polynomial of square matrix are given for three and four qubit states. ... two states Ï and Ï are equivalent under SLOCC if and only if there exist invertible local.
Construct SLOCC invariants via square matrix Xin-Wei Zha School of Science, Xi’an Institute of Posts and Telecommunications, Xi’an, 710121, P R China Abstract
We define a square matrices, by which some stochastic local operations and classical communication (SLOCC) invariants can be obtained. The relation of SLOCC invariants and character polynomial of square matrix are given for three and four qubit states. Keywords: Square matrice; SLOCC invariant; four qubit
PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w 1. Introduction Quantification of quantum entanglement is one of the most important problems in quantum information theory. Therefore, it is important to find ways of classifying and quantifying the entanglement properties of quantum states. Invariants under stochastic local operations and classical communication(SLOCC), have been extensively studied in this context[1–13].Recently, Li et al. [14]proposed a method of classifying n-qubit states into stochastic local operations and classical communication inequivalent families in terms of the rank of the square matrix. According to this inspiration, a improved square matrix definition is put forward, by which some SLOCC invariants can be obtained. Furthermore , the relation of SLOCC invariants and character polynomial of square matrix is given for three and four-qubit states.
2.
SLOCC invariant and square matrix
In a recent paper [Phys. Rev. A 91, 012302, (2015)], Li et al. proposed a definition of square matrices, which can be defined as[14] Qq1 ,q2 ,,qi =Cq1 ,q2 ,,qi i y n
n i
Cq1 ,q2 ,,qi
T
(1)
Where Cq1 ,q2 ,,qi is the coefficient matrix and y is the Pauli operator. In the follows, we will give the revise definition of the square matrices. It is known that two states
and
are equivalent under SLOCC if and only if there exist invertible local
operators M A , M B , M C , and such that
ABC
AA AB AC
ABC
(2)
where Ak SL 2 are SLOCC operations with det Ak 1 . In an analogous way, we define a square matrices, which can be expressed as n F1,2, i v
i
n C1,2, i
n i
v
n C1,2, i
T
(3)
where v i y and y is the Pauli operator. Invoking the fact that AkT vAk det Ak v , for det Ak 1 AkT vAk v we may have , n F1,2, i v
i
n i
n C1,2, i v
n C1,2, i
T
(4)
n n using C1,2, i A1 Ai C1,2,i Ai 1 An
We can obtain
n 1 n F1,2, i [ A1 Ai ] F1,2,i T
T
(5)
A1 Ai
T
(6)
Therefore, the square matrices F and F is similar transformation’ Let the character polynomial of F is given by det F I am m a1 a 0
(7)
This means that f det F I is a SLOCC invariant polynomial and every λ coefficient of ai is a SLOCC invariant. 3.
The relation of SLOCC invariant with square matrix for three-qubit states An arbitrary pure state of the three qubits is expressed in the form of
123
a0 000 a1 001 a2 010 a3 011 a4 100 a5 101 a6 110 a7 111 (8)
It is well known that the SLOCC invariant is[4,15]
F13 * ˆ Ayˆ Byˆ Cx
2
* ˆ Ayˆ Byˆ Cz
2
* ˆ Ayˆ By
2
4[ a0 a7 a1a6 a2 a5 a3 a4 4 a0 a3 a1a2 a5 a6 a4 a7 ] 2
(9)
A convenient, and physically significant, choice is the 3-tangle identified by Coffman, Kundu and Wootters[16] : 2123 ,
123 F1 3
(10)
For three qubit pure state,the coefficient matrix can be defined a C1 23 0 a4
a1
a2
a5
a6
a3 a0 , C213 a7 a2
a1
a4
a3
a6
a5 a0 , C3 21 a7 a1
a2
a4
a3
a5
a6 a7
(11)
From [3,11], we have 0 1 a0 F1 23 1 0 a4
a1
a2
a5
a6
a a a a a a a a 0 7 1 6 2 5 3 4 2 a0 a3 a1a2
0 0 0 a3 0 0 1 a7 0 1 0 1 0 0 2 a4 a7 a5 a6
1 a0 a4 0 a1 a5 0 a2 a6 0 a3 a7
a0 a7 a1a6 a2 a5 a3a4
(12)
The character polynomial of F1 23 is given by
det F1 23 I a2 2 a1 a0
(13)
Using [12,13], we have the SLOCC invariant a2 1 a1 0 a0 a0 a7 a1a6 a2 a5 a3a4 4 a0 a3 a1a2 a5 a6 a4 a7 2
(14)
1 3 F1 4
Therefore, the determinant of the square matrix F1 23 is the SLOCC invariant. 4. The relation of SLOCC invariant with square matrix for four-qubit states. The states of a four-qubit system can be generally expressed as 1234 a0 0000 a1 0001 a2 0010 a3 0011 a4 0100 a5 0101 a6 0110 a7 0111 a8 1000 a9 1001 a10 1010 a11 1011 a12 1100 a13 1101 a14 1110 a15 1111
(15) We know there are four independent algebraic SLOCC invariants for a 4-qubit system[6,8], that is H , L, M , Dxt . Where H 2 a0a15 a1a14 a2a13 a3a12 a4a11 a5a10 a6a9 a7 a8
(16)
and H is a degree-2 invariant whose each term involves only two coefficients. L and M are degree-4 invariant ,are given by the determinants of matrices: a0 a4 a8 a12 L
a1
a5
a9
a13
a2
a6
a10
a14
a3
a7
a11
a15
M
a0
a8
a2
, a10
a1
a9
a3
a11
a4
a12
a6
a14
a5
a13
a7
a15
(17)
(18) ,
Dxt is a degree-6 invariants[8],and can be expressed as the determinants of three 3 3 matrices:
a0a6 a2a4,
Dxt
a0a14 a6a8
a0a7 aa 1 6 a2a5 a3a4,
a0a15 a6a9 aa 1 14 a7a8
aa 1 7 a3a5,
aa 1 15 a7a9
a2a12 a4a10, a2a13 a3a12 a4a11 a5a10, a3a13 a5a11, a8a14 a10a12, a8a15 a9a14 a10a13 a11a12, a9a15 a11a13,
The coefficient matrix of four-qubit system can be expressed as
(19) .
a C1 234 0 a8 a C2134 0 a4 a C3124 0 a2
C1234
C14 23
a0 a 4 a8 a12 a0 a 1 a8 a9
a1
a2
a9
a10
a1
a2
a5
a6
a1
a4
a3
a6
a1
a2
a5
a6
a9
a10
a13 a14 a2
a4
a3
a5
a10
a12
a11
a13
a3
a4
a5
a6
a7 a11 a12 a13 a14 a15 , a3 a8 a9 a10 a11 a7 a12 a13 a14 a15 , a5 a8 a9 a12 a13 a7 a10 a11 a14 a15 , a3 a0 a1 a a7 a3 , C 2 13 24 a8 a9 a11 a15 a10 a11 a6 a7 a14 a15
a4
a5 a7 , a13 a15
a6 a12 a14
(20)
From [3,20], we have 1 2 H F1 234 v1C1234 v2 v3 v4 C1 234 = 0 T
0 1 H 2
(21)
Therefore, The character polynomial of F1 234 is given by 1 2 H H 2 4 Obviously, this character polynomial determine the degree-2 invariant H.
(22)
Similarly, we have F1234 v1 v2 C12 34 v3 v4 C12 34 a0 a15 a1a14 a4 a11 a5 a10 a0 a11 a1a10 a2 a9 a3a8 a0 a7 a1a6 a2 a5 a3a4 2 a0 a3 a1a2
T
a4 a15 a5 a14 a6 a13 a7 a12 a4 a11 a5 a10 a6 a9 a7 a8 2 a4 a7 a5 a6
a0 a7 a1a6 a2 a5 a3a4
a8 a15 a9 a14 a10 a13 a11a12 2a 8 a11 a9 a10
a4 a11 a5 a10 a6 a9 a7 a8 a0 a11 a1a10 a2 a9 a3a8
2a12 a 15 a a13
a8 a15 a9 a14 a10 a13 a11a1 2 a4 a15 a5 a14 a6 a13 a7 a12 a0 a15 a1a14 a2 a13 a3a12 14
(23) It is easy to show that character polynomial of F1234 is given by
4 a3 3 a2 2 a1 a0 where
a3 H , a1 4 D xt 6HM HL ,
1 2 H 2 L 2M , 4 a0 L2 . a2
Therefore, the character polynomial of F1234 SLOCC invariants 5. Conclusion
H , L, M , Dxt .
(24)
determine four independent algebraic
In summary, using revise definition of the square matrices F , we can know if two n-qubit states are SLOCC equivalent then their square matrices F given above have the same character polynomial. Further, we find that just use one square matrices F1234 , can we determine if two n-qubit states are SLOCC equivalent or not for four-qubit system. We expect this method will be useful in the determine SLOCC invariants for n-qubit states. Acknowledgments
This work was supported by the foundation of Shannxi provincial Educational Department under Contract No. 15JK1668 and National Science Foundation of Shannxi Province Grant Nos 2017JQ6024. References [1] Dur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 [2] Verstraete F, Dehaene J, De Moor B and Verschelde H 2002 Phys. Rev. A 65 052112 [3] Miyake A 2003 Phys. Rev. A 67 012108 [4] Osterloh A and Siewer J 2005 Phys. Rev. A 72 012337 [5] Osterloh A and Siewert J 2006 Int.J. Quantum Inf. 4 531 [6] Luque J G and Thibon J Y 2003 Phys. Rev. A 67 042303 [7] Li D F 2007 Phys. Rev. A 76, 052311 . [8] Ren X J, Jiang W, Zhou X X, Zhou Z W and Guo G C 2008 Phys. Rev. A 78 012343 [9] Gour G and Wallach N R 2013 Phys. Rev. Lett. 111 060502 [10] Wang S H, Lu Y, Gao M, Cui J L and Li J L 2013 J. Phys. A: Math. Theor. 46 105303 [11] Jing N, Li M, Li-Jost X, Zhang T and Fei S M 2014 J. Phys. A: Math. Theor. 47 215303 [12] Sun L L, Li J L and Qiao C F 2015 Quantum Inf. Process. 14 229 [13] Zhang T G , Zhao M J and Huang X F 2016 J. Phys. A: Math. Theor. 49 405301 [14] Li X R and Li D F 2015 Phys. Rev. A 91 012301 [15] Li D, Li X, Huang H and Li X 2007 Phys. Rev. A 76 032304 [16] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306