Developing Benchmarks for ILAMB - CiteSeerX

24 downloads 0 Views 1MB Size Report
Forrest M. Hoffman. †‡. , James T. ... NorESM1-M. Norway. 1. As of 25 February ..... D. W. Waugh, T. M. Hall, B. I. McNeil, R. Key, and R. J. Matear. Anthropogenic.
CMIP5 Multi-Model Analysis of Global Carbon Cycle Feedbacks: Developing Benchmarks for ILAMB Forrest M. †

†‡ Hoffman ,

‡ Randerson ,

James T.

† Thornton ,

Peter E.

and Keith Lindsay*

Oak Ridge National Laboratory, ‡University of California - Irvine, and *National Center for Atmospheric Research

Introduction Atmosphere in 1994

Ocean in 1994

2

140 Anthropogenic Carbon (Pg C)

200 150 100 50

As of 25 February 2012



6 5

6 5

1890

1910

1930

1950

1970

1990

3

2010

0

0

1

2

4 3 2 1

Surface Downward CO2 Flux (PgC y)

2 1 0

BCC−CSM1.1 ESM RCP 8.5 CanESM2 ESM RCP 8.5 (x3) CESM1 ESM RCP 8.5 HadGEM2−ES ESM RCP 8.5 INM−CM4 ESM RCP 8.5 MIROC−ESM ESM RCP 8.5

4

3

3 2

−1 1870

2010

2020

2030

2040

2050

Year

2060

2070

2080

2090

Figure 5: Ocean carbon uptake from CMIP5 models for the emissions-forced historical simulation (left) and the emissionsforced RCP 8.5 simulation (right).

Possible units problem

1860

1880

1900

1920

1940

1960

1980

2020

2040

2060

2080

−20 −40 −60

1880

1900

1920

1940

1960

1980

2000

2020

2040

2060

2080

2100

Year

Figure 6: Ocean carbon uptake (left) and cumulative ocean carbon uptake (right) from CMIP5 models for the emissions-forced historical and RCP 8.5 simulation.

400

Land Carbon Uptake

1970

1990

HadGEM2−ES ESM RCP 8.5* INM−CM4 ESM RCP 8.5 MIROC−ESM ESM RCP 8.5

1870

1890

1910

1930

1950

1970

1990

6 0 2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

Year

Year

Figure 1: Atmospheric CO2 mole fraction from CMIP5 models for the emissions-forced historical.

Figure 7: Land carbon uptake from CMIP5 models for the emissions-forced historical simulation (left) and the emissionsforced RCP 8.5 simulation (right).

ESM Historical + ESM RCP 8.5 Atmospheric Carbon Dioxide (CO2) Mole Fraction

1880

1900

1920

1940

1960

1920

1940

1960

1980

2000

2020

2040

2060

2080

2100

1980

100 150 200 250 300 0 −100

50

100 150 200 250 300 50 0

Cumulative Surface Downward CO2 (PgC)

−100

10

BCC−CSM1.1 ESM Historical + ESM RCP 8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical + ESM RCP 8.5 HadGEM2−ES ESM Historical + ESM RCP 8.5* INM−CM4 ESM Historical + ESM RCP 8.5 MIROC−ESM ESM Historical + ESM RCP 8.5

2000

2020

2040

2060

2080

2100

−200

−200

−8 −10

−10

500 300

500 300

1900

8 6 4 −6

−4

−2

0

2

6 4 2 0 −2 −4 −6

Surface Downward CO2 Flux (PgC y)

−8

HadGEM2−ES ESM Historical + ESM RCP 8.5* INM−CM4 ESM Historical + ESM RCP 8.5 MIROC−ESM ESM Historical + ESM RCP 8.5 1860

1880

Fossil Atmosphere Realization (Pg C) (Pg C)

Model

Sabine et al. (2004) BCC-CSM1.1

r1i1p1 r1i1p1 r2i1p1 r3i1p1

CESM1 HadGEM2-ES INM-CM4 MIROC-ESM

r1i1p1 r1i1p1 r1i1p1 r1i1p1

117 ± 5 117 117 117 117 117 117 117 117 117

−65 ± 1

MIROC−ESM

INM−CM4

HadGEM2−ES

CESM1

Ocean (Pg C)

MIROC−ESM

INM−CM4

HadGEM2−ES

−F−A−O Land (Pg C) (Pg C)

−37 ± 8

−15 ± 9 −39 ± 18

−69 −37 −11 (−10) −76 −33 −7 −10 −74 −35 −8 −9 −80 −36 −1 −5 −77 ± 3 −34.5 ± 1.5 −4.5 ± 3.5 −7.5 ± 2.5 −82 −41 6 6 −74 −43 0 (0) −70 −17 −30 −12 −74 −40 −3 −4

Table 3: Estimated ocean inventory and uptake rate of anthropogenic CO2 in 2008 for the emissions-forced historical (1850– 2005) and emissions-forced RCP 8.5 (2006–2008) simulations. Model

Realization

Ocean Inventory Ocean Uptake (Pg C) (Pg C y−1)

r1i1p1 r1i1p1 r2i1p1 CanESM2 r3i1p1 Ensemble Mean CESM1 r1i1p1 HadGEM2-ES* r1i1p1 INM-CM4 r1i1p1 MIROC-ESM r1i1p1

140 ± 25

2.3 ± 0.6

122.0 98.4 96.2 99.2 97.9 131.1 152.1 55.0 133.5

2.32 2.40 2.45 2.25 2.37 2.70 2.45 1.15 2.62

*HadGEM2-ES simulation begins in 1860.

Table 4: Estimated atmosphere, ocean, and land uptake rates of anthropogenic CO2 for the emissions-forced historical (1850– 2005) and emissions-forced RCP 8.5 (2006–2008) simulations. For models, land values in parentheses are computed as differences; other land accumulation values come from model results. The units for all carbon accumulation values are Pg C y-1.

ESM Historical + ESM RCP 8.5 Cumulative Land Carbon Uptake

BCC−CSM1.1 ESM Historical + ESM RCP 8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical + ESM RCP 8.5

8

1100 700

900

1100 900 700

CO2 (ppm)

10

ESM Historical + ESM RCP 8.5 Land Carbon Uptake

Historical + RCP 8.5 BCC−CSM1.1 ESM Historical + ESM RCP8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical* + ESM RCP 8.5* HadGEM2−ES ESM Historical* + ESM RCP 8.5* (annual) INM−CM4 ESM Historical + ESM RCP 8.5 (unit corrected) MIROC−ESM ESM Historical + ESM RCP 8.5

CanESM2

Table 2: Projected anthropogenic CO2 budget for the emissions-forced historical simulation for 1980–1999.

−8

−8

2010

Year

1860

0.1

−6

−4

−2

2

4

6 4 2 0 −2 −4 −6

Surface Downward CO2 Flux (PgC y)

6 2 −6

−4

−2

0

4

6 4 2 0 −2 −6 1850

2010

10

BCC−CSM1.1 ESM RCP 8.5 CanESM2 ESM RCP 8.5 (x3) CESM1 ESM RCP 8.5

8

10

HadGEM2−ES ESM Historical* INM−CM4 ESM Historical MIROC−ESM ESM Historical

8

8

BCC−CSM1.1 ESM Historical CanESM2 ESM Historical (x3) CESM1 ESM Historical

−4

Surface Downward CO2 Flux (PgC y)

340 320 300 1950

0.2

BCC-CSM1.1

ESM RCP 8.5 Land Carbon Uptake

8

360

ESM Historical Land Carbon Uptake

280 1930

0.3

Figure 9: Carbon accumulation through 1994 for the atmosphere, ocean, and land (computed as the difference) from CMIP5 models for the emissions-forced historical simulation. In the lower-right panel, the ocean uptake has been divided by the atmospheric uptake in order to remove the atmospheric CO2 bias.

500 400 300 200

1860

380

400 380 360 340 320 300

CO2 (ppm)

280

1910

0.4

Khatiwala et al. (2009)

Historical BCC−CSM1.1 ESM Historical CanESM2 ESM Historical (x3) CESM1 ESM Historical* HadGEM2−ES ESM Historical* (annual) INM−CM4 ESM Historical (unit corrected) MIROC−ESM ESM Historical

1890

0.5

0.0

ESM Historical Atmospheric Carbon Dioxide (CO2) Mole Fraction

1870

Sabine et al. (2004)

−80

0.6

0

0

2100

Year

1850

MIROC−ESM

0

0.7

100

200

300

400

500 2000

BCC−CSM1.1 ESM Historical + ESM RCP 8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical + ESM RCP 8.5 HadGEM2−ES ESM Historical + ESM RCP 8.5 INM−CM4 ESM Historical + ESM RCP 8.5 MIROC−ESM ESM Historical + ESM RCP 8.5

100

5 4 3 2 1 0 −1

Cumulative Surface Downward CO2 (PgC)

6

BCC−CSM1.1 ESM Historical + ESM RCP 8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical + ESM RCP 8.5 HadGEM2−ES ESM Historical + ESM RCP 8.5 INM−CM4 ESM Historical + ESM RCP 8.5 MIROC−ESM ESM Historical + ESM RCP 8.5

As of 25 February 2012

Carbon in CMIP5 Emissions-Forced Simulations

INM−CM4

20

CanESM2

ESM Historical + ESM RCP 8.5 Cumulative Ocean Carbon Uptake 6

ESM Historical + ESM RCP 8.5 Ocean Carbon Uptake

8 3 — 8 1 8 1 1 1 —

5

1 3† — 8 8 1 1 1 1 —

4

1 3 — 8 8 8 1† 8 1 —

8 3 — 1 1 8 1 1 1 —

0

1 3† — 8 8 1 1 1 1 —

HadGEM2−ES

0.8

2100

ESM Historical ESM RCP 8.5 Country CO2 FGCO2 NBP CO2 FGCO2 NBP

BCC-CSM1.1 China 1 CanESM2 Canada 3 CESM1 U.S. — GFDL-ESM2G U.S. 8 GFDL-ESM2M U.S. 8 HadGEM2-ES U.K. 8 INM-CM4 Russia 1† IPSL-CM5A-LR France 8 MIROC-ESM Japan 1 MPI-ESM-LR Germany —

CESM1

40

Year

−1

Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü

BCC−CSM1.1 ESM Historical CanESM2 ESM Historical (x3) CESM1 ESM Historical HadGEM2−ES ESM Historical INM−CM4 ESM Historical MIROC−ESM ESM Historical

1850

Surface Downward CO2 Flux (PgC y)

Earth System Model

ESM RCP 8.5 Ocean Carbon Uptake

1

1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0

8 1 1 8 8 8 8 8 8 8 1 8 1 8 8 8 8 8 8 8

−1

8 1 1 8 8 8 8 8 8 1 1 8 1 8 8 8 1 8 8 8

3

Ü

8 1 1 8 8 8 8 8 8 8 1 8 1 8 1 8 8 8 8 8

2

Ü

8 1 1 8 8 8 8 8 8 1 8 8 1 8 8 8 1 8 8 8

CanESM2

0.9

CESM1

model CO2 estimates for 2008. Five year average atmospheric CO2 projections are compared to the 2006–2010 average. For N = 8, an R2 ≈ 0.5 is significant to the p < 0.05 level.

60

CanESM2

2100

BCC−CSM1.1

2080

Figure 4: The R2 of multi-model bias structure relative to the

1

Ü

8 1 3 8 8 8 8 8 8 1 1 1 1 8 1 8 8 8 8 8

20

Sabine et al. (2004)

2060

Anthropogenic Carbon Ratio

2040

Year 5−y averages relative to 2006−2010

Surface Downward CO2 Flux (PgC y)

Ü Ü

8 1 3 8 8 8 8 8 1 1 1 1 1 8 1 8 8 8 8 8

40

MIROC−ESM

2020

INM−CM4

2000

ESM Historical Ocean Carbon Uptake

8 1 1 8 8 8 8 8 1 1 1 1 1 8 1 8 8 8 8 8

60

Ocean/Atmosphere in 1994

HadGEM2−ES

1980

CESM1

1960

CanESM2

1940

BCC−CSM1.1

1920

Sabine et al. (2004)

1900

Anthropogenic Carbon (Pg C)

0.2 1880

ESM ESM ESM ESM ESM ESM ESM 1% Control Historical RCP8.5 FixClim1 FixClim2 Fdbk1 Fdbk2 CO2 Country 5.1 5.2 5.3 5.4-1 5.4-2 5.5-1 5.5-2 6.1 Australia China Canada U.S. France Australia China U.S. U.S. U.S. U.K. Russia France France Japan Japan Germany Germany Japan Norway

BCC−CSM1.1

0.4 0.3

0.5

0.4 0.3 0.2 1860

Ocean Carbon Uptake

ACCESS1.0 BCC-CSM1.1 CanESM2 CESM1 SCNRM-CM5 SCSIRO-Mk3.6 SFGOALS-G2 SGFDL-CM3 GFDL-ESM2G GFDL-ESM2M HadGEM2-ES INM-CM4 IPSL-CM5A-LR SIPSL-CM5A-MR MIROC-ESM SMIROC5 MPI-ESM-LR MPI-ESM-P SMRI-CGCM3 NorESM1-M

80

Land in 1994

Earth System Model Data Availability on ESG

Model (CSM, ESM)

100

0 Sabine et al. (2004)

0.6

0

120

BCC−CSM1.1

Anthropogenic Carbon (Pg C)

1.0 0.9 0.8 0.7

0.9 0.6

0.7

0.8

1.0

250

N = 8, p < 0.05

0.5

R2

Rapidly increasing atmospheric carbon dioxide (CO2) concentrations are altering Earth’s climate. The anthropogenic perturbation of the global carbon cycle is expected to induce feedbacks on global climate and future CO2 concentrations; however, these feedbacks are poorly constrained. In order to reduce the range of uncertainty in climate predictions, model representation of feedbacks must be improved through comparisons with contemporary observations. The International Land Model Benchmarking (ILAMB) Project is developing model evaluation benchmarks based on best-available observational data sets that are accepted by the larger international research community. In this work-in-progress, we apply observational estimates of atmospheric CO2 and ocean carbon fluxes to analyze the evolution of carbon cycle biases in emissions-forced model results from the Fifth Coupled Model Intercomparison Project (CMIP5).

R of Multi−model Bias Structure Relative to Model CO2 Estimates for 2008

1860

1880

1900

1920

1940

1960

Year

1980

2000

2020

2040

2060

2080

2100

Year

Figure 8: Land carbon uptake (left) and cumulative land carbon uptake (right) from CMIP5 models for the emissions-forced historical and RCP 8.5 simulation.

Model

1980s Atmos Ocean Land

Khatiwala et al. (2009)

1.8 0.3 (1.3–2.3) (−0.3–0.8) 1.8 0.3 (1.0–2.6) (−0.6–1.2)

IPCC AR4 BCC-CSM1.1 r1i1p1 r1i1p1 r2i1p1 CanESM2 r3i1p1 Mean CESM1 r1i1p1 HadGEM2-ES r1i1p1 INM-CM4 r1i1p1 MIROC-ESM r1i1p1

1990s 2000–2006 Atmos Ocean Land Atmos Ocean Land

3.41 3.95 3.93 3.08 3.65 3.98 3.85 3.47 3.38

1.79 1.60 1.75 1.61 1.65 1.90 1.99 0.78 1.73

(0.26) −0.06 −0.10 0.61 0.15 −0.46 (−0.39) 0.38 0.14

2.0 1.1 (1.4–2.6) (0.5–1.8) 2.2 1.0 (1.8–2.6) (0.4–1.6) 3.49 3.62 3.50 4.90 4.01 4.20 3.54 3.58 4.04

1.96 1.71 1.72 1.98 1.80 2.19 2.31 0.90 2.25

(0.77) 1.07 1.04 −0.11 0.67 −0.13 (0.37) 0.81 0.30

2.3 1.1 (1.7–2.9) (0.4–1.8) 2.2 1.3 (1.8–2.6) (0.7–1.9) 4.70 5.48 5.63 4.92 5.34 4.24 4.47 4.77 3.21

2.27 2.21 2.04 2.13 2.13 2.34 2.31 1.04 2.05

(0.22) 0.00 0.10 0.38 0.16 0.29 (0.40) −0.12 1.80

Year

Figure 2: Atmospheric CO2 mole fraction from CMIP5 models for the emissions-forced historical and RCP 8.5 simulations combined.

References

Table 1: Projected anthropogenic CO2 budget for the emissions-forced historical simulation for 1850–1994.

S. Khatiwala, F. Primeau, and T. Hall. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462(7271):346–349, Nov. 2009. doi:10.1038/nature08526.

650

650

Observed Contemporary Mole Fraction

R2 = 0.629 U.S. Model (CESM1)

600 U.K. Model (HadGEM2−ES)

Chinese Model Russian Model (BCC−CSM1.1) (INM−CM4)

Historical + RCP8.5

BCC-CSM1.1

500

CanESM2

380

385

390

395

400

405

410

415

Contemporary (2006−2010) Carbon Dioxide Mole Fraction (ppm)

Figure 3: Future vs. contemporary atmospheric CO2 mole fraction from CMIP5 models for the emissions-forced RCP 8.5 simulation.

World Climate Research Programme (WCRP) CMIP5 Analysis Workshop, Honolulu, Hawaii, USA

Fossil Atmosphere Realization (Pg C) (Pg C)

Sabine et al. (2004)† Waugh et al. (2006) Khatiwala et al. (2009)‡

550

550

600

Japanese Model (MIROC−ESM) Canadian Model (CanESM2)

Model

500

Future (2048−2052) Carbon Dioxide Mole Fraction (ppm)

Future (2048−2052) vs. Contemporary (2006−2010) Atmospheric Carbon Dioxide

Comparisons with Contemporary Observations

CESM1 HadGEM2-ES* INM-CM4 MIROC-ESM †

r1i1p1 r1i1p1 r2i1p1 r3i1p1 r1i1p1 r1i1p1 r1i1p1 r1i1p1

244 ± 20

240 240 240 240 240 240 240 240 240

Ocean (Pg C)

−165 ± 4 −118 ± 19 −(94–121) −114 ± 22 −163 −92 −159 −70 −157 −69 −167 −70 −162 ± 5 −69.5 ± 0.5 −194 −99 −209 −119 −157 −41 −188 −103

Sabine et al. (2004) estimates are for 1800–1994. ‡ Khatiwala et al. (2009) estimates are for 1765–1994. *HadGEM2-ES simulation begins in 1860.

−F−A−O Land (Pg C) (Pg C) 39 ± 28

15 (15) −11 −23 −14 −28 −3 −16 −8.5 ± 3 −22 ± 6 53 60 88 (89) −42 −54 51 48

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono, and A. F. Rios. The oceanic sink for anthropogenic CO2. Science, 305(5682):367–371, July 2004. doi:10.1126/science.1097403. D. W. Waugh, T. M. Hall, B. I. McNeil, R. Key, and R. J. Matear. Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus B, 58 (5):376–389, Nov. 2006. doi:10.1111/j.1600-0889.2006.00222.x.

Acknowledgment Research sponsored by the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (OBER) within the U.S. Department of Energy’s Office of Science (SC). This research used resources of the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC0500OR22725.