Murphy. An improved genetic algorithm for pipe network optimization. Water Resources Research, 32(2):449–458, February 1996. †NASA ADS ga96aGCDandy. [321] K. El Harrouni, Driss Ouazar, Godfrey A. Walters, and A. H. D. Cheng. Groundwater optimization and parameter estimation by genetic algorithm and dual reciprocity boundary element method. Eng. Anal. Bound. Elem. (UK), 18(4):287–296, 1996. †CCA71316/97 ga96aHarrouni. [322] D. Milutin and J. J. Bogardi. Application of genetic algorithms to derive the release distribution within a complex reservoir system. In A. Muller, editor, Proceedings of the hydroinformatics, volume 1-2, page ?, Zurich, Switzerland, 9.-13. September 1996. A a Balkema, Rotterdam. †P72628 ga96aMilutin. [323] J. G. Ndiritu and T. M. Daniell. Time-domain tuned rainfall-runoff models optimized using genetic algorithms. In P. Zannetti and C. A. Brebbia, editors, Proceedings of the Development and Application of Computer Techniques to Environmental Studies VI, volume ?, page ?, Como (Italy), 18.-20. September 1996. Computational Mechanics Publications Ltd. Southampton. †P73400 ga96aNdiritu. [324] David Barrett, Mark Grosenbaugh, and Michael Triantafyllou. Optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. In Proceedings of the 1996 IEEE Symposium on Autonomous Underwater Vehicle Technology, pages 1–9, Monterey, CA, 2.-6. June 1996. IEEE, Piscataway, NJ. †EI M165842/96 ga96bBarrett. [325] J. Guo and S. H. Huang. Control of an autonomous underwater vehicle testbed using fuzzy logic and genetic algorithms. In Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, pages 485–489, Monterey, CA, 2.-6. June 1996. IEEE, New York, NY. * CCA71403/96 ga96bGuo. [326] Walter Cede˜ no and V. Rao Vemuri. Genetic algorithms in aquifer management. Journal of Network and Computer Applications, 19(2):171–187, April 1996. †CCA41598/96 ga96bWCedeno. [327] Jason M. Daida, Robert R. Bertram, David R. Lyzenga, Christian Wolf, David T. Walker, Stephen A. Stanhope, Guy A. Meadows, John F. Vesecky, and Donald E. Lund. Measuring small-scale water surface waves: nonlinear interpolation & integration techniques for slope-image data. In Proceedings of the 1996 International Geoscience and Remote Sensing Symposium, volume 4, pages 2219–2221, Lincoln, NE (USA), 28.-31. May 1996. IEEE, Piscataway, NJ. †EI M168860/96 ga96dDaida. [328] Carlos A. Coello Coello and Jos´e Alonso Figueroa. Use of genetic algorithms to solve optimal regional water quality management problems. In Ian Parmee and M. J. Denham, editors, Adaptive Computing in Engineering Design and Control ’96 (ACEDC’96), 2nd International Conference of the Integration of Genetic Algorithms and Neural Network Computing and Related Adaptive Techniques with Current Engineering Practice, pages 159–166, Plymouth (UK), 26.-28. March 1996. ? †CoelloCoello ga96eCoelloCoello.
42
Genetic algorithms in agriculture
[329] C. L. Huang and A. S. Mayer. Pump-and-treat optimization using well locations and pumping rates as decision variables. Water Resources Research, 33(5):1001–1012, ? 1997. †[93] ga97aCLHuang. [330] Ch.-H. Yeh and J. W. Labadie. Multiobjective watershed-level planning of storm water detention systems. J. Water Resour Plann Manage, 123(6):336–343, 1997. †EI M030663/98 ga97aCh-HYeh. [331] Dragan A. Savic and Godfrey A. Walters. Evolving sustainable water networks. Hydrol. Sci., 42(4):549–563, 1997. †EI M184601/97 ga97aDASavic. [332] Driss Halhal, Godfrey A. Walters, and Driss Ouazar. Water network rehabilitation with a structured messy genetic algorithm. Journal of Water Resource Planning and Management, 123(3):137–, ? 1997. †[294] ga97aDHalhal. [333] Dong Gyu Lee, Han-Gon Kim, Won-Pil Baek, and Soon Heung Chang. Critical heat flux prediction using genetic programming for water flow in vertical round tubes. Int. Commun. Heat Mass Transf. (UK), 24(7):919–929, 1997. †PA50192/98 ga97aDongGyuLee. [334] Fan-Lun Xiong and Yu-Ming Chen. Management of water resources using improved genetic algorithms. New Rev. Appl. Expert Syst. (UK), 3:109–119, 1997. †CCA105652/97 ga97aFan-LunXiong. [335] John Smith, Edgard Carreon, and Kazuo Sugihara. A web-accessible tool for design of distributed genetic algorithms. Technical Report ICS-TR-97-09, University of Hawaii at Manoa, Department of Information and Computer Sciences, 1997. ga97aJohnSmith ⇒ http://www.ics.hawaii.edu/~sugihara/research/ ics-tr-97-09.ps.gz. [336] L. F. R. Reis, R. M. Porto, and F. H. Chaudhry. Optimal location of control valves in pipe networks by genetic algorithm. J. Water resour. Plann. Manage., 123(6):317–320, 1997. †EI M030588/98 ga97aLFRReis. [337] Liu Lexing and Mao Zongyuan. Water turbines PID controller based on genetic algorithm. Autom. Electr. POwer Syst. (China), 21(12):41–43, 1997. In Chinese †CCA27509/98 ga97aLiLexing. [338] Mingguang Wang and Chunmiao Zheng. Optimal remediation policy selection under general conditions. Ground Water, 35(5):757–764, September-October 1997. ga97aMWang. [339] M. J. Rendas and G. Bienvenu. Tuning genetic algorithms for underwater acoustics using a priori statistical information. In Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 467–470, Munich (Germany), 21.-24. April 1997. IEEE Computer Society Press, Los Alimitos, CA. †P75734 ga97aRendas. [340] Liu Lexing and Mao Zongyuan. Water turbines PID controller based on genetic algorithm. Autom. Electr. Power Syst. (China), 21(12):41–43, 1997. In Chinese †CCA27509/98 ga97bLiLexing. [341] Dragan A. Savic and Godfrey A. Walters. Genetic algorithm for least-cost design of water distribution networks. Journal of Water Resources Planning and Management, 123(2):67–, ? 1997. †[294] ga97cDASavic. [342] A. B. C. Hilton and T. B. Culver. Groundwater bioremediation optimization using genetic algorithms. In Proceedings of the Water Resources and the Urban Environment, pages 633–638, Chicago, IL, 7.-10. June 1998. Amer. Soc. Civil. Engineers, New York (USA). †P85432 ga98aABHilton. [343] Luis Castillo and Antonio Gonz´ alez. Distribution network optimization: Finding the most economic solution by using genetic algorithm. European Journal of Operational Research, 108(3):527–537, 1. August 1998. ga98aCastillo. [344] David J. Ferkinhoff and John G. Baylog. Method and apparatus for preforming mutations in a genetic algorithm-based underwater tracking system, 1998. (U. S. patent no. 5,777,948. Issued July 7 1998; http: //appft1.uspto.gov/netahtml/PTO/search-adv.html) ga98aDJFerkinhoff. [345] W. B. F. Deschaetzen, Dragan A. Savic, and Godfrey A. Walters. A genetic algorithm approach to pump scheduling in water-supply systems. In Hydroinformatics’98, volume 1,2, pages 897–900, 1998. †P82170 ga98aDeschaet. [346] Godfrey A. Walters, Dragan A. Savic, M. Morley, W. Deschaetzen, and R. Atkinson. Calibration of water distribution network models using genetic algorithms. In Hydraulic Engineering Software VII, pages 131– 140, 1998. †P84338 ga98aGWalters. [347] J. N. C. Guerreiro, Helio J. C. Barbosa, E. L. M. Garcia, A. F. D. Loula, and S. M. C. Malta. Identification of reservoir heterogeneities using tracer breakthrough profiles and genetic algorithms. SPE Reservoir Eval. Eng., 1(3):218–223, 1998. †ChA97430j/98 ga98aGuerreir. [348] Jun Zhao, B. Knight, E. Nissan, M. Petridis, and A. J. Soper. The FUELGEN alternative: an evolutionary approach. the architecture. New Rev. Appl. Expert Syst. (UK), 4:177–183, 1998. †CCA83258/98 ga98aJZhao.
Bibliography
43
[349] Jun Zhao, B. Knight, E. Nissan, and A. J. Soper. FUELGEN: effective evolutionary design of refuellings for pressurized water reactors. Comput. Artif. Intell. (Slovakia), 17(2-3):105–125, 1998. †CCA83245/98 ga98aJunZhao. [350] Jahangir Morshed and Jagath J. Kaluarachchi. Parameter estimation using artificial neural network and genetic algorithm for free - product migration and recovery. Water Resour. Res., 34(5):1101–1113, 1998. †ChA128:326026e ga98aMorshed. [351] R. M. Atkinson, M. S. Morley, Godfrey A. Walters, and Dragan A. Savic. GANET - the integration of GIS, network analysis and genetic algorithm optimization software for water network analysis. Hydroinformatics’98, 1:357–362, 1998. †P82170 ga98aRMAtkinson. [352] M. Snellen and D. G. Simons. Underwater target localization and estimation of ocean environmental parameters using a genetic algorithm. In Proceedings of the Fuzzy Logic and Intelligent Technologies for Nuclear Science and Industry, pages 276–285, Antwerp, Belgium, 14.-16. September 1998. World Scientific Publ. Co. Pte. Ltd, Singapore. †P83660 ga98aSnellen. [353] Jun Zhao, B. Knight, E. Nissan, and A. J. Soper. FUELGEN: a genetic algorithm-based system for fuel loading pattern design in nuclear power reactors. Expert Systems Appl. (UK), 14(4):461–470, 1998. †CCA73861/98 ga98bJunZhao. [354] Mingguang Wang and Chunmiao Zheng. Ground water management optimization using genetic algorithms and simulated annealing: Formulation and comparison. Journal of the American Water Resources Association, 34(3):519–530, ? 1998. †[93] ga98bMWang. [355] S. Y. Liong, S. T. Khu, and W. T. Chan. Novel application of genetic algorithm and neural network in water resources: Development of Pareto front. In ?, editor, Proceedings of the 11th Cogress IAHR-APD, pages 185–194, Yogyakarta (Indonesia), ? 1998. ? †[375] ga98bSYLiong. [356] Aleksandra B. Djuriˇsi´c and Boˇzidar V. Stani´c. Modeling the temperature dependence of the index of refraction of liquid water in the visible and the near-ultraviolet ranges by a genetic algorithm. Applied Optics, 38(1):11–17, 1. January 1999. ga99aABDjurisic. [357] Aleksandra B. Ic and Idar V. Stanic. Modeling the temperature dependence of the index of refraction of liquid water in the visible and the near-ultraviolet ranges by a genetic algorithm. Applied Optics, 38(1):11– 17, January 1999. †NASA ADS ga99aABIc. [358] A. D. Savic, G. A. Walters, R. M. Atkinson, and M. R. Smith. Genetic algorithm optimization of large water distribution system expansion. Meas Control (UK), 32(4):104–109, 1999. †CCA84012/99 ga99aADSavic. [359] C. A. Garrett, Junqi Huang, M. N. Goltz, and G. B. Lamont. Parallel real-valued genetic algorithms for bioremediation optimization of TCE-contaminated groundwater. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 2183–2189, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA84953/99 ga99aCAGarrett. [360] Dick G. Simons and Mirjam Snellen. Broadband inversion of shallow-water range-dependent acoustic data using a genetic algorithm. The Journal of the Acoustical Society of America, 105(2):1310, February 1999. †NASA ADS ga99aDGSimons. [361] Jiang Qian, Elmar St¨ ockelmann, and Reinhard Hentschke. Global potential energy minima of SPC/E water clusters without and with polarization using a genetic algorithm. J. Mol. Model., 5(12):281– 286, ? 1999. (http://link.springer.de/link/service/journals/00894/papers/9005012/90050281.pdf) ga99aJiangQian. [362] K. L. Katsifarakis, D. K. Karpouzos, and N. Theodossiou. Combined use of BEM and genetic algorithms in groundwater flow and mass transport problems. Eng. Anal. Bound. Elem. (UK), 23(7):555–565, 1999. †CCA67287/99 ga99aKatsifarakis. [363] Srinivasa Lingireddy and Lindell E. Ormsbee. chapter 3. Neural networks in optimal calibration of water distribution systems, pages 53–76. American Society of Civil Engineers, Reston, VA, 1999. ga99aLingireddy. [364] Wolfgang Rauch and Poul Harremoes. Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems. Water Research, 33(5):1265–1277, ? 1999. * ChA 256647y/99 ga99aRauch. [365] Alaa H. Aly and Richard C. Peralta. Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems. Water Resources Research, 35(8):2415–2426, August 1999. †NASA ADS ga99bAHAly. [366] Srinivasa Lingireddy and Lindell E. Ormsbee. Optimal network calibration model based on genetic algorithms. In ?, editor, Proceedings of the ASCE Annual Conference of Water Resources Planning and Management, page ?, Tampe, AZ, ? 1999. ASCE. †[294] ga99bLingireddy.
44
Genetic algorithms in agriculture
[367] Leah Lucille Rogers. Optimal groundwater remediation using artificial neural networks and the genetic algorithm. PhD thesis, Stanford University, 1992. * DAI 53/9 ga:LLRogersThesis. [368] P. W. Poon and G. T. Parks. Optimizing PWR reload core design. In M¨ anner and Manderick [378], pages 371–380. ga:Poon92a. [369] Graeme C. Dandy, Angus R. Simpson, and Laurie J. Murphy. Review of pipe network optimization techniques. In Proceedings of the 2nd Australasian Conference on Computing for the Water Industry Today and Tomorrow, pages 373–383, Melbourne, March30.- April 1. 1993. IE Australia, Crows Nest, NSW. * EI M169866/93 ga:Simpson93a. [370] Timothy Johnson and Philip Husbands. System identification using genetic algorithms. In Hans-Paul Schwefel and R. M¨ anner, editors, Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer Science, pages 85–89, Dortmund (Germany), 1.-3. October 1990. Springer-Verlag, Berlin. ga:TJohnson90. [371] John R. Koza. Genetic Programming: On Programming Computers by Means of Natural Selection and Genetics. The MIT Press, Cambridge, MA, 1992. ga:Koza92book. [372] Javier Causa, Gorazd Karer, Alfredo N´ ˇ n ˜ez, Doris S´ aez, Igor Skrjanc, and Borut Zupanˇciˇc. Hybrid fuzzy predictive control based on genetic algorithms for the temperature control of a batch reactor. Computers and Chemical Engineering, 32(?):3254– 3263, ? 2008. ga08aJavierCausa. [373] Stephanie Forrest, editor. Proceedings of the Fifth International Conference on Genetic Algorithms, UrbanaChampaign, IL, 17.-21. July 1993. Morgan Kaufmann, San Mateo, CA. ga:GA5. [374] Proceedings of the Second IEEE Conference on Evolutionary Computation, Perth (Australia), November 1995. IEEE, New York, NY. ga95ICEC. [375] K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 5(6):565– 588, December 2001. ga01aKCTan. [376] Pavel Oˇsmera, editor. Proceedings of the MENDEL’96, Brno (Czech Republic), June 1996. Technical University of Brno. ga96Brno. [377] Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors. Parallel Problem Solving from Nature – PPSN IV, volume 1141 of Lecture Notes in Computer Science, Berlin (Germany), 22.-26. September 1996. Springer-Verlag, Berlin. ga96PPSN4. [378] R. M¨ anner and B. Manderick, editors. Parallel Problem Solving from Nature, 2, Brussels, 28.-30. September 1992. Elsevier Science Publishers, Amsterdam. ga:PPSN2.
Notations †(ref) = the bibliography item does not belong to my collection of genetic papers. (ref) = citation source code. ACM = ACM Guide to Computing Literature, EEA = Electrical & Electronics Abstracts, BA = Biological Abstracts, CCA = Computers & Control Abstracts, CTI = Current Technology Index, EI = The Engineering Index (A = Annual, M = Monthly), DAI = Dissertation Abstracts International, P = Index to Scientific & Technical Proceedings, PA = Physics Abstracts, PubMed = National Library of Medicine, BackBib = Thomas B¨ack’s unpublished bibliography, Fogel/Bib = David Fogel’s EA bibliography, etc * = only abstract seen. ? = data of this field is missing (BiBTeX-format). The last field in each reference item in Teletype font is the BiBTEXkey of the corresponding reference.
Appendix A
Bibliography entry formats This documentation was prepared with LATEX and reproduced from camera-ready copy supplied by the editor. The ones who are familiar with BibTeX may have noticed that the references are printed using abbrv bibliography style and have no difficulties in interpreting the entries. For those not so familiar with BibTeX are given the following formats of the most common entry types. The optional fields are enclosed by ”[ ]” in the format description. Unknown fields are shown by ”?”. † after the entry means that neither the article nor the abstract of the article was available for reviewing and so the reference entry and/or its indexing may be more or less incomplete. Book: Author(s), Title, Publisher, Publisher’s address, year. Example
John H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, 1975. Journal article: Author(s), Title, Journal, volume(number): first page – last page, [month,] year. Example
David E. Goldberg. Computer-aided gas pipeline operation using genetic algorithms and rule learning. Part I: Genetic algorithms in pipeline optimization. Engineering with Computers, 3(?):35–45, 1987. †. Note: the number of the journal unknown, the article has not been seen. Proceedings article: Author(s), Title, editor(s) of the proceedings, Title of Proceedings, [volume,] pages, location of the conference, date of the conference, publisher of the proceedings, publisher’s address. Example
John R. Koza. Hierarchical genetic algorithms operating on populations of computer programs. In N. S. Sridharan, editor, Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), pages 768–774, Detroit, MI, 20.-25. August 1989. Morgan Kaufmann, Palo Alto, CA. † . Technical report: Author(s), Title, type and number, institute, year. Example
Thomas B¨ ack, Frank Hoffmeister, and Hans-Paul Schwefel. Applications of evolutionary algorithms. Technical Report SYS-2/92, University of Dortmund, Department of Computer Science, 1992.
45
46
Vaasa GA Bibliography
Vaasa GA Bibliography
47
Vaasa Genetic Algorithm Bibliography Search & Optimise Main features:
• Over 20,000 references to published papers • by over 20,000 researchers. • Available as over 70 special bibliographies online: ftp://ftp.uwasa.fi/cs/report94-1/ga*bib.pdf files. • Covers all sciences and engineering fields, from basic theory to applications. • Several indexes and statistical summaries. • See what problems evolution can solve for you! Global optimisation and search heuristics called genetic algorithm mimics evolution in nature using recombination and selection from a set of solution trials called population. One of the most prominent attractive features of genetic algorithms from the practical point of view of software techniques is their simplicity, which makes them easy to implement and tailor to solve practical search and optimisation problems. In spite of the seemingly simple processing, the genetic algorithms are good at solving some problems that are known to be hard. The simplicity, generality, flexibility, parallelism, and the good problem solving capability have made genetic algorithm very popular among various disciplines desperately searching methods to solve difficult optimisation problems.
————— Observe that our server has also a selection of our papers on genetic algorithms and other compuational topics. See our bibliographies or file ftp.uwasa.fi/cs/README for further details.
48
file ga90bib.ps.Z . . . ga02bib.ps.Z gaACOUSTICSbib.pdf gaAIbib.pdf gaAERObib.pdf gaAGRObib.pdf gaALIFEbib.pdf gaARTbib.pdf gaAUSbib.pdf gaBASICSbib.pdf gaBIObib.pdf gaCADbib.pdf gaCHEMbib.pdf gaCHEMPHYSbib.ps.Z gaCIVILbib.pdf gaCODEbib.pdf gaCOEVObib.pdf gaCONTROLbib.pdf gaCSbib.pdf gaEARLYbib.pdf gaEAST-EURObib.ps.Z gaECObib.pdf gaECOLbib.pdf gaELMAbib.pdf gaESbib.pdf gaFAR-EASTbib.ps.Z gaFEMbib.pdf gaFPGAbib.pdf gaFRAbib.ps.Z gaFTPbib.ps.Z gaFUZZYbib.pdf gaGEObib.pdf gaGERbib.ps.Z gaGPbib.pdf gaIMPLEbib.pdf gaINDIAbib.ps.Z gaINVERSEbib.pdf gaIREGbib.pdf gaISbib.pdf gaJAPANbib.ps.Z gaLCSbib.pdf gaLASERbib.pdf gaLATINbib.ps.Z gaLOGISTICSbib.pdf gaMANUbib.pdf gaMATHbib.pdf gaMEDICINEbib.pdf gaMEDITERbib.ps.Z gaMICRObib.pdf gaMILbib.pdf gaMLbib.pdf gaMSEbib.pdf gaNANObib.pdf gaNIRbib.pdf gaNNbib.pdf gaNORDICbib.pdf gaOPTICSbib.pdf gaOPTIMIbib.pdf gaORbib.pdf
Vaasa GA Bibliography
# refs . ..
updated . ..
557 190 2402 854 359 181 163 659 1040 1358 1346 938 2277 1068 377 232 1843 1453 723 679 1515 128 568 464 2066 86 222 462 1353 1476 409 1586 971 1419 276 291 168 87 2404 211 58 649 689
2009/01/07 2008/03/20 2008/09/18 2010/03/26 2008/03/20 2008/03/12 2003/07/09 2009/01/07 2009/08/21 2010/03/05 2008/08/13 2003/07/09 2009/07/24 2009/04/24 2003/07/09 2003/07/09 2009/08/17 2009/08/17 2004/09/22 2008/08/13 2009/08/17 2003/05/23 2010/01/08 2009/07/24 2009/08/17 2008/05/22 2008/08/13 2009/07/31 2003/07/09 2009/07/27
846 656 1810 83 113 897 490 109 194 1800 948 1961 923 1662
2009/07/27 2010/03/04 2003/07/09 2008/03/31 2009/08/17 2007/11/02 2008/06/11 2008/04/07 2009/07/27 2008/03/12 2009/06/18 2010/03/24 2003/07/09 2008/08/14
2009/08/17 2007/11/01 2009/01/07 2010/04/09 2009/07/24 2009/07/24 2008/05/22 2008/08/13 2008/08/11 2009/07/24 2009/07/24
...table continues on the next page...
contents GA in 1990 . .. GA in 2002 GA in acoustics (new: March 2008) GA in artificial intelligence GA in aerospace GA in agriculture (new) GA in artificial life GA in art and music GA in Australia and New Zealand Basics of GA GA in biosciences including medicine GA in Computer Aided Design GA in chemical sciences ; previously in gaCHEMPHYSbib.ps.Z GA in chemistry and physics; divided into gaCHEMbib.ps.Z and gaPHYSbib.ps.Z 2002 GA in civil, structural, and mechanical engineering GA coding co- and differential evolution GA(new) GA in control and process engineering GA in comp. sci. (incl. databases, /mining, software testing and GP) GA in yearly yeas (upto 1989) new GA in the Eastern Europe GA in economics and finance GA in ecology and biodiversity (new: 1.8.2008) GA in electromagnetics Evolution strategies GA in the Far East (excl. Japan) GA & FEM (new May 2008) GA & FPGA (new May 2008) GA in France GA papers available via web (ftp and www) GA and fuzzy logic GA in geosciences GA in Germany, Austria, and Switzerland genetic programming implementations of GA GA in India GA in inverse problems (new: Aug 2007) image registration (new: July 2009) immune systems GA in Japan Learning Classifier Systems GA and lasers (new: April 2008) GA in Latin America, Portugal & Spain GA in logistics (incl. TSP) GA in manufacturing GA in mathematics GA in medicine (new: Nov 2007) GA in the Mediterranean GA in microscopy & microsystems (new: March 2008) GA in military applications GA in machine learning new GA in materials new GA in nanotechnology new GA in NIRS (spectroscopy) new GA in neural networks GA in Nordic countries GA in optics and image processing GA and optimization (only a few refs) GA in operations research
Vaasa GA Bibliography
file gaPARAbib.pdf gaPARETObib.pdf gaPATENTbib.pdf gaPATTERNbib.pdf gaPHYSbib.pdf gaPIEZObib.pdf gaPOWERbib.pdf gaPROTEINbib.pdf gaQCbib.pdf gaREMOTEbib.pdf gaROBOTbib.pdf gaSAbib.pdf gaSCHEDULINGbib.pdf gaSELECTIONbib.ps.Z gaSIGNALbib.pdf gaSIMULAbib.pdf gaTELEbib.pdf gaTHEORYbib.pdf gaTHESESbib.pdf gaUKbib.ps.Z gaVLSIbib.pdf
# refs 809 469 462 1528 2313 54 955 491 539 275 775 331 785 295 2403 1037 840 2483 578 1998 806
49
updated 2009/07/24 2009/03/24 2009/07/27 2007/11/06 2008/04/07 2009/08/17 2010/01/18 2008/03/12 2008/03/11 2008/08/11 2009/07/27 2009/07/24 2006/09/06 2009/07/27 2009/07/31 2009/07/24 2009/07/27 2008/08/13 2009/01/07 2008/05/22 2008/04/07
contents Parallel and distributed GA Pareto optimization GA patents GA in pattern recognition incl. LCS (new) GA in physical sciences ; previously in gaCHEMPHYSbib.ps.Z GA & piezo (new: March 2008) GA in power engineering GA in protein research quantum computing GA in remote sensing (new: 1.8.2008) GA in robotics GA and simulated annealing GA in scheduling Selection in GAs (new) GA in signal and image processing GA in simulation GA in telecom Theory and analysis of GA PhD etc theses GA in United Kingdom GA in electronics, VLSI design and testing
Table A.1: Indexed genetic algorithm special bibliographies available online in directory ftp://ftp.uwasa.fi/cs/report94-1. New updates only as .pdf files.