Can predict multicomponent LLE using same gE model. (e.g. NRTL) for all phases. ⢠Model fit to binary data. ⢠Use reliable algorithm to guarantee stable.
Asymmetric Framework (AF) for Modeling Liquid-Liquid Equilibrium Involving Ionic Liquids Luke D. Simoni, Joan F. Brennecke and Mark A. Stadtherr Department of Chemical and Biomolecular Engineering University of Notre Dame 2007 AIChE Annual Meeting Salt Lake City, Utah November 4-9, 2007
Outline I. II. III. IV. V. A. B.
Introduction and motivation Background Problem formulation Activity coefficient models used Results Ternary phase equilibrium diagrams Octanol-water partition coefficients (Kow’s)
VI. Conclusions
Introduction and Motivation • Electrolytes ionize to varying degrees in different equilibrium liquid phases – Varying mixed-solvent dielectric constants, ε – Varying electrolyte concentrations
• As first approximation of this behavior assume – ILs completely ionize if ε > εc AND xIL < xcut – ILs are paired if ε < εc – Let εc = 60 AND xcut = 0.1
• Predict multicomponent LLE from binary data • Model separations and extractions with IL solvents – BuOH & EtOH from fermentation broths
• Estimate bioaccumulation – Kow = CILoctanol/CILwater
IL and Alcohol Nomenclature • Cations in this work: R'''
N+
N
R''
General: This work:
[R’R’’R’’’im] [bmim], [hmim], [omim] & [hmmim]
m = methyl b = butyl
h = hexyl o = octyl
R'
• Anions in this work: PF6= (CF3SO2)2N- =
[PF6] [Tf2N]
• Alcohols in this work: Ethanol = EtOH Octanol
Symmetric Predictions for Ternary LLE
Using Only Binary Data EtOH • Can predict multicomponent LLE 0.0 1.0 E 0.1 using same g model Type 1 0.9 0.2 (e.g. NRTL) for all phases 0.8 0.3 0.7 • Model fit to binary data 0.4 0.6 0.5 0.5 • Use reliable algorithm to 0.6 0.4 guarantee stable 0.7 0.3 0.8 equilibrium is found 0.2 0.9 0.1 • Qualitatively predicts 1.0 Type 1 and 2 ternary Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 [hmim][Tf2N] diagrams Experimental Tie Lines NRTL Tie Lines • Can we improve [hmim][Tf2N] = predictions by using 1-hexyl-3-methylimidazolium different models for each bis(trifluoromethylsulfonyl)imide phase?
Problem Formulation Asymmetric Framework System: IL(1)/Alcohol(2)/Water(3) α-phase organic/IL-rich
εα < 60
β-phase aqueous
1 +
-
εβ > 60 -
+
2 3
IL
xILβ < 0.1
2
3
z + z− e 2
g ≡− RT 8πε 0 ε IL k B T σ IL reference (1): Pure dissociated liquid salt at T and P Solvent reference (2 & 3): Pure liquid solvent at T and P
Problem Formulation Asymmetric Framework Alcohol 0.0 1.0 0.1 0.9 Organic/IL-rich Complete 0.2 Phase (α) Dissociation 0.8 0.3 Molecular IL Electrolyte Model 0.7 Molecular Model 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 > C 1.0 0.0 IL Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Aqueous Phase (β)
ε
ε
∑ i∈ILs
xiβ < 0.1
Problem Formulation Asymmetric Framework • Gibbs energy forms in each phase g αM g αE α α α gi = ∑ xi ln xi + + ∑ xi RT i∈{E,S} RT i∈E RT E gβM g ν i y±β,i ν i y±β,i β =∑ ln + ∑ yiβ ln yiβ + RT i∈E ν ± ,i RT ν ± ,i i∈S
Molecular phase
Electrolytic phase
• First-order optimality conditions 2 − z z e ν + − β β α α νγ y = γ ( ± ± ) 1 x1 + exp 8π k T ε ε σ , B 0 2 γ 2β y2β = γ 2α x2α System: IL(1)/Solvent(2)
For Parameter Estimation
Problem Formulation Asymmetric Framework
gº1 RT
x1cut = 0.1
System: IL(1)/Solvent(2)
Problem Formulation Asymmetric Framework
gº1 RT
x1cut = 0.1
System: IL(1)/Solvent(2)
Molecular Model Domain
Problem Formulation Asymmetric Framework
gº1 RT
x1cut = 0.1
Electrolyte Model Domain
System: IL(1)/Solvent(2)
Problem Formulation Stability Analysis
System: IL(1)/Solvent(2) gº1 RT
Case 1 z1 > x1cut x1cut = 0.1
1. Feed composition (z) in molecular domain
Problem Formulation Stability Analysis
System: IL(1)/Solvent(2) gº1 RT
Case 2 z1 < x1cut x1cut = 0.1
2. Feed composition (z) in electrolyte domain
Problem Formulation Stability Analysis
System: IL(1)/Solvent(2)
Case 2 z1 < x1cut
Case 1 z1 > x1cut
x1cut = 0.1
1. Feed composition (z) in molecular domain 2. Feed composition (z) in electrolyte domain
Problem Formulation Stability Analysis T β g g D I = (ν − 1) x1 + 1 − α RT RT
≥0 z
Case 1 Stable Single Phase System: IL(1)/Solvent(2) Dα > 0 DI > 0 x1cut = 0.1
z1
Problem Formulation Stability Analysis gβT
α
D II =
g − (ν − 1) z1 + 1 RT RT
≥0 z
Case 2 Stable l Single Phase z1
Dβ > 0
System: IL(1)/Solvent(2)
DII > 0
x1cut = 0.1
Problem Formulation Stability Analysis T β g g D I = (ν − 1) x1 + 1 − α RT RT
≥0 z
T α g g β D II = − (ν − 1) z1 + 1 RT RT
Cases 1 & 2 Stable Biphasic (DII & Dα) > 0 x1α
x1β
(DI & Dβ) > 0 x1cut = 0.1
≥0 z
Problem Formulation Stability Analysis T β g g D I = (ν − 1) x1 + 1 − α RT RT
≥0 z
T α g g β D II = − (ν − 1) z1 + 1 RT RT
Cases 1 & 2 Stable Biphasic (DII & Dα) > 0
x1β
(DI & Dβ) > 0 x1cut = 0.1
x1α
≥0 z
gE Models Used NRTL (NonRandom Two-Liquid)
IL
•Assumes molecular IL •Describes nonideality via local composition (LC) (Renon & Prausnitz, 1968)
UNIQUAC (UNIversal QUAsi-Chemical theory) •Assumes molecular IL •Describes residual and combinatorial contributions •Requires physical r & q parameters for size and shape (Abrams & Prausnitz, 1975)
eNRTL (electrolyte-NRTL)
IL +
&
-
•Assumes –completely dissociated IL –Dielectric continuum = mixture of non-IL components
•Describes LC and electrostatic (Pitzer-Debye-Hückel, PDH) contributions •Requires mixed solvent properties (averaged) (Chen et al., 1982)
Results Predicted from Binary Data
1. Ternary phase equilibrium diagrams: 1. Type 1 [hmim][Tf2N]/EtOH/Water 2. Type 2a [bmim][PF6]/EtOH/Water
2. Octanol-water partition coefficient, Kow predictions
Type 1 [hmim][Tf2N]/Ethanol/Water at 298 K EtOH 0.0 Binary: Ethanol/Water 1.0 NRTL: Kurihara et al. (1993) 0.1 Kato & Gmehling (2005) 0.9 UNIQUAC: DECHEMA VLE 0.2 0.8 0.3 0.7 Binary: IL/Water 0.4 Physical ri and qi data 0.6 Chapeaux et al. (2007) 0.5 Kato & Gmehling (2005) 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 [hmim][Tf2N]
Binary: IL/Ethanol
Type 1 experimental
(Chapeaux et al., in preparation)
[hmim][Tf2N] = 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
Type 1 [hmim][Tf2N]/Ethanol/Water at 298 K Experimental Tie Lines NRTL
EtOH Type 1 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 [hmim][Tf2N]
Type 1 [hmim][Tf2N]/Ethanol/Water at 298 K Experimental Tie Lines UNIQUAC
EtOH Type 1 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 [hmim][Tf2N]
Type 1 [hmim][Tf2N]/Ethanol/Water at 298 K Experimental Tie Lines eNRTL
EtOH Type 1 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 [hmim][Tf2N]
Type 1 [hmim][Tf2N]/Ethanol/Water at 298 K Experimental Tie Lines AF: UNIQUAC/eNRTL
EtOH Type 1 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 [hmim][Tf2N]
Type 1 [hmim][Tf2N]/Ethanol/Water at 298 K Experimental Tie Lines AF: NRTL/eNRTL
EtOH Type 1 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 [hmim][Tf2N]
Type 2a [bmim][PF6]/Ethanol/Water Binary: IL/Ethanol
[bmim][PF6]
Binary: Ethanol/Water NRTL: Kurihara et al. (1993) UNIQUAC: DECHEMA VLE
Najdanovic-Visak et al. (2003)
Binary: IL/Water
Physical ri and qi data
Anthony et al. (2004) Najdanovic-Visak et al. (2002)
Banerjee et al. (2005)
Ethanol
Water Type 2a experimental
(Najdanovic-Visak et al., 2003)
[bmim][PF6] = 1-butyl-3-methylimidazolium hexafluorophosphate
Type 2a [bmim][PF6]/Ethanol/Water at 298 K [bmim][PF6] 0.0
Experimental binodal NRTL eNRTL
0.1 0.2 0.3
0.4 0.5 0.6 0.7 0.8 0.9 1.0
Type 2 predictions
1.0 0.9 0.8 0.7
0.6 0.5 0.4 0.3 0.2 0.1 0.0
Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 EtOH
Type 2a [bmim][PF6]/Ethanol/Water at 298 K [bmim][PF6] 0.0
Experimental binodal eNRTL AF: UNIQUAC/eNRTL
0.1 0.2 0.3 0.4
0.5 0.6 0.7 0.8 0.9 1.0
Type 2 prediction
1.0 0.9 0.8
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 EtOH
Type 2a [bmim][PF6]/Ethanol/Water at 298 K [bmim][PF6] 0.0
Experimental binodal AF: NRTL/eNRTL
0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.8 0.9 1.0
Type 2a prediction
1.0 0.9 0.8
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 EtOH
Octanol-Water Partition Coefficients (Kow’s) Asymm Framework Ionic Liquid
NRTL
UNIQUAC
eNRTL
eNRTL
*Experimental
NRTL
UNIQUAC
[bmim][Tf2N]
0.029
0.23
0.19
0.057
0.33
0.11-0.62
[hmim][Tf2N]
13.9
11.6
2.32
1.84
0.96
1.42-1.66
[omim][Tf2N]
45.0
55.7
3.80
14.7
3.12
6.3-11.1
[hmmim][Tf2N]
0.83
1.55
0.80
1.55
1.54
1.35-1.79
K ow
CILo = w CIL
*(Ropel et al., 2005)
Conclusions • Developed AF that combines… – Molecular model: paired ions – Electrolyte model: completely dissociated ions
• Framework requires – Water as a component – Physical criteria for which model to use (ε and xIL) – Assumption: binary parameters are same for both electrolyte and molecular models • Less accurate UNIQUAC/eNRTL predictions
• AF provides quantitative improvement of IL/alcohol/water – Accurate tie lines (Type 1 & Kow)
• AF provides qualitative improvement of IL/alcohol/water – Multiple phase envelopes (Type 2a)
Acknowledgements • • • •
Dr. Youdong Lin Alexandre Chapeaux Department of Energy (DOE) National Oceanic and Atmospheric Administration (NOAA)
Additional Examples 1. More ternary phase equilibrium diagrams: 1. Type 2 [hmim][Tf2N]/BuOH/Water 2. Type 3b [bmim][Tf2N]/BuOH/Water
Type 2 [hmim][Tf2N]/Butanol/Water at 298 K Butanol
Binary: Butanol/Water
Binary: IL/Butanol
0.0 DECHEMA Binary LLE 1.0 Łatchwa et al. (2006) 0.1 0.9 0.2 0.8 Physical ri and qi data 0.3 Binary: IL/Water 0.7 Kato & Gmehling (2005) 0.4 Chapeaux et al. (2007) 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 [hmim][Tf2N] Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Type 2 experimental
(Chapeaux et al., in preparation)
[hmim][Tf2N] = 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
Type 2 [hmim][Tf2N]/Butanol/Water at 298 K Butanol
Binary: Butanol/Water
Binary: IL/Butanol
0.0 DECHEMA Binary LLE 1.0 Łatchwa et al. (2006) 0.1 0.9 0.2 0.8 Physical ri and qi data 0.3 Binary: IL/Water 0.7 Kato & Gmehling (2005) 0.4 Chapeaux et al. (2007) 0.6 0.5 0.5 0.6 0.4 Compare these 0.7 0.3 Tie lines 0.8 0.2 0.9 0.1 1.0 0.0 [hmim][Tf2N] Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Type 2 experimental
(Chapeaux et al., in preparation)
[hmim][Tf2N] = 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
Type 2 [hmim][Tf2N]/Butanol/Water at 298 K Experimental tie lines NRTL tie lines
Butanol Type 2 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 [hmim][Tf2N] Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Type 2 [hmim][Tf2N]/Butanol/Water at 298 K Experimental tie lines UNIQUAC tie lines
Butanol Type 2 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 [hmim][Tf2N] Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Type 2 [hmim][Tf2N]/Butanol/Water at 298 K Experimental tie lines eNRTL tie lines
Butanol Type 2 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 [hmim][Tf2N] Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Type 2 [hmim][Tf2N]/Butanol/Water at 298 K Experimental tie lines AF: NRTL/eNRTL tie lines
Butanol Type 2 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 [hmim][Tf2N] Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Type 2 [hmim][Tf2N]/Butanol/Water at 298 K Experimental tie lines AF: UNIQUAC/eNRTL tie lines
Butanol Type 2 prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 [hmim][Tf2N] Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Type 3b [bmim][Tf2N]/Butanol/Water at 288 K Butanol
Binary: IL/Butanol Najdanovic-Visak et al. (2005)
Binary: IL/Water Crosthwaite et al. (2004)
Binary: Butanol/Water DECHEMA LLE data
Physical ri and qi data Kato & Gmehling (2005)
Water Type 3b experimental
[bmim] [Tf2N]
(Najdanovic-Visak et al., 2005)
Type 3b [bmim][Tf2N]/Butanol/Water at 288 K Butanol
1-phase
0.0
NRTL
1.0
0.1
0.9
0.2
Experimental binodal
0.8
0.3 0.4
Type 3 prediction
0.7
2-phases
0.5
0.6 0.5
0.6
2-phases
0.7
3-phases 1-phase
0.8 0.9 1.0
Water
0.4
2-phases
0.3 0.2 0.1 0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 [bmim][Tf2N]
Type 3b [bmim][Tf2N]/Butanol/Water at 288 K Butanol 0.0
eNRTL
0.1
1.0 0.9
0.2
Experimental binodal
0.8
0.3
0.7
0.4
Type 3a prediction
0.5
0.6
1-phase
0.6
0.3
0.8
1-phase
1.0
0.5 0.4
0.7
0.9
2-phases
2-phases
0.2 0.1 0.0
Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 [bmim][Tf2N]
Type 3b [bmim][Tf2N]/Butanol/Water at 288 K Butanol eNRTL AF: UNIQUAC/eNRTL Experimental binodal
Type 3a prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 [bmim][Tf2N] Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Type 3b [bmim][Tf2N]/Butanol/Water at 288 K Butanol eNRTL AF: NRTL/eNRTL Experimental binodal
Type 3a prediction
0.0 1.0 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 [bmim][Tf2N] Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Problem Formulation Asymmetric Framework – Asymmetric Framework applied when •
Dielectric Constant
ε α < 60 < ε β M i yi π ε = ∑ i∈S ∑ M i ′ yi′ i′∈S •
ε i
Electrolyte concentration
∑ i∈ILs
xια > 0.1 >
∑ i∈ILs
xιβ
(Chen & Song, 2005)
Computational Method Phase Equilibrium • Alternate between phase stability and flash calculations – Stability: Globally minimize vertical distance between Gibbs energy surface and hyper-plane with reliable algorithm. – Split: Locally minimize total Gibbs free energy of system with quasi-Newton algorithm. Use stationary points from stability global minimization as initial guesses α β
G =G +G
Problem Formulation Stability Analysis T β g g D I = (ν − 1) x1 + 1 − α RT RT
≥0 z
Problem Formulation Stability Analysis T β g g − α D I = (ν − 1) x1 + 1 RT RT
LLE
≥0 z
Type 1 [hmim][Tf2N]/Ethanol/Water at 298 K Experimental Tie Lines Composite Prediction
EtOH Type 1 prediction
0.0 1.0 0.1 Composite Prediction: 0.9 0.2 AF: NRTL/eNRTL 0.8 Symm: UNIQUAC 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1.0 0.0 Water 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 [hmim][Tf2N]
Type 2 [hmim][Tf2N]/Butanol/Water at 298 K Model(s)
RMSD (dilute in BuOH)
NRTL
3.5e-5
UNIQUAC
1.2e-4
eNRTL
6.0e-5
NRTL/eNRTL
3.6e-5
UNIQUAC/eNRTL
3.4e-5 2
3
RMSD = ∑ ∑ xi − x j
experiment,j 2 i
j=0i=0
j = phases & i = components
Octanol-Water Partition Coefficients (Kow’s) Ionic Liquid
UNIQUAC
eNRTL
Asymmetric
*Experimental
NRTL eNRTL
UNIQUAC eNRTL
[bmim][Tf2N]
0.23
0.28
0.057
0.33
0.11-0.62
[hmim][Tf2N]
11.8
3.90
1.84
0.96
1.42-1.66
[omim][Tf2N]
55.5
5.88
14.7
3.12
6.3-11.1
[hmmim][Tf2N]
1.62
1.24
1.55
1.54
1.35-1.79
[bmim][BF4]
-
-
-
-
0.0030 ± 0.0002
[hmim][BF4]
-
0.099
-
[omim][BF4]
-
0.47
-
K ow
CILo = w CIL
*(Ropel et al., 2005)