a worker needs to produce for the two plans to be equivalent. 6.857. W ..... Section 1.6. Continuity. 53. Section 1.6. C
C H A P T E R 1 Functions, Graphs, and Limits Section 1.1
The Cartesian Plane and the Distance Formula . . . . . . . . . . 32
Section 1.2
Graphs of Equations . . . . . . . . . . . . . . . . . . . . . . . . 35
Section 1.3
Lines in the Plane and Slope . . . . . . . . . . . . . . . . . . . . 40
Section 1.4
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Section 1.5
Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Section 1.6
Continuity
Review Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
C H A P T E R 1 Functions, Graphs, and Limits Section 1.1
The Cartesian Plane and the Distance Formula
Solutions to Even-Numbered Exercises 2. (a) a 13 12 1 12 12
4. (a) a 6 22 2 22 4
b 13 132 6 12 5
b 2 22 5 22 7
c 13 12 6 12 13
c 2 62 5 22 65
(b) a2 b2 122 52 169 c2
(b) a2 b2 42 72 65 c2 y
y 10
6
8
(13, 6)
6 4
c
(1, 1)
2
2
b (13, 1)
a
(2, 5)
4
c
b
x 4
x 2
4
6
8
10 12 14
−2
6. (a) a 3 1 2
(b)
22
(2, − 2)
(6, − 2)
(b) d 3 32 2 22 52 213
c 1 42 1 32 52 22 29 b2
8
8. (a) See graph.
b 1 4 5
a2
6
a
52
29
(c) Midpoint
c2
32 3, 2 22 0, 0
y
Subscribers (in millions)
y 3
(− 3, 2)
80
2
60
1
40
−3 −2 −1 −1
20
(0, 0)
x 2
−2
x 2
10. (a) See graph. (b) d
(3, − 2)
−3
4 6 8 10 Year (2 ↔ 1992)
3
12. (a) See graph.
56 32 1 31 361 169 2
2
56 23 1 13 3 1 (c) Midpoint , , 2 2 4 3
65
(b) d 3 12 7 12 16 64 45
6 (c) Midpoint
32 1, 7 2 1 1, 3
y
y
(−3, 7)
8 6
( 56 , 1( 1
4
(−1, 3)
( 34 , 13 (
−6 x
( 23 , − 13 (
32
1
−4
x
−2
2 −2
(1, −1)
4
Section 1.1
The Cartesian Plane and the Distance Formula 16. a 2 32 4 22 29
14. (a) See graph. (b) d 2 02 0 2 2 6
b 3 12 2 32 29
22 0, 0 2 2 1, 22
(c) Midpoint
c 2 12 4 32 58
Since a b the figure is an isosceles triangle.
y
Note: It is also a right triangle since a2 b2 c2.
3 y
(− 2, 4)
2
(0,
(−1, ( 2 2
4
2(
d1
3
(3, 2)
2 −3
x
(− 2, 0) −1
d3
1 −1
x
−3 −2 −1
1
3
−2 −3
18. a 3 02 7 12 35
4
d2 (1, − 3)
d1 5 02 11 42 74
20.
b 3 42 7 42 10
d2 0 72 4 62 149
c 4 12 4 22 35
d3 5 72 11 62 433
d 1 02 2 12 10
d1 d2 20.80888
Since a c and b d, the figure is a parallelogram.
d3 20.80865 Since d1 d2 d3, the points are not collinear.
y
(3, 7)
8 6 4
d1
y
(− 5, 11)
d2 (4, 4)
d1 8 (0, 1) −2
d4
d3
−2
6
d3
(0, 4)
x 4
2
8
(1, − 2)
x
−6 −4 −2
2
−4 −6
22.
d1 1 32 1 32 25
(5, 5) 5 4
d3 1 52 1 52 213
d2
d3
3 2
(3, 3) d1
(−1, 1)
d3 7.21110
(7, − 6)
y
d2 3 52 3 52 22 d1 d2 7.30056
8 10 12
d2
−1
−1
x 1
2
3
4
5
Since d1 d2 3, the points are not collinear. 24. d x 22 2 12 5
26. d 5 52 y 12 8
x2 4x 13 5
y 12 8
x2 4x 13 25 x2 4x 12 0
x 2x 6 0 x 2, 6
y 12 64 y1 ± 8 y1 ± 8 y 7, 9
33
34
Chapter 1
28. To show that
Functions, Graphs, and Limits
2x1 x2 2y1 y2 is a point of trisection of the line segment joining x1, y1 and x2, y2, we must show that , 3 3
1 d1 d 2 and d1 d 2 d3. 2
x x y y 1 x x y y 3 3 3 2x x 2y y x y 3 3 2x 2x 2y 2y 3 32 x x y y 3
d1
2x1 x2 x1 3 2
d2
2
1
2
2y1 y2 y1 3
2
1
2
2
1
2
2
1
2
2
1
2
2
1
y
d2
2
2
2
d1 (x 1, y 1)
2
2
1
2
2
1
2
2
1
2
(x 2, y 2)
d3
2
1
( 2x 3+ x , 2y 3+ y ( 1
2
1
2
x
2
d3 x2 x12 y2 y1 2 2x1 x2 2y1 y2 1 Therefore, d1 d 2 and d1 d2 d3. The midpoint of the line segment joining and x2, y2 is , 2 3 3
Midpoint
30. (a)
x1 2x2 y1 2y2 . , 3 3
32. c2 2002 1252 c2 55,625
1 24 2 21 , 3, 0 3 3
c 235.8495 feet
2 2 20 3 20 , 1 , 3 3 3
125
36. (a)
150
(b) 2
c
223 0, 233 0 34, 2
34.
213 4, 223 1 2, 1
(b)
2x1 x2 2y1 y2 x2 y2 3 3 , 2 2
12 0
Let t 3 correspond to 1993. Answers will vary. The number of subscribers appears to be increasing rapidly (not linearly).
38. (a)
107 103 0.039 3.9% 103
(b)
159 148 0.074 7.4% 148
8550 10,400 0.178 17.8% 10,400 10,700 8,900 0.202 20.2% 8,900
200
Section 1.2
40. (a) Revenue midpoint
Graphs of Equations
35
1999 2 2003, 256.6 2 508.6
2001, 382.6 Revenue estimate for 2001: $382.6 million Profit midpoint
1999 2 2003, 34.3 2 74.8
2001, 54.55 Profit estimate for 2001: $54.55 million (b) Actual 2001 revenue: $379.8 million Actual 2001 profit: $48.2 million (c) The revenue increased in a linear pattern (382.6 is close to 379.8). The profit is somewhat linear (54.55 is close to 48.2). (d) 1999 Expenses: 256.6 34.3 $222.3 million 2001 2003 Expenses: 508.6 74.8 $433.8 million (e) Answers will vary. 42. (a) 0, 2 is translated to 0 3, 2 3 3, 1
(b)
3
1, 3 is translated to 1 3, 3 3 2, 0 −4
3, 1 is translated to 3 3, 1 3 0, 2
4
2, 0 is translated to 2 3, 0 3 1, 3 −3
Section 1.2
Graphs of Equations
2. (a) This is a solution point since 76 49 6 0 (b) This is not a solution point since 75 410 6 1 0 1 5 (c) This is a solution point since 72 48 6 0
4. (a) This is not a solution point since x 2y x 2 5y 0215 02 515 1 0. (b) This is a solution point since x 2y x 2 5y 224 22 54 0. (c) This is not a solution point since x 2y x 2 5y 224 22 54 8 0. 6. (a) This is not a solution point since 35 275 72 14 5 (b) This is a solution point since 36 216 12 5 6 6 (c) This is a solution point since 35 215 12 5
8. The graph of y 12 x 2 is a straight line with y-intercept at 0, 2. Thus, it matches (b). 12. The graph of y x 3 x has intercepts at 0, 0, 1, 0, and 1, 0. Thus, it matches (d).
10. The graph of y 9 x2 is a semicircle with intercepts 0, 3, 3, 0, and 3, 0. Thus, it matches (f).
36
Chapter 1
Functions, Graphs, and Limits
14. Let y 0: 4x 5 0
16. Let x 0: y 3
5 4
y-intercept: 0, 3
x
x-intercept:
5 4,
0
Let y 0:
x 3x 1 0
Let x 0: 2y 5 0 y y–intercept: 0,
52
52
x 3, 1 x-intercepts: 3, 0, 1, 0 20. The y-intercept is 0, 0. To find the x-intercepts, let y 0 to obtain
18. Let x 0: y2 0 y0
0
y-intercept: 0, 0 Let y 0:
x3 4x 0
0 xx 3
x 0, 2, 2 x-intercepts: 0, 0, 2, 0, 2, 0 22. Let x 0: 8y 1
x2 3x 3x 12
0 x2 3x
xx 2x 2 0
y
x 2 4x 3 0
x 0, 3. Thus, the x-intercepts are 0, 0 and 3, 0. 24. The graph of y 3x 2 is a straight line with slope 3 and y intercept 0, 2.
1 8
y
y-intercept: 0, 18
(0, 2)
2
Let y 0: x2 1
1
( 23 , 0(
No x-intercepts
x
−1
1
2
3
−1 −2
26. The graph of y x2 6 is a parabola with vertex at 0, 6, which is also the only intercept.
28. The graph of y 5 x2 is a parabola with vertex at 5, 0. y
x
0
±1
±2
y
6
7
10
10 8 6
y
4 2
12
x
9
2
(0, 6) 3
−6
−3
(5, 0)
x 3
6
4
6
8
10
Section 1.2 30. Intercepts: 0, 1 and 1, 0 x
0
1
1
2
y
1
0
2
7
Graphs of Equations
32. The graph of y x 1 is a translation of y x one unit to the left. Intercepts: 1, 0, 0, 1 y
4
y
3 2
2
(−1, 0)
(0, 1)
(0, 1) x
−1
1
2
3
x
(1, 0)
−1
34. Intercepts: 2, 0 and 0, 2
36. Intercept: 0, 1
x
2
0
1
3
4
x
0
±1
±2
±3
y
0
2
1
1
2
y
1
1 2
1 5
1 10
y
y
1 2
(2, 0) x 1
2
3
4
(0, 1)
−1 −2
(0, − 2)
−3
x
−1
0
3
4
y
±2
±1
0
1
40. x 02 y 02 52
38. Intercepts: 0, 2, 0, 2, 4, 0 x
x2 y2 25 x2 y2 25 0
y
(0, 2) 1
(4, 0) x 1
2
3
−1
(0, − 2)
42.
x 42 y 32 32
44. Radius 1 32 1 22 5
x2 8x 16 y2 6y 9 9
x 32 y 22 52
x 2 y2 8x 6y 16 0
x2 6x 9 y2 4y 4 25 x2 y2 6x 4y 12 0
46. Center midpoint
37
42 4, 12 1 0, 0
Radius distance from the center to an endpoint 4 02 1 02 17
x 02 y 02 17
2
x2 y2 17 0
38
Chapter 1
Functions, Graphs, and Limits
48. x2 2x 1 y 2 6y 9 15 1 9
50. x2 4x 4 y2 2y 1 3 4 1
x 22 y 12 2
x 12 y 32 25 1
3
−9
−1
9
5
(2, −1)
(1, − 3)
−3
−9
x2 y2 x 12 y 14 0
52.
x2 x 14 y2 12 y 161 14 14 161 x 12 2 y 14 2 169
x2 y2 2y 13 0
54.
x2 y2 2y 1 13 1 x2 y 12 43
2
3
(0, 1) −2
4
(
1, 1 2 4
−3
(
−2
3
−1
56. The first equation gives y 7 x. Hence, 3x 27 x 5x 14 11
58. Solving for y in the second equation yields y 2x 1 and substituting this value into the first equation gives us the following.
5x 25
x2 2x 1 4
x 5, y 2
x2 2x 5 0 x 1 ± 6 by the Quadratic Formula The corresponding y-values are y 3 ± 26, so the points of intersection are 1 6, 3 26 and 1 6, 3 26 .
60. By equating the y-values for the two equations, we have
62. By equating the y-values for the two equations, we have
x x
x3 2x2 x 1 x2 3x 1
x x2
x3 x2 2x 0
0 xx 1
xx 1x 2 0
x 0, 1.
x 0, 1, 2.
The corresponding y-values are y 0, 1, so the points of intersection are 0, 0 and 1, 1. 64. (a) Cg initial price cost per mile 20,930
1.759x 16
Ch 22,052
1.759x 35
The corresponding y-values are y 1, 5, and 1, so the points of intersection are 0, 1, 1, 5, and 2, 1. Cg Ch
(b) 20,930
1.759x 1.759x 22,052 16 35
1.759 x 1122 1.759 16 35 0.0596804x 1122 x 18,800 miles
Section 1.2 66.
Graphs of Equations
RC 35x 6x 500,000 29x 500,000 x 500,00029 17,242 units RC
68.
3.29x 5.5x 10,000
3.29x 10,0002 5.5x
2
10.8241x2 65,800x 100,000,000 30.25x 10.8241x2 65,830.25x 100,000,000 0 By using the Quadratic Formula, we have x
65,830.25 ± 3,981,815.062 21.6482
x 3133 units.
Note: x 2949 units is an extraneous solution. You can also solve this problem with a graphing utility by determining the point of intersection of the two equations y1 R 3.29x and y2 C 5.5x 10,000. 70. p 190 15x 75 8x 115 23x x5
(Thousand)
Equilibrium point x, p 5, 115.
72. Model: y
4.97 0.021t 1 0.025t
t 55 corresponds to 1955 (a)
t
55
60
65
70
75
80
85
90
95
100
Model
10.2
7.4
5.8
4.7
3.9
3.3
2.8
2.5
2.2
1.9
Exact
9.9
7.8
5.9
4.2
3.6
3.1
2.8
2.6
2.6
1.7
The model is a good fit. (b) For 2010, t 110 and y 1.5%. (c) Answers will vary. 74. Model: y 60.64t2 544.0t 12,624
t 8 corresponds to 1998 (a)
Year
1998
1999
2000
2001
2002
Transplants
12,153
12,640
13,248
13,977
14,824
(b) 1998: 12,244 transplants. 2002: 14,741 transplants. The model seems accurate. (c) For 2008, t 18 and y 22,479 transplants. Answers will vary.
39
40
Chapter 1
Functions, Graphs, and Limits
76. If C and R represent the cost and revenue for a business, the break-even point is that value of x for which C R. For example, if C 100,000 10x and R 20x, then the break-even point is x 10,000 units. 78. Intercepts: 0, 6.25, 1.0539, 0, 10.5896, 0
80.
4
20
−4
−24
5
−2
12
Intercepts: 3.3256, 0, 1.3917, 0, 0, 2.3664
−4
82.
0.5 −5
15
−1.5
Intercepts: 0, 1, 13.25, 0
Section 1.3
Lines in the Plane and Slope
2. The slope is 2 since the line rises two units vertically for each unit of horizontal change from left to right. 4. The slope is 1 since the line falls one unit vertically for each unit of horizontal change from left to right. 6. The points are plotted in the accompanying graph and the slope is
8. The points are plotted in the accompanying graph and the slope is
22 0. 1 2
m
10 2 8 . 11 11 0 3 3
m
y
Undefined
4
The line is vertical.
3
(−2, 2)
(1, 2)
y
1 −3
−2 −1
2 x
x 1
−1
2
3
1
−2
2 3 11 , −2 3
(
−4
−2
4
5
)
−6 −8 −10
(113 , −10)
−12
10. The points are plotted in the accompanying graph and the slope is m
12. The points are plotted in the accompanying graph and the slope is
1 5 4 1. 2 2 4
m
y
−3
−2 −1
y x
−1 −2
1
2
3
−3
−2 −1
(2, −1)
−4 −5 −6
x −1
1
2
3
−2
−3
(−2, − 5)
5 5 0. 2 3
−3
(−2, −5)
−4
−6
(3, −5)
Section 1.3 14. The points are plotted in the accompanying graph and the slope is
41
16. The points are plotted in the accompanying graph and the slope is
45 27 . 56 32 7
m
Lines in the Plane and Slope
m
14 34 8 . 54 78 3
y
y 6
2
4
( 56 , 4( x
−6 −4 −2
2
( 78 , 34 (
1
2 4
x
−1
6
1 −1
(− 32 , − 5(
( 45 , − 41 ( 3
−2
18. The equation of this horizontal line is y 1. Therefore, three additional points are 0, 1, 1, 1, and 2, 1. 20. The equation of this line is y2 y
5 2 x 5 2x
22. The equation of this line is y 6 1x 10
2
y x 4.
3
Therefore, three additional points are 0, 3, 2, 8, 4, 13.
Therefore, three additional points are 11, 7, 9, 5, and 8, 4.
24. The equation of this vertical line is x 3. Therefore, three additional points are 3, 0, 3, 1, and 3, 2. 28. 6x 5y 15
26. 2x y 40
y 65 x 3
y 2x 40
6
Therefore, the slope is m 2, and the y-intercept is 0, 40.
Therefore, the slope is m 5, and the y-intercept is 0, 3.
30. 2x 3y 24
32. x 5 0
y 13 2x 24 23 x 8 Slope is m
2 3,
x 5
y-intercept is 0, 8
The line is vertical. Slope is undefined and there is no y-intercept.
34. Since the line is horizontal, the slope is m 0, and the y-intercept is 0, 1. 36. The slope of the line is m
38. The slope of the line is
4 4 2. 1 3
m
Using the point-slope form, we have
Using the point-slope form, we have
y 4 2x 1
y 2 1x 1
y
y 2x 2
4
0 2x y 2.
y x 3
(1, 4)
y
(− 3, 6) 6 5
x y 3 0.
2
−4
26 1. 1 3
4
x
−2
2
3
4
(1, 2)
2
−2
1
(− 3, − 4)
−4 −3 −2 −1
x 1
2
42
Chapter 1
Functions, Graphs, and Limits
11 0. 10 6 The line is horizontal and its equation is
40. The slope of the line is m
42. Slope is undefined. Line is vertical: x 2 y 4
y1
3
y 1 0.
2 1
y −3
−2 −1
6
x 1
−1
3
−2
4
(6, 1)
2
(10, 1) x
2
4
6
8
10
−2 −4
8 14 34 . 54 78 3 Using the point-slope form, we have
44. The slope of the line is m
3 7 8 y x 4 3 8
46. The slope is m
y1
16 x 4 15
15y 15 16x 64
3 8 7 y x 4 3 3
15y 16x 79 0 y
12y 9 32x 28 32x 12y 37 0.
1 5 4 16 . 4 14 154 15
−1
x −1
1
2
3
5
(4, −1)
−2
y
4
−3 −4
2
−5
( 78 , 34 (
1
( 14 , −5)
x
−1
( 45 , − 41 ( 3
1 −1 −2
49. Using the slope-intercept form, we have y
2 3x
0
50. Since the slope is undefined, the line is vertical and its equation is x 0. 4
2x 3y 0. 4
−6
−2
5
(0, 0)
6
−4
−2
52. Since the slope is 0, the line is horizontal and its equation is y 4. 6
54. Using the point-slope form we have y 4 2x 1 y 2x 6
4
−10
8
2x y 6 0
(−2, 4) −6
6 −8 −2
Section 1.3
Lines in the Plane and Slope
56. Using the point-slope form, we have y 23 16 x 0
1
6y 4 x
−3
3
− 23
0 x 6y 4.
(0, ( −3
58. The slope of the line joining 5, 11 and 0, 4 is The slope of the line joining 0, 4 and 7, 6 is
11 4 7 7 . 5 0 5 5
4 6 10 . 07 7
Since the slopes are different, the points are not collinear. d1 5 02 11 42 25 49 74 8.60233 d2 7 02 6 42 49 100 149 12.20656 d3 5 72 11 62 144 289 433 20.80865 Since d1 d2 d3, the points are not collinear. 60. Since the line is horizontal, it has a slope of m 0, and its equation is
62. The line is vertical: x 5
y 0x 5 y 5.
64. Given line: y 2x 32
5 66. Given line: y 3 x 5 (a) Parallel: m1 3
(a) Parallel: m1 2
y 34 53 x 78
y 1 2x 2
y 34 53 x 35 24
0 2x y 3 1 (b) Perpendicular: m2 2
y1
12 x
24y 18 40x 35
2
2y 2 x 2
40x 24y 53 0 (b) Perpendicular: m 2 35 y 34 35 x 78
x 2y 4 0 4
y 34 35 x 21 40
4x − 2y = 3
40y 30 24x 21 0 24x 40y 9
(2, 1) −2
7 3
( 78 , 34 (
−2 −4
5
−3
5x + 3 y = 0
43
44
Chapter 1
Functions, Graphs, and Limits
68. Given line: y 4 0 is horizontal
70. Given line: x 4 0 is vertical
(a) Parallel: m 0, y 5
(a) Parallel: slope is undefined, x 12
(b) Perpendicular m is undefined, x 2
(b) Perpendicular: m 0, y 3
6
6
(2, 5) −8 −10
16
8
(12, − 3)
−6
−12
72. y 4 is a horizontal line with y-intercept 0, 4.
74. x 2y 6 0 has intercepts at 6, 0 and 0, 3.
76. 4x 5y 20 0 has intercepts at 5, 0 and 0, 4. y
y
y 2
5
2
4
−4
x
−2
2
−6
4
−2
x
−2
3
2 −2
2
−4
1 x 1
−6
−6
13 78. y 3x 13 has intercepts at 0, 13 and 3 , 0.
80. (a) Slope: m
y
2
3
4
5
6
29,700 26,300 3400 1700 2004 2002 2
y 26,300 1700t 2
18
y 1700t 22,900
15
(b) For 2008, t 8 and y 36,500
9 6 3 −4 −3 −2 −1
x 1
82. Use F 95C 32 and C 59F 32. 5 (a) If F 102.5, C 9102.5 32 39.2 5 (b) If F 74, the C 974 32 23.3
84. (a) W 0.80x 9.25 W 1.15x 6.85
(union plan) (corporation plan)
(b) 0.8x 9.25 1.15x 6.85
17
2.4 .35x x
240 6.857 35
W 14.736
(6.857, 14.736) 5
9 13
(c) The point of intersection indicates the number of units 6.857 a worker needs to produce for the two plans to be equivalent.
Section 1.3 86. Use the points 0, 825,000 and 25, 75,000. y 825,000
825,000 75,000 t 0 0 25
45
88. Let t 0 represent 2002. Slope m
2702 2546 78 20
y 78t 2546
y 825,000 30,000t y 30,000t 825,000,
Lines in the Plane and Slope
0 ≤ t ≤ 25
For 2008, t 6 and y 3014 students.
90. (a) C 5.25 9.50t 26,500 14.75t 26,500 (b) R 25t (c) P R C 25t 14.75t 26,500 10.25t 26,500 RC
(d)
25t 14.75t 26,500 10.25t 26,500 t 2585.4 hours 92. (a) W 2000 .07S (c)
(b) W 2300 .05S (d) No. You will make more money if sales are $20,000 at your current job w $3400) than in the offered job w $3300.
5000
0
30,000 0
The lines intersect at 15,000, 3050. If you sell $15,000, then both jobs would yield wages of $3050.
94. C 30,000 575x where C ≤ 100,000.
96. C 24,900 1785x ≤ 100,000
Thus, 30,000 575x ≤ 100,000
1785x ≤ 75,100 x ≤ 42.07
575x ≤ 70,000
x ≤ 42 units
x ≤ 121.739 122 units. Therefore, x ≤ 121 units.
200,000
200,000
0
100 0
0
200 0
98. C 83,620 67x ≤ 100,000
100. C 53,500 495x ≤ 100,000
67x ≤ 16,380 x ≤ 244.48
x ≤ 93.94
x ≤ 244 units
x ≤ 93 units
200,000
0
120,000
2000 0
495x ≤ 46,500
0
100 0
46
Chapter 1
Functions, Graphs, and Limits
102. C 75,500 1.50x ≤ 100,000
120,000
1.50x ≤ 24,500 x ≤ 16,333.3 x ≤ 16,333 units
0
20,000 0
Section 1.4
Functions 4. y
2. y ± 4 x y is not a function of x since there are two values of y for some x.
y is a function of x since there is only one value of y for each x.
6. x2 2x 1 y2 4y 4 1 1 4
8. yx2 4 x2
x 12 y 22 4
y
The graph is a circle; therefore, by the vertical line test, y is not a function of x.
10. Domain: ,
3x 5 2
x2 x2 4
y is a function of x since there is only one value of y for each x. [Note: It is not a one-to-one function.]
12. Domain: 3, 3
Range: ,
14. Domain: 1,
Range: 0, 3
Range: ,
6
2
−3
8
3
−2
6
6
2
−2
16. Domain: , 1 1,
18. Domain:
Range: , 4 0,
16
−4
32,
20. Domain: ,
Range: 0,
Range: 0,
6
−12
12
−10
22. f x x 2 2x 2 (a) f
1 2
1 2 2
2
24. f x x 4 1 2
2
5 4
(b) f 1 12 21 2 5 (c) f c 2 c 22 2c 2 2 c2 4c 4 2c 4 2 c2 2c 2 (d) f x x x x2 2x x 2 x2 2x x x2 2x 2 x 2
(b) f 2 2 4 6 (c) f x 2 x 2 4 (d) f x x f x x x 4 x 4 x x x (a) f 2 2 4 6
Section 1.4
26.
Functions
47
h2 x h2 2 x2 2 x 1 4 2 1 x x
4 4x x2 2 x 1 3 x
x3 x x
3 x, x 0 1 1 f x x f x x x 4 x 4 30. x x
f x f 2 1x 1 1 28. x2 x2
1 x 1 1 x 1 x 2x 1 1 x 1
x 4 x x 4 x x x 4x 4
1 x 1 x 2x 11 x 1
1 , x 0 x x 4x 4
2x
x 2x 1 1 x 1
1
x 1 1 x 1
, x2
32. y is a function of x.
34. y is not a function of x.
36. (a) f x gx 2x 5 2 x x 3
38. (a) f x gx x 2 5 1 x,
(b) f x gx 2x 52 x (c) f xgx
2x 2
9x 10
2x 5 2x
(b) f x gx x 51 x, 2
(c)
(d) f gx f 2 x 22 x 5 2x 1
f x x2 5 , gx 1 x
x ≤ 1
x ≤ 1
x < 1
(d) f gx f 1 x 1 x 5
(e) g f x g2x 5 2 2x 5 2x 7
2
6 x,
x ≤ 1
(e) g f x is not defined since the domain of g is , 1 and the range of f is 5, . The range of f is not in the domain of g.
40. (a) f x gx (b) f x gx f x (c) gx
x x 4 x3 x x3 x1 x1
x x 1 x x x 1 4
3
x x 1 x3
12 12
2
1 3
1
3 4
12 f 12 1 f 21 2
(c) f g
x3 (d) f gx f x 3 x 1 3
(a) f g 2 f 22 1 f 3 (b) g f 2 g
1 2 x x 1
x x (e) g f x g x1 x1
1 42. f x , gx x2 1 x
3
x3 x 13
12 g2 2 1 1
(d) g f
(e) f g x f x2 1 (f) g f x g
1x 1x
1 x2 1 2
1
48
Chapter 1
Functions, Graphs, and Limits
44. The data fits the function (a) f x 14 x, with c 14.
1x 1x1 x, x 0
48. f gx f
46. The data fits the function (c) hx 3 x , with c 3. 3 3 1 x 1 1 x x 50. f gx f 3
3 1 1 x 3 x g f x g1 x 3
1 1 g f x g x, x 0 x 1x
See accompanying graph. y
See accompanying graph. f
y
2
2
f=g g
1 x
−1
1
x
−1
2
2
3
−1
−1
f x 6 3x y
52.
3
f x x3 1 y
54.
x y3 1
x 6 3y y
6x 3
f 1x
6x 3
3 x 1 y 3 x 1 f 1x y 4
y
f
3
f −1
2
6
f
5
x
−2
4 3
2
3
4
−2
f −1
1
x 1
3
4
5
6
f x x2 4 y, x ≥ 2
56.
f x x 35 y
58.
x y 2 4
x y 35
x2 4 y 2
x 53 y
y x2 4, x ≥ 0
f 1x x 53
f 1x x2 4, x ≥ 0
y
2
y
f −1 f
1
5
f
4
−1
−2 3
x
−1
1 −1
f
2
−2
1 x 1
2
3
4
5
2
Section 1.4
Functions
62. f x x 4 is not one-to-one since f 2 16 f 2.
60. f x x 2 is one-to-one for x ≥ 2. f 1x x2 2 where x ≥ 0.
650
12
−5
5 0
0
100
f x is not one-to-one.
0
f x is one-to-one. f 1x x2 2,
x ≥ 0
64. f x 3 is not one-to-one since f 0 3 f 1. 5
−6
6
−3
f x is not one-to-one. y
66. (a)
y
(b) 3
3
5
2
2
4
1
3
−3 −2
2 1 x
−3 −2 −1
1
2
1 x 2
−1
3
−2
−3
−3
y
(e) 3
2 1
2 x
−4 −3 −2
1
2
(−1, −1)
−3 −2 −1 −1
−3
−2
−4
−3
x 1
2
3
68. Value V 2500x 750,000 70. (a) C 0.95x 6000 C 0.95x 6000 6000 0.95 x x x
(c) 0.95
−1 −1
−2 3
y
(d)
(b) C
y
(c)
6
6000 < 1.69 x 6000 < 0.74 x 6000 < x since x > 0. 0.74
8108.108 < x Must sell 8109 units before the average cost per unit falls below the selling price.
x 1
2
3
4
5
49
50
Chapter 1
Functions, Graphs, and Limits
72. Cost Cost on land Cost underwater
74. (a) Graphing utility graph
1052803 x 155280x 2
5528023 x 3x 2
1 4
(b) 25, 14 is equilibrium point.
1 4
(c) Demand exceeds supply for x < 25. (d) Supply exceeds demand for x > 25. 30
0
50 0
76. (a) Cost C 98,000 12.30x (b) Revenue R 17.98x (c) Profit R C 17.98x 12.30x 98,000 5.68x 98,000
78. Ft 98
3 t1
80.
100
110
−5
5
−100 0
20
f x 2 3x2
95
The function is valid for all t ≥ 0 because the patient’s temperature can only be affected by the drug from the time that it is administered. 82.
−2
Zero: x 1.2599 The function is not one-to-one. 84.
40
6 x
6
3 −6
−30
6
−2
hx 6x 3 12x2 4 Zeros: x 0.5419, 0.7224, 1.7925 The function is not one-to-one.
f x
1 2 x 4 2
Zeros: x ± 22 The function is not one-to-one.
86.
0.4
−10
10
−0.2
f x
x2 16
x2
Domain: x ≥ 4 Zeros: x ± 4
Section 1.5
Section 1.5 2.
4.
6.
1.9
1.99
1.999
2
2.001
2.01
2.1
f x
1.09
1.0099
1.000999
1
0.998999
0.9899
0.89
x
1.9
1.99
1.999
2
2.001
2.01
2.1
lim
x→2
f x
72.39
79.20
x
0.1
0.01
0.001
0
0.001
0.01
0.1
f x
0.3581
0.3540
0.3536
undefined
0.3535
0.3531
0.3492
lim
8.
Limits
x
x 2 2
x
x→0
Limits
79.92
1
undefined
80.08
80.80
x
0.5
0.1
0.01
0.001
0
f x
0.1
0.1190
0.1244
0.1249
undefined
10. (a) lim f x 2
88.41
lim
x→0
12 x 12 1 0.125 2x 8
12. (a) lim hx 5
y
x→1
(b) lim hx 3
x
−1
1
y
x→2
(3, 0)
x→3
x5 32 80 x2
0.354
22
(b) lim f x 0
lim x 2 3x 1 1
x→2
2
2
x→0
−4
(1, − 2)
−2
−6
y = f ( x)
14. (a) lim f x gx lim f x lim gx x→c
x→c
3 1 2 2 2
16. (a) lim f x 9 3 x→c
(b) lim 3f x 39 27
lim gx 2 2 4
(b) lim f x gx lim f x x→c
y = h ( x)
(− 2, − 5)
−4
x→c
4
(0, − 3)
−3
x→c
x
−2
3
1
3
x→c
x→c
(c) lim f x 2 92 81
lim f x f x 32 (c) lim x→c 3 x→c gx lim gx 12
x→c
x→c
18. (a)
lim f x 2
20. (a)
x→2
lim f x 2
22. (a)
x→2
lim f x 0
x→1
(b) lim f x 2
(b) lim f x 2
(b) lim f x 2
(c) lim f x 2
(c) lim f x 2
(c) lim f x does not exist.
x→2
x→2
x→2
x→2
(− 2, 3) (− 2, 2)
(−π , − 2)
π
−2
y
4
2
−π
x→1
y
y
− 2π
x→1
2π
4
3
3
2
x
(−1, 2)
1 −5
x
−3 −2 −1
1 −1
(−1, 0) −3 −2 −1
x 1
2
3
4
51
52
Chapter 1
Functions, Graphs, and Limits
24. lim x 3 23 8
26. lim 2x 3 20 3 3
28. lim x2 x 2 4 2 2 4
3 x 4 3 4 4 2 30. lim
x→0
x→2
x→2
32. lim
x→2
36. lim
3x 1 32 1 5 2x 2 2 4
x 1
x→3
x→4
x4
3 1
34
34. lim
x→1
2 2 1
38. lim
x 4 2
x
x→5
1 1 1 1 1 x2 2 4 2 40. lim x→2 2 2 8
4x 5 41 5 9 9 3x 3 1 4 4
42. lim
x→1
32 1 5 5
2x2 x 3 x 12x 3 lim x→1 x1 x1 lim 2x 3 5 x→1
44. lim
x→2
2x x 2 lim x2 4 x→2 x 2x 2 lim
x→2
46. lim t→1
1 1 x2 4
lim t→1
x3 1 x 1x2 x 1 lim x→1 x 1 x→1 x1
50. lim
48. lim
lim x→1
t2 t 2 t 1t 2 lim t→1 t 1t 1 t2 1
x2
x→2
x 1 3
lim
x→2
x 2 1 x2
x 2 1 x2
Therefore, lim
x→2
52. lim f s lim s 1 s→1
54. lim
x →0
s→1
lim f s lim 1 s 0
s→1
s→1
Therefore, lim f s does not exist. s→1
56. lim
x x x
x
x→0
lim
x x x
x
x→0
lim
x→0
lim
x→0
x x x x x x
x x x x x x x 1 x x x
1 2x
t t2 4t t 2 t 2 4t 2 t→0 t
58. lim
t 2 2t t t 2 4t 4t t 2 4t t→0 t
lim
lim
t→0
2t t t 2 4t t
lim 2t t 4 2t 4 t→0
t2 3 t1 2
x 2 does not exist. x2
4x x 5 4x 5 4 x lim 4 x →0 x x
Section 1.6
60.
lim
20
x→1
−5
5 1x
62.
lim
5
x→0
Continuity x1 x
5 −6
6
−3
−20
x
2
1.5
1.1
1.01
x
1
0.5
0.1
0.01
f x
5
10
50
500
f x
0
1
9
99
x
1.001
1.0001
1
x
0.001
0.0001
0
f x
5000
50,000
Undefined
f x
999
9999
Undefined
64. lim
x→1
x2 6x 7 x 1x 7 lim x3 x2 2x 2 x→1 x 1x2 2
66. lim
x→2
x 24x2 x 3 4x3 7x2 x 6 lim x→2 3x2 x 14 x 23x 7 1
4 −5
−1
2
3 −6
−1
21 1.615 13
8 2.667 3 68. Because 4 x2 ≤ f x ≤ 4 x2, lim 4 x2 ≤ lim f x ≤ lim 4 x2
x→0
x→0
x→0
4 ≤ lim f x ≤ 4. x→0
Hence, lim f x 4. x→0
70. lim A lim 1000 1 r→0.06
r→0.06
Section 1.6
r 4
40
1814.02 Yes, the limit exists.
Continuity
2. The polynomial f x x 2 13 is continuous on the entire real line.
4. f x
1 1 is continuous on , 3, 3, 3 and 3, . 9 x2 3 x 3 x
6. f x
3x is continuous on , . x2 1
8. f is not continuous on the entire real line. f is not defined at x 1, 5. 10. g is not continuous, on the entire real line. g is not defined at x ± 4.
53
54
Chapter 1
12. f x
Functions, Graphs, and Limits
1 is continuous on , 2, 2, 2 and 2, . x2 4
14. f x is continuous on , 2 and 2, . 16. f x is continuous on , . 18. f x
x3 is continuous on , 3, 3, 3 and 3, . x2 9
20. f x
1 is continuous on , . x2 1
22. f x
x1 x1 is continuous on , 2, 2, 1 and 1, . x2 x 2 x 1x 2
24. f x
x x is continuous on all intervals of the form c, c 1 where c is an integer. 2
26. lim f x lim 3 x 5 x→2
x→2
lim f x lim x 2 1 5
x→2
x→2
Since f 2 5, f is continuous on the entire real line.
30. lim x→4
lim
x→4
lim
x→4
4 x 1 4x
4 x 1 4x
28. lim f x 4 x→0
lim f x 1
x→0
f is not continuous at x 0. f is continuous on , 0 and 0, . 32. lim x x c c 1 1, c is any integer x→c
lim x x c c 0, c is any integer
x→c
f is continuous on all intervals c, c 1.
4 x does not exist. 4x
f is continuous on , 4 and 4, . 34. hx f gx f x2 5
1 1 x2 5 1 x2 4
36. f x
5 is continuous on 2, 2 . x2 1
Note: f is continuous on the entire real line.
Thus, h is continuous on the entire real line.
38. f x
x has nonremovable discontinuities at x 1 and x 3. x 1x 3
Section 1.6
40. f x
2x2 x x2x 1 x x
42. f x
x3 x3 1 , 4x2 12x 4xx 3 4x
Continuity
x3
f has a removable discontinuity at x 3, and a nonremovable discontinuity at x 0. f is continuous on , 0, 0, 3, 3, .
f has a removable discontinuity at x 0; continuous on , 0 and 0, . y
y 2 1
(3, 121 )
1
x
−3
1
2
3
x
−1
1
−1
44. f is continuous on , 0 and 0, .
46.
lim f x 2
x→1
lim f x a b
y
x→1 6
lim f x 3a b
x→3
4
lim f x 2
2 −6
x→3
x
−4
2
4
6
Thus:
−4
a 3a 4a
−6
48. f x
x4 1 x4 , x 2 5x 4 x 4x 1 x 1
x4
b 2 b 2 4 a 1 b 1
50. f is continuous on , . 7
is not continuous at x 1 and x 4. 3 −5 −3
10
6 −3
−3
1 There is a hole at 4, 3 .
52.
54. f x xx 3 is continuous on 3, .
3
−3
6
−3
f is not continuous at all 12c, where c is an integer.
56. f x
x1 is continuous on 0, . x
55
56
Chapter 1
Functions, Graphs, and Limits
x3 8 x 2x2 2x 4 x2 x 2 appears to be continuous on 4, 4. But, it is not continuous at x 2 (removable discontinuity).
58. f x
8
60. C
2x 100 x
(a) 0, 100; Negative x values do not make sense in this context nor do values greater than 100. Also, C100 is undefined. (b) C is continuous on its domain because all rational functions are continuous on their domains. (c) For x 75,
−4
4 0
C
275 150 6 million dollars. 100 75 25
50
0
100 0
3, n0 62. C 3 0.25n, n > 0, n is not an integer. 3 0.25n 1, n > 0, n is an integer.
64. (a) Nonremovable discontinuities at t 1, 2, 3, 4, 5 50,000
6
0
6 0
0
9 0
(b) For t 5, S $43,850.78.
C is continuous at all intervals n, n 1, n is a nonnegative integer.
Note: C 3 0.251 n, n > 0 66. Yes, a linear model is a continuous function. No, actual revenue would probably not be continuous because the actual revenue would probably not follow the model exactly, which may introduce some discontinuities.
Review Exercises for Chapter 1 2. Matches (c)
4. Matches (d)
6. Distance 1 42 2 32 9 1 10. 8. Distance 6 3 2 8 7 2 81 1 82
10. Midpoint
0 2 4, 0 2 8 2, 4
12. Midpoint
7 2 3, 92 5 2, 2
Review Exercises for Chapter 1 14. 1999: R $120 thousand
2000: R $170 thousand
2001: R $70 thousand
C $70 thousand
C $92 thousand
C $33 thousand
P $50 thousand
P $78 thousand
P $37 thousand
2002: R $200 thousand
2003: R $260 thousand
C $110 thousand
C $135 thousand
P $90 thousand
P $125 thousand
16. 2, 1 → 2, 0
y
18.
1, 2 → 3, 1
y
20. 12
3 2
1, 0 → 5, 1
1
x
0, 1 → 4, 2
1
2
4
5
6
1
4
2
2
3
x 6
22. y 4 x
6
y
2
6
26. y 4x 1
y
24.
2
y
5 12
8
9
6
3
4
−2
2
4
6
8
3
1
x −2
6
2
2 10
−3 −3
x 3
2
1
1
2
3
x 3
6
9
12 15
−6
−4
28. y-intercept: x 0 ⇒ y 3 ⇒ 0, 3 x-intercept: y 0 ⇒ x 4 ⇒ 4, 0 3
30. x 02 y 02 r 2 x2 y2 r2
3
x 2 y 2 6x 8y 0
32.
x 2 6x 9 y 2 8y 16 9 16
22 5 r 2 2
Equation:
x2
x 32 y 42 25
9 r2
Center: 3, 4
3r
Radius: 5
y 3 2
2
y 2
x 2
8
2
4
)3,
4)
6
8
57
58 34.
Chapter 1
Functions, Graphs, and Limits
xy2⇒y2x
2 x 2x 1
2x y 1 ⇒ y 2x 1
3 3x
36. y x 3
x3 x
yx
x3 x 0
1x
xx 1x 1 0
Point of intersection: 1, 1
Points of intersection: 0, 0, 1, 1, 1, 1 40. p 91.4 0.009x 6.4 0.008x
38. (a) C 200 2x 8x 200 10x R 14x
85 0.017x CR
(b)
x 5000 units
200 10x 14x
p $46.40
200 4x x 50 shirts
x, R x, C 50, 700. 1 5 42. 3 x 6 y 1 5 6y
44. x 3
1 3x
1
y
2 5x
6 5
Slope: m
46. 3.2x 0.8y 5.6 0 8y 32x 56
Slope: undefined (vertical line) No y-intercept
y 4x 7
y
2 5
y-intercept: 0,
6 5
Slope: 4 y-intercept: 0, 7
2 1
y
y −4
4
−2
x
−1
8 −1
3
6
2
−2
x
−3 −2 −1 −1
1
2
2
3
−2
−6
75 2 1 5 1 4 2
48. Slope
52. y 3 12 x 3 y
1 2x
y 45 x 35
2 −6
−4
x
−2
4
−4 −6
54. (a) Slope 0 → y 3 (c) 4x 5y 3
4
x 2
3 3 0 0 (horizontal line) 1 11 10
(b) Slope undefined → x 1
3 2
y
(− 3, − 3)
50. Slope
−4
y 3 45 x 1 y 45 x 19 5 (d) 5x 2y 3 y 52 x 32 Slope of perpendicular is 25. y 3 25 x 1 y 25 x 13 5
Review Exercises for Chapter 1
59
56. 0, 117,000, 9, 0 m
117,000 13,000 9
(a) v 13,000t 9 13,000t 117,000
(c) v4 $65,000
(b) Graphing utility
(d) v 84,000 when t 2.54 years
200,000
0
10 0
58. x2 y 2 4
60. y x 4
No
Yes
62. f x x2 4x 3 (a) f 0 02 40 3 3 (b) f x 1 x 12 4x 1 3 x2 2x (c) f x x f x x x2 4x x 3 x2 4x 3 2xx x2 4x 66. f x
64. f x 2 Domain: , Range: 2
3
x3 x 3 x2 x 12 x 3x 4 1 ,x3 x4
Domain: , 4 4, 3 3,
71 17,
Range: , 0 0, −3
3 4 −1
−8
4
−4
68. f x
7 12 x 13 8
70. (a) f x gx 2x 3 x 1 (b) f x gx 2x 3 x 1
Domain: , Range: ,
(c) f xg x 2x 3x 1
2
−4
(d) 2
f x 2x 3 gx x 1
(e) f g x f x 1 2x 1 3 (f) g f x g2x 3 2x 3 1 2x 2
−2
60
Chapter 1
Functions, Graphs, and Limits
72. f x x 1 does not have an inverse by the horizontal line test.
74. f x x 3 1 has an inverse by the horizontal line test. y x3 1 x y3 1 x 1 y3 3 x 1 y 3 x 1 f 1x
76. lim 2x 9 22 9 13
78. lim
x→2
x→2
7 5x 3 52 3 2x 9 22 9 13
80. lim t→0
lim
t→0
t2 1 t t2 1 t
t2 1 does not exist. t→0 t
lim
t1 t2
82. lim t→2
t→2
x→3
x2 9 lim x 3 6 x→3 x3
86. lim
x→12
2x 1 1 1 lim 6x 3 x→12 3 3
t1 t2
lim
t→2
lim
84. lim
t1 does not exist. t2
1 1 x4 4 4 x 4 8x 8x 8x lim lim ; lim ; lim ; 88. lim x→0 xx 44 x→0 x→0 4xx 4 x→0 4xx 4 x→0 4xx 4 x
1 1 x4 4 lim does not exist. x→0 x
90. lim
s→0
11 s 1 lim 1 1 s 1 1 s s
lim
s→0
92. lim
x→0
s1 s
s→0
1 1 s 1 1 lim 2 s1 s1 1 s s→0 1 s 1 1 s
1 x2 2xx x2 1 x2 1 x x2 1 x2 lim x→0 x x lim
x→0
94.
1 1 s
x2x x lim 2x x 2x x→0 x
x
1.1
1.01
1.001
1.0001
f x
0.3228
0.3322
0.3332
0.3333
lim
x→1
3 x 1 1 x1 3
96. The statement lim x 3 0 is true. x→0
Review Exercises for Chapter 1 3 x 0 98. The statement lim is true. x→0
100. The statement lim f x 1 is true since x→3
lim f x lim x 2 1
x→3
x→3
lim f x lim x2 8x 14 1.
x→3
x→3
102. f x
x2 is continuous on the intervals , 0 and 0, . x
104. f x
x1 is continuous on the intervals , 1 and 1, . 2x 2
106. f x x 2 is continuous on all intervals of the form c, c 1, where c is an integer. 108. f x is continuous on , . 110. lim f x lim x 1 2 x→1
x→1
lim f x lim 2x a 2 a
x→1
x→1
Thus, 2 2 a and a 0.
t < 1 t > 1, t is not an integer. t ≥ 1, t is an integer.
2 112. C 2 0.1t, 2 0.1t 1, 4
0
6 0
114. Nonremovable discontinuities at t 1, 2, 3, . . . Yellow sweet maize:
White flint maize:
Intercepts: 0, 45, 5, 0
Intercepts: 0, 30, 5.5, 0
Line: y 45
45 0 x 0 05
y 9x 45
Line: y 30
30 0 x 0 0 5.5
y 5.45x 30
61