Boolean Algebra (Binary Logic)

235 downloads 5304 Views 140KB Size Report
Boolean Algebra (Binary Logic). Theorem. A + 0 = A. A + 1 = 1. A A A. A * 0 = 0 ... Code for Information Interchange). Decimal Octal Hex Binary Value (Keyboard).
Boolean Algebra (Binary Logic) Theorem A+0=A A+1=1 A+A=A A + A’ = 1

A*0=0 A*1=A A*A=A A * A’ = 0

A+B=B+A (A + B) + C = A + (B + C) AB + AC = A(B + C)

A*B=B*A (A * B) * C = A * (B * C) (A + B)*(A B) (A + C) = A + BC

Boolean Algebra (Binary Logic) A’B’ + A’B + AB = A’ + B = Z A’ B’

=>

A’ B

Z

A’ B

Z

A B A+0=A A+1=1 A+A=A A + A’ = 1

A*0=0 A*1=A A*A=A A * A’ = 0

A+B=B+A (A + B) + C = A + (B + C) AB + AC = A(B + C)

A*B=B*A (A * B) * C = A * (B * C) (A + B)*(A + C) = A + BC

Boolean Algebra (Binary Logic) More Theorem (DeMorgan) (A + B)’ = A’ * B’

Boolean Algebra (Binary Logic) More Theorem (DeMorgan) (A + B)’ = A’ * B’

(A * B)’ = A’ + B’

Boolean Algebra (Binary Logic) More Theorem (DeMorgan) (A + B)’ = A’ * B’

(A * B)’ = A’ + B’

A B

A B AB + AC

A C

AB + AC A C

Boolean Algebra (Binary Logic) More Theorem (DeMorgan) (A + B)’ = A’ * B’

(A * B)’ = A’ + B’

Why NAND and NOR gates? Why NAND and NOR gates? A B

A B AB + AC

A C

AB + AC A C

Boolean Algebra (Binary Logic) More Function (Exclusive‐OR) Z = AB’ + A’B

Boolean Algebra (Binary Logic) More Function (Exclusive‐OR) Z = AB’ + A’B

Z=A A B

B

Z

Boolean Algebra (Binary Logic) More Function (Exclusive‐OR) Z = AB’ + A’B

Z=A A B

A B’ Z A’ B

B Z

Boolean Algebra (Binary Logic)

Parity circuits: even/odd Z

ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal -------

Octal -----

Hex ---

Binary ------

Value (Keyboard) -----

ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal -------

Octal -----

Hex ---

Binary ------

Choi = $43 $68 $6F $69

Value (Keyboard) -----

ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal -------

Octal -----

Hex ---

Binary ------

Choi = $43 $68 $6F $69

0100 0011 => ‘C’ C = $43 0100 0011 => MSB odd parity

Value (Keyboard) -----

ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal -------

Octal -----

Hex ---

Binary ------

Choi = $43 $68 $6F $69

0100 0011 => ‘C’ C = $43 0100 0011 => MSB odd parity 1100 0011 => MSB even parity

Value (Keyboard) -----

ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal -------

Octal -----

Hex ---

Binary ------

Value (Keyboard) -----

Choi = $43 $68 $6F $69

0100 0011 => ‘C’ C = $43 0100 0011 => MSB odd parity 1100 0011 => MSB even parity

0110 1111 => ‘o’ o = $6F 1110 1111 => MSB odd parity 0110 1111 => MSB even parity

100 0011 => ‘C’ = $43 0100 0011 => MSB odd parity 1100 0011 => MSB even parity

110 1111 => ‘o’ = $6F 1110 1111 => MSB odd parity 0110 1111 => MSB even parity

P it Circuit Parity Ci it

D7

D6

D5

D4

D3

D2

D1

D0 = P

0100 0011 => ‘C’ = $43 0100 0011 => MSB odd parity 1100 0011 => MSB even parity

D6

D5

D4

D3

D2

D1

D0

=P

1

0

0

0

0

1

1

=P

Even Parity

1

1

0

0

0

0

1

1

D7

D6

D5

D4

D3

D2

D1

D0

Z=A

B