Bi-factor model DATA: FILE

114 downloads 0 Views 33KB Size Report
Mar 16, 2017 - MISERABL IRRITABL HURTFLIN FEDUP. ______ ______ ______ ______ ______. MOOD. 1.000. MISERABL 1.000. 1.000. IRRITABL 1.000.
Mplus VERSION 7.4 (Linux) MUTHEN & MUTHEN 03/16/2017 11:03 AM INPUT INSTRUCTIONS TITLE: Bi-factor model DATA: FILE = "data for bifactor model.dat"; VARIABLE: NAMES = eid mood miserable irritable hurtflings fedup nervous worrier tense embarassed nerves lonely guilt reactiontime townsend_score smokestatus selfrated_health BMI dead survivaltime age_assessment sex diabetes_diag vasculardis_diag numbertypes_exercise alcohol fiveplus_fruitveg fev1 maxgrip sysbp highest_quals cancer_diag cvd_anymention cancer_anymention respiratory_anymention external_anymention DVT chronicbronchitis asthma lungclot complete_data; USEVARIABLES = eid mood miserable irritable hurtflings fedup nervous worrier tense embarassed nerves lonely guilt; IDVARIABLE = eid; MISSING=.; ANALYSIS: ROTATION = BI-GEOMIN; MODEL: fg f1 f2 BY mood miserable irritable hurtflings fedup nervous worrier tense embarassed nerves lonely guilt (*1); OUTPUT: STDY; FSDETERMINACY; SAVEDATA: FILE IS ukbb_bifactor.sav; save is fscores; format is free;

*** WARNING in VARIABLE command Note that only the first 8 characters of variable names are used in the output. Shorten variable names to avoid any confusion. 1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

Bi-factor model SUMMARY OF ANALYSIS Number of groups Number of observations

1 321456

Number of dependent variables Number of independent variables Number of continuous latent variables

12 0 3

Observed dependent variables Continuous MOOD WORRIER

MISERABLE TENSE

IRRITABLE EMBARASSED

HURTFLINGS NERVES

FEDUP LONELY

NERVOUS GUILT

Continuous latent variables EFA factors *1: FG

F1

F2

Variables with special functions ID variable

EID

Estimator ML Rotation BI-GEOMIN Row standardization CORRELATION Type of rotation OBLIQUE Information matrix OBSERVED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Optimization Specifications for the Exploratory Factor Analysis Rotation Algorithm Number of random starts 30 Maximum number of iterations 10000 Derivative convergence criterion 0.100D-04 Input data file(s) data for bifactor model.dat Input data format

FREE

SUMMARY OF DATA Number of missing data patterns

1

COVARIANCE COVERAGE OF DATA Minimum covariance coverage value

0.100

PROPORTION OF DATA PRESENT

MOOD MISERABL IRRITABL HURTFLIN FEDUP NERVOUS

Covariance Coverage MOOD MISERABL ________ ________ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

IRRITABL ________

HURTFLIN ________

FEDUP ________

1.000 1.000 1.000 1.000

1.000 1.000 1.000

1.000 1.000

WORRIER TENSE EMBARASS NERVES LONELY GUILT

1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000

NERVOUS WORRIER TENSE EMBARASS NERVES LONELY GUILT

Covariance Coverage NERVOUS WORRIER ________ ________ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LONELY GUILT

Covariance Coverage LONELY GUILT ________ ________ 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000

TENSE ________

EMBARASS ________

NERVES ________

1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

1.000 1.000 1.000

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION Number of Free Parameters

57

Loglikelihood H0 Value H1 Value

-1911155.114 -1899006.494

Information Criteria Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC (n* = (n + 2) / 24)

3822424.229 3823033.024 3822851.875

Chi-Square Test of Model Fit Value Degrees of Freedom P-Value

24297.240 33 0.0000

RMSEA (Root Mean Square Error Of Approximation) Estimate 90 Percent C.I. Probability RMSEA