Forrest M. Hoffman. â â¡. , James T. ... NorESM1-M. Norway. 1. As of 25 February ..... D. W. Waugh, T. M. Hall, B. I. McNeil, R. Key, and R. J. Matear. Anthropogenic.
CMIP5 Multi-Model Analysis of Global Carbon Cycle Feedbacks: Developing Benchmarks for ILAMB Forrest M. †
†‡ Hoffman ,
‡ Randerson ,
James T.
† Thornton ,
Peter E.
and Keith Lindsay*
Oak Ridge National Laboratory, ‡University of California - Irvine, and *National Center for Atmospheric Research
Introduction Atmosphere in 1994
Ocean in 1994
2
140 Anthropogenic Carbon (Pg C)
200 150 100 50
As of 25 February 2012
†
6 5
6 5
1890
1910
1930
1950
1970
1990
3
2010
0
0
1
2
4 3 2 1
Surface Downward CO2 Flux (PgC y)
2 1 0
BCC−CSM1.1 ESM RCP 8.5 CanESM2 ESM RCP 8.5 (x3) CESM1 ESM RCP 8.5 HadGEM2−ES ESM RCP 8.5 INM−CM4 ESM RCP 8.5 MIROC−ESM ESM RCP 8.5
4
3
3 2
−1 1870
2010
2020
2030
2040
2050
Year
2060
2070
2080
2090
Figure 5: Ocean carbon uptake from CMIP5 models for the emissions-forced historical simulation (left) and the emissionsforced RCP 8.5 simulation (right).
Possible units problem
1860
1880
1900
1920
1940
1960
1980
2020
2040
2060
2080
−20 −40 −60
1880
1900
1920
1940
1960
1980
2000
2020
2040
2060
2080
2100
Year
Figure 6: Ocean carbon uptake (left) and cumulative ocean carbon uptake (right) from CMIP5 models for the emissions-forced historical and RCP 8.5 simulation.
400
Land Carbon Uptake
1970
1990
HadGEM2−ES ESM RCP 8.5* INM−CM4 ESM RCP 8.5 MIROC−ESM ESM RCP 8.5
1870
1890
1910
1930
1950
1970
1990
6 0 2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
Year
Year
Figure 1: Atmospheric CO2 mole fraction from CMIP5 models for the emissions-forced historical.
Figure 7: Land carbon uptake from CMIP5 models for the emissions-forced historical simulation (left) and the emissionsforced RCP 8.5 simulation (right).
ESM Historical + ESM RCP 8.5 Atmospheric Carbon Dioxide (CO2) Mole Fraction
1880
1900
1920
1940
1960
1920
1940
1960
1980
2000
2020
2040
2060
2080
2100
1980
100 150 200 250 300 0 −100
50
100 150 200 250 300 50 0
Cumulative Surface Downward CO2 (PgC)
−100
10
BCC−CSM1.1 ESM Historical + ESM RCP 8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical + ESM RCP 8.5 HadGEM2−ES ESM Historical + ESM RCP 8.5* INM−CM4 ESM Historical + ESM RCP 8.5 MIROC−ESM ESM Historical + ESM RCP 8.5
2000
2020
2040
2060
2080
2100
−200
−200
−8 −10
−10
500 300
500 300
1900
8 6 4 −6
−4
−2
0
2
6 4 2 0 −2 −4 −6
Surface Downward CO2 Flux (PgC y)
−8
HadGEM2−ES ESM Historical + ESM RCP 8.5* INM−CM4 ESM Historical + ESM RCP 8.5 MIROC−ESM ESM Historical + ESM RCP 8.5 1860
1880
Fossil Atmosphere Realization (Pg C) (Pg C)
Model
Sabine et al. (2004) BCC-CSM1.1
r1i1p1 r1i1p1 r2i1p1 r3i1p1
CESM1 HadGEM2-ES INM-CM4 MIROC-ESM
r1i1p1 r1i1p1 r1i1p1 r1i1p1
117 ± 5 117 117 117 117 117 117 117 117 117
−65 ± 1
MIROC−ESM
INM−CM4
HadGEM2−ES
CESM1
Ocean (Pg C)
MIROC−ESM
INM−CM4
HadGEM2−ES
−F−A−O Land (Pg C) (Pg C)
−37 ± 8
−15 ± 9 −39 ± 18
−69 −37 −11 (−10) −76 −33 −7 −10 −74 −35 −8 −9 −80 −36 −1 −5 −77 ± 3 −34.5 ± 1.5 −4.5 ± 3.5 −7.5 ± 2.5 −82 −41 6 6 −74 −43 0 (0) −70 −17 −30 −12 −74 −40 −3 −4
Table 3: Estimated ocean inventory and uptake rate of anthropogenic CO2 in 2008 for the emissions-forced historical (1850– 2005) and emissions-forced RCP 8.5 (2006–2008) simulations. Model
Realization
Ocean Inventory Ocean Uptake (Pg C) (Pg C y−1)
r1i1p1 r1i1p1 r2i1p1 CanESM2 r3i1p1 Ensemble Mean CESM1 r1i1p1 HadGEM2-ES* r1i1p1 INM-CM4 r1i1p1 MIROC-ESM r1i1p1
140 ± 25
2.3 ± 0.6
122.0 98.4 96.2 99.2 97.9 131.1 152.1 55.0 133.5
2.32 2.40 2.45 2.25 2.37 2.70 2.45 1.15 2.62
*HadGEM2-ES simulation begins in 1860.
Table 4: Estimated atmosphere, ocean, and land uptake rates of anthropogenic CO2 for the emissions-forced historical (1850– 2005) and emissions-forced RCP 8.5 (2006–2008) simulations. For models, land values in parentheses are computed as differences; other land accumulation values come from model results. The units for all carbon accumulation values are Pg C y-1.
ESM Historical + ESM RCP 8.5 Cumulative Land Carbon Uptake
BCC−CSM1.1 ESM Historical + ESM RCP 8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical + ESM RCP 8.5
8
1100 700
900
1100 900 700
CO2 (ppm)
10
ESM Historical + ESM RCP 8.5 Land Carbon Uptake
Historical + RCP 8.5 BCC−CSM1.1 ESM Historical + ESM RCP8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical* + ESM RCP 8.5* HadGEM2−ES ESM Historical* + ESM RCP 8.5* (annual) INM−CM4 ESM Historical + ESM RCP 8.5 (unit corrected) MIROC−ESM ESM Historical + ESM RCP 8.5
CanESM2
Table 2: Projected anthropogenic CO2 budget for the emissions-forced historical simulation for 1980–1999.
−8
−8
2010
Year
1860
0.1
−6
−4
−2
2
4
6 4 2 0 −2 −4 −6
Surface Downward CO2 Flux (PgC y)
6 2 −6
−4
−2
0
4
6 4 2 0 −2 −6 1850
2010
10
BCC−CSM1.1 ESM RCP 8.5 CanESM2 ESM RCP 8.5 (x3) CESM1 ESM RCP 8.5
8
10
HadGEM2−ES ESM Historical* INM−CM4 ESM Historical MIROC−ESM ESM Historical
8
8
BCC−CSM1.1 ESM Historical CanESM2 ESM Historical (x3) CESM1 ESM Historical
−4
Surface Downward CO2 Flux (PgC y)
340 320 300 1950
0.2
BCC-CSM1.1
ESM RCP 8.5 Land Carbon Uptake
8
360
ESM Historical Land Carbon Uptake
280 1930
0.3
Figure 9: Carbon accumulation through 1994 for the atmosphere, ocean, and land (computed as the difference) from CMIP5 models for the emissions-forced historical simulation. In the lower-right panel, the ocean uptake has been divided by the atmospheric uptake in order to remove the atmospheric CO2 bias.
500 400 300 200
1860
380
400 380 360 340 320 300
CO2 (ppm)
280
1910
0.4
Khatiwala et al. (2009)
Historical BCC−CSM1.1 ESM Historical CanESM2 ESM Historical (x3) CESM1 ESM Historical* HadGEM2−ES ESM Historical* (annual) INM−CM4 ESM Historical (unit corrected) MIROC−ESM ESM Historical
1890
0.5
0.0
ESM Historical Atmospheric Carbon Dioxide (CO2) Mole Fraction
1870
Sabine et al. (2004)
−80
0.6
0
0
2100
Year
1850
MIROC−ESM
0
0.7
100
200
300
400
500 2000
BCC−CSM1.1 ESM Historical + ESM RCP 8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical + ESM RCP 8.5 HadGEM2−ES ESM Historical + ESM RCP 8.5 INM−CM4 ESM Historical + ESM RCP 8.5 MIROC−ESM ESM Historical + ESM RCP 8.5
100
5 4 3 2 1 0 −1
Cumulative Surface Downward CO2 (PgC)
6
BCC−CSM1.1 ESM Historical + ESM RCP 8.5 CanESM2 ESM Historical + ESM RCP 8.5 (x3) CESM1 ESM Historical + ESM RCP 8.5 HadGEM2−ES ESM Historical + ESM RCP 8.5 INM−CM4 ESM Historical + ESM RCP 8.5 MIROC−ESM ESM Historical + ESM RCP 8.5
As of 25 February 2012
Carbon in CMIP5 Emissions-Forced Simulations
INM−CM4
20
CanESM2
ESM Historical + ESM RCP 8.5 Cumulative Ocean Carbon Uptake 6
ESM Historical + ESM RCP 8.5 Ocean Carbon Uptake
8 3 — 8 1 8 1 1 1 —
5
1 3† — 8 8 1 1 1 1 —
4
1 3 — 8 8 8 1† 8 1 —
8 3 — 1 1 8 1 1 1 —
0
1 3† — 8 8 1 1 1 1 —
HadGEM2−ES
0.8
2100
ESM Historical ESM RCP 8.5 Country CO2 FGCO2 NBP CO2 FGCO2 NBP
BCC-CSM1.1 China 1 CanESM2 Canada 3 CESM1 U.S. — GFDL-ESM2G U.S. 8 GFDL-ESM2M U.S. 8 HadGEM2-ES U.K. 8 INM-CM4 Russia 1† IPSL-CM5A-LR France 8 MIROC-ESM Japan 1 MPI-ESM-LR Germany —
CESM1
40
Year
−1
Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü
BCC−CSM1.1 ESM Historical CanESM2 ESM Historical (x3) CESM1 ESM Historical HadGEM2−ES ESM Historical INM−CM4 ESM Historical MIROC−ESM ESM Historical
1850
Surface Downward CO2 Flux (PgC y)
Earth System Model
ESM RCP 8.5 Ocean Carbon Uptake
1
1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0
8 1 1 8 8 8 8 8 8 8 1 8 1 8 8 8 8 8 8 8
−1
8 1 1 8 8 8 8 8 8 1 1 8 1 8 8 8 1 8 8 8
3
Ü
8 1 1 8 8 8 8 8 8 8 1 8 1 8 1 8 8 8 8 8
2
Ü
8 1 1 8 8 8 8 8 8 1 8 8 1 8 8 8 1 8 8 8
CanESM2
0.9
CESM1
model CO2 estimates for 2008. Five year average atmospheric CO2 projections are compared to the 2006–2010 average. For N = 8, an R2 ≈ 0.5 is significant to the p < 0.05 level.
60
CanESM2
2100
BCC−CSM1.1
2080
Figure 4: The R2 of multi-model bias structure relative to the
1
Ü
8 1 3 8 8 8 8 8 8 1 1 1 1 8 1 8 8 8 8 8
20
Sabine et al. (2004)
2060
Anthropogenic Carbon Ratio
2040
Year 5−y averages relative to 2006−2010
Surface Downward CO2 Flux (PgC y)
Ü Ü
8 1 3 8 8 8 8 8 1 1 1 1 1 8 1 8 8 8 8 8
40
MIROC−ESM
2020
INM−CM4
2000
ESM Historical Ocean Carbon Uptake
8 1 1 8 8 8 8 8 1 1 1 1 1 8 1 8 8 8 8 8
60
Ocean/Atmosphere in 1994
HadGEM2−ES
1980
CESM1
1960
CanESM2
1940
BCC−CSM1.1
1920
Sabine et al. (2004)
1900
Anthropogenic Carbon (Pg C)
0.2 1880
ESM ESM ESM ESM ESM ESM ESM 1% Control Historical RCP8.5 FixClim1 FixClim2 Fdbk1 Fdbk2 CO2 Country 5.1 5.2 5.3 5.4-1 5.4-2 5.5-1 5.5-2 6.1 Australia China Canada U.S. France Australia China U.S. U.S. U.S. U.K. Russia France France Japan Japan Germany Germany Japan Norway
BCC−CSM1.1
0.4 0.3
0.5
0.4 0.3 0.2 1860
Ocean Carbon Uptake
ACCESS1.0 BCC-CSM1.1 CanESM2 CESM1 SCNRM-CM5 SCSIRO-Mk3.6 SFGOALS-G2 SGFDL-CM3 GFDL-ESM2G GFDL-ESM2M HadGEM2-ES INM-CM4 IPSL-CM5A-LR SIPSL-CM5A-MR MIROC-ESM SMIROC5 MPI-ESM-LR MPI-ESM-P SMRI-CGCM3 NorESM1-M
80
Land in 1994
Earth System Model Data Availability on ESG
Model (CSM, ESM)
100
0 Sabine et al. (2004)
0.6
0
120
BCC−CSM1.1
Anthropogenic Carbon (Pg C)
1.0 0.9 0.8 0.7
0.9 0.6
0.7
0.8
1.0
250
N = 8, p < 0.05
0.5
R2
Rapidly increasing atmospheric carbon dioxide (CO2) concentrations are altering Earth’s climate. The anthropogenic perturbation of the global carbon cycle is expected to induce feedbacks on global climate and future CO2 concentrations; however, these feedbacks are poorly constrained. In order to reduce the range of uncertainty in climate predictions, model representation of feedbacks must be improved through comparisons with contemporary observations. The International Land Model Benchmarking (ILAMB) Project is developing model evaluation benchmarks based on best-available observational data sets that are accepted by the larger international research community. In this work-in-progress, we apply observational estimates of atmospheric CO2 and ocean carbon fluxes to analyze the evolution of carbon cycle biases in emissions-forced model results from the Fifth Coupled Model Intercomparison Project (CMIP5).
R of Multi−model Bias Structure Relative to Model CO2 Estimates for 2008
1860
1880
1900
1920
1940
1960
Year
1980
2000
2020
2040
2060
2080
2100
Year
Figure 8: Land carbon uptake (left) and cumulative land carbon uptake (right) from CMIP5 models for the emissions-forced historical and RCP 8.5 simulation.
Model
1980s Atmos Ocean Land
Khatiwala et al. (2009)
1.8 0.3 (1.3–2.3) (−0.3–0.8) 1.8 0.3 (1.0–2.6) (−0.6–1.2)
IPCC AR4 BCC-CSM1.1 r1i1p1 r1i1p1 r2i1p1 CanESM2 r3i1p1 Mean CESM1 r1i1p1 HadGEM2-ES r1i1p1 INM-CM4 r1i1p1 MIROC-ESM r1i1p1
1990s 2000–2006 Atmos Ocean Land Atmos Ocean Land
3.41 3.95 3.93 3.08 3.65 3.98 3.85 3.47 3.38
1.79 1.60 1.75 1.61 1.65 1.90 1.99 0.78 1.73
(0.26) −0.06 −0.10 0.61 0.15 −0.46 (−0.39) 0.38 0.14
2.0 1.1 (1.4–2.6) (0.5–1.8) 2.2 1.0 (1.8–2.6) (0.4–1.6) 3.49 3.62 3.50 4.90 4.01 4.20 3.54 3.58 4.04
1.96 1.71 1.72 1.98 1.80 2.19 2.31 0.90 2.25
(0.77) 1.07 1.04 −0.11 0.67 −0.13 (0.37) 0.81 0.30
2.3 1.1 (1.7–2.9) (0.4–1.8) 2.2 1.3 (1.8–2.6) (0.7–1.9) 4.70 5.48 5.63 4.92 5.34 4.24 4.47 4.77 3.21
2.27 2.21 2.04 2.13 2.13 2.34 2.31 1.04 2.05
(0.22) 0.00 0.10 0.38 0.16 0.29 (0.40) −0.12 1.80
Year
Figure 2: Atmospheric CO2 mole fraction from CMIP5 models for the emissions-forced historical and RCP 8.5 simulations combined.
References
Table 1: Projected anthropogenic CO2 budget for the emissions-forced historical simulation for 1850–1994.
S. Khatiwala, F. Primeau, and T. Hall. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462(7271):346–349, Nov. 2009. doi:10.1038/nature08526.
650
650
Observed Contemporary Mole Fraction
R2 = 0.629 U.S. Model (CESM1)
600 U.K. Model (HadGEM2−ES)
Chinese Model Russian Model (BCC−CSM1.1) (INM−CM4)
Historical + RCP8.5
BCC-CSM1.1
500
CanESM2
380
385
390
395
400
405
410
415
Contemporary (2006−2010) Carbon Dioxide Mole Fraction (ppm)
Figure 3: Future vs. contemporary atmospheric CO2 mole fraction from CMIP5 models for the emissions-forced RCP 8.5 simulation.
World Climate Research Programme (WCRP) CMIP5 Analysis Workshop, Honolulu, Hawaii, USA
Fossil Atmosphere Realization (Pg C) (Pg C)
Sabine et al. (2004)† Waugh et al. (2006) Khatiwala et al. (2009)‡
550
550
600
Japanese Model (MIROC−ESM) Canadian Model (CanESM2)
Model
500
Future (2048−2052) Carbon Dioxide Mole Fraction (ppm)
Future (2048−2052) vs. Contemporary (2006−2010) Atmospheric Carbon Dioxide
Comparisons with Contemporary Observations
CESM1 HadGEM2-ES* INM-CM4 MIROC-ESM †
r1i1p1 r1i1p1 r2i1p1 r3i1p1 r1i1p1 r1i1p1 r1i1p1 r1i1p1
244 ± 20
240 240 240 240 240 240 240 240 240
Ocean (Pg C)
−165 ± 4 −118 ± 19 −(94–121) −114 ± 22 −163 −92 −159 −70 −157 −69 −167 −70 −162 ± 5 −69.5 ± 0.5 −194 −99 −209 −119 −157 −41 −188 −103
Sabine et al. (2004) estimates are for 1800–1994. ‡ Khatiwala et al. (2009) estimates are for 1765–1994. *HadGEM2-ES simulation begins in 1860.
−F−A−O Land (Pg C) (Pg C) 39 ± 28
15 (15) −11 −23 −14 −28 −3 −16 −8.5 ± 3 −22 ± 6 53 60 88 (89) −42 −54 51 48
C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono, and A. F. Rios. The oceanic sink for anthropogenic CO2. Science, 305(5682):367–371, July 2004. doi:10.1126/science.1097403. D. W. Waugh, T. M. Hall, B. I. McNeil, R. Key, and R. J. Matear. Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus B, 58 (5):376–389, Nov. 2006. doi:10.1111/j.1600-0889.2006.00222.x.
Acknowledgment Research sponsored by the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (OBER) within the U.S. Department of Energy’s Office of Science (SC). This research used resources of the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC0500OR22725.