an optimal control approach to study cell dynamics under bone ...

3 downloads 110 Views 1MB Size Report
ABSTRACT. Bone metastasis is the spread of cancer cells from a primary tumor (e.g. prostate, breast) to the bone tissue. Clinically, it is considered incurable.
AN OPTIMAL CONTROL APPROACH TO STUDY CELL DYNAMICS UNDER BONE METASTASIS TREATMENTS Ariel Camacho, Dr. Silvia Jerez

Centro de Investigación en Matemáticas (Guanajuato, México) OPTIMAL CONTROL TREATMENTS

DENOSUMAB TREATMENT

RADIATION TREATMENT

0.4 0.3 0.2 0.1 0

(+)

100

Time (days)

50

100

Time (days)

50

100

Find a way to introduce specific, explicit cost terms (economical, side-effects). Analyze the case of linear controls or another types of cost functionals.

(OCs) (OBs) (CCs)

[Pivonka2008] B +bone mass, TGF-b from bone resorption, maturation of OCs-OBs

[Wang2011] B +multiple myeloma and other factors such as IL-6

[Komarova2003] [Jerez2016]

assumptions

Model other treatments used on bone metastasis disease.

Cell population 150

Time (days)

200

250

no control B=1e06 B=1e07 B=1e08

50

100

150

Time (days)

200

250

250

10 5

0

50

100

150

Time (days)

200

250

Osteoblasts no control B=1e9 B=1e10 B=1e11

1000 500

0

50

100

150

Time (days)

200

250

200

250

Cancer cells no control B=1e09 B=1e10 B=1e11

8000

2000

0

Time (days)

200

no control B=1e09 B=1e10 B=1e11

10000

4000

0

150

Osteoclasts

0

Cell population

[Coelho2016] A +bone metastasis, PTH dynamics and chemotherapy

100

1500

Cancer cells

6000

50

2000

200

0

0

15

0

250

400

8000

Cell population

[Ayati2010] A +multiple myeloma and also spatial dynamics with

200

no control B=1e9 B=1e10 B=1e11

10000

FUTURE WORK

150

Osteoblasts

600

0

BONE METASTASIS: THE MATHEMATICS

0

20

4

0

B=1e09 B=1e10 B=1e11

25

6

800

Cell population

FORWARD-BACKWARD ALGORITHM

0.005

250

no control B=1e06 B=1e07 B=1e08

1000

EXAMPLE OF OSTEOBLASTIC BM INTERACTION NETWORK

0.01

Osteoclasts

8

0

[Lemaire2004] B OCs-OBs+RANKL, OPG, PTH, TGF-beta (LMA)

200

2

(+)

[Komarova2003] A 2 ODEs describing OCs-OBs dynamics (S-System)

150

10

Cell population

(–)

50

12

PONTRYAGIN'S MAXIMUM PRINCIPLE (+)

0

Optimal solutions

0.015 B=1e06 B=1e07 B=1e08

0.5

EXAMPLE OF OSTEOLYTIC BM INTERACTION NETWORK

(–)

Optimal solutions

0.6

BONE METASTASIS: THE BIOLOGY

RADIATION TREATMENT

Radiation impact

DENOSUMAB TREATMENT

Cell population

Bone metastasis is the spread of cancer cells from a primary tumor (e.g. prostate, breast) to the bone tissue. Clinically, it is considered incurable. Metastatic cells trigger a vicious cycle within the bone microenvironment by manipulating bone cells (osteo-blasts, -clasts, -cytes) in order to sustain its invasion. Using ecological principles, we examine this complex interaction network with mathematical models. Applying optimal control theory we aim to study bone metastasis treatments. The optimal treatment is modeled to minimize side-effects and the cost.

RESULTS

Effectivity

ABSTRACT

6000 4000 2000 0

0

50

100

150

Time (days)

Parameter estimation/data fit and incorporate into optimal control problem.

REFERENCES

Combine multiple BMUs/regions and study their dynamics under treatments.

[Komarova2003] Komarova, S. V., Smith, R. J., Dixon, S. J., Sims, S. M., & Wahl, L. M. (2003). Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone, 33(2), 206-215. [Lemaire2004] Lemaire, V., Tobin, F. L., Greller, L. D., Cho, C. R., & Suva, L. J. (2004). Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. Journal of theoretical biology, 229(3), 293-309.

Apply optimal control framework for Lemaire-type models. Propose a spatial model for BMU-metastasis interactions + treatments.