does dta work in practice?

3 downloads 414 Views 18MB Size Report
Jun 28, 2016 - DEMAND. SUPPLY. JUXTAPOSE. INTEGRATE ? WHAT VENDORS DO ...... traffic operaions model. Weather data. PREDICTIVE ANALYTICS ...
DOES  DTA  WORK  IN  PRACTICE?      

FIRMING  THE  FOUNDATIONS,  PUSHING  THE  BOUNDARIES  

Hani S. Mahmassani Northwestern University

DTA  2016,  Sydney,  NSW,  Australia,  June  28  2016    

KEY  TAKEAWAYS   §  DTA  has  come  a  long  way  since  the  seminal  work  by  Merchant  and  Nemhauser  in   1978,  both  as  a  core  topic  in  transportaIon  science,  as  well  as  an  essenIal  component   of  the  modern  toolkit  of  transportaIon  modelers  for  planning  and  operaIons   applicaIons.         §  Deeper  insight  into  the  various  models’  properIes  has  been  gained,  and  robust   algorithms  have  emerged  to  compute  equilibria  and  other  fixed  points  of  the  models.       §  At  the  same  Ime,  the  boundaries  of  applicaIon  have  conInued  to  evolve  through     §  computaIon  over  larger-­‐scale  networks,     §  integraIon  with  acIvity-­‐based  models  (on  the  planning  side),   §  consideraIon  of  heterogeneous  user  preferences  in  applicaIons  to  wider  range  of  policy   quesIons  and  intervenIons  (e.g.  managed  lanes,  value  pricing),  and     §  providing  a  core  capability  for  real-­‐Ime  esImaIon  and  predicIon  (for  online  operaIons).  

§  Increasingly  it  is  the  tool  of  choice  for  analyzing  impacts  of  new  technologies,  new   service  concepts,  novel  policies  because  DTA  tools  capture  four  criIcal  phenomena:      (1)  Behavior,  (2)    Networks,  (3)  Conges8on,  and  (4)  Dynamics.   §  Yet  agency  pracIIoners  are  not  totally  on  board     §  Growing  range  of  moIvaIng  applicaIons  raises  many  challenges–  both  fundamental   and  methodological,  as  well  as  pracIcal  and  implementaIon-­‐related  (devil  is  in  the   details).   §  Successful  applicaIon  requires  solid  theory,  and  powerful  methodological   foundaIonal  research  moIvated  by  these  challenges.     1/14/2013  

2  

Does  DTA  work  in  pracIce?   §  StaIc  assignment  models  are  much  more  “forgiving”  than  dynamic   assignment  methods   §  §  §  § 

 

Allow  incomplete  networks     Do  not  require  juncIon  representaIon:    more  complex  dynamics  at  nodes  than  on  links.     V/C  >  1  does  not  bother  anybody   No  flow  breakdown,  no  gridlock…  

§  Demand  models  used  in  pracIce  developed  for  an  era  of  staIc  network   models,  even  though  they  purport  to  capture  detailed  micro-­‐dynamics.     §  Inefficient  representaIons  and  data  structures  from  supply  standpoint   §  Uninformed  by  network  computaIons     §  Ohen  produce  temporal  and  spaIal  inconsistencies  that  are  not  “caught”  by  trip-­‐based   assignment  

§  Many  (most)  integraIon  efforts  in  pracIce  have  not  ajempted  “deep   integraIon”,  but  instead  have  struggled  through  different  levels  of   interfacing.    

§  For  agencies,  DTA  has  not  replaced  staIc  models,  but  is  used  for  special   studies  (corridor  management,  work  zones,  evacuaIon),  more  as  a   simulaIon  tool  with  route  diversion  than  as  primary  network  modeling  tool.   1/14/2013  

NEXT  

3  

WHAT  AGENCIES  AND  THEIR  CONSULTANTS  DO   DEMAND  

SUPPLY

INTEGRATE  

?

CONVERT

CONVERT  

CONVERT  

INTERFACE

4  

WHAT  VENDORS  DO   DEMAND  

SUPPLY

INTEGRATE  

?

JUXTAPOSE   5  

WHAT  WE  (DTA’ers)  DO   DEMAND  

SUPPLY

INTEGRATE?   6  

DIS   INTEGRATING  DEMAND  AND  SUPPLY  

THE KEY IS THE PLATFORM: SIMULATION-BASED DTA

return  

CRITICAL  LINK  1:    LOADING  INDIVIDUAL  ACTIVITY  CHAINS     CRITICAL  LINK  2:    MODELING  AND  ASSIGNING    HETEROGENEOUS  USERS     CRITICAL  LINK  3:    MulB-­‐scale  modeling:    consistency  between  temporal    scales  for  different  processes  

The  Context:  

Evolu9on  Towards  Behavioral  Realism   in  Modeling  and  Forecas9ng  Tools  

AcIvity-­‐scheduling,     real-­‐Ime  response  to  informaIon   AcIvity-­‐based  models   Trip  chains   Disaggregate,  choice  models  

Behavioral     Realism   Prospect  theory,  CumulaIve  PT   Learning  dynamics   Bounded  raIonality,  thresholds,  heurisIcs,   ComputaIonal  process  models   Aptudes,  percepIons   Random  uIlity   Consumer  theory  

4-­‐step     SequenIal     StaIc    

Dynamics    

Behavioral     Realism   Learning  dynamics  

Within-­‐   Day-­‐to-­‐   4-­‐step     day   day   SequenIal     StaIc    

Long-­‐term   EvoluIon  &   AdaptaIon       Dynamics  

Dynamic     Equilibrium   Convergence?  

 

Disequilibrium?   Stability?   EvoluIonary  paths  

AdapIve  strategies  

Behavioral     Realism  

4-­‐step     SequenIal     StaIc     Travel  decisions  

Freight,     logisIcs     AcIvity  and  Ime  use  decisions   Energy,     NETWORK Environment     ResidenIal  and  land  use   TelecommunicaIon,  telemobility  

IntegraIon    

FLOW PROCESSES

Dynamics    

AcIvity-­‐scheduling,     real-­‐Ime  response  to  informaIon   AcIvity-­‐based  models  

Behavioral     Realism   Learning  dynamics  

Trip  chains   Disaggregate,  choice  models   Within-­‐   Day-­‐to-­‐   Long-­‐term   4-­‐step     day   day   EvoluIon  &   SequenIal     AdaptaIon     StaIc     Freight,       Dynamics   Travel  decisions   logisIcs     Dynamic       AcIvity  and  Ime  use  decisions   Equilibrium   Convergence?   Energy,     Environment     ResidenIal  and  land  use   Disequilibrium?   Stability?   EvoluIonary  paths   TelecommunicaIon,  telemobility   AdapIve  strategies  

IntegraIon    

Network Flow Processes: What Planning Models Missed

LINK  PERFORMANCE  FUNCTIONS   (volume-­‐delay  curves)    

Travel  Ime  

•   RepresentaIon  of  traffic  flow  processes  on   roadway  faciliIes  (incl.  juncIons)     •   Bone  of  contenIon  between  economists  and  traffic   scienIsts   •   Limited  appreciaIon  in  both  camps  of     interpretaIon   flow  

 

Backward-­‐bending  curve  

Travel  Ime  

Average  Speed  

Traffic  Science   (fundamental  diagram)  

flow  

flow  

Travel  Time  Index  

25 20 15

congested  

10

uncongested  

5 0 0

500

1000 1500 2000 Flow  rate  (vphpl)  

2500

Behavioral     Realism  

Process  models   of  cogniIon  and   learning  in     Integrated   networks     acIvity-­‐based   demand  &   network     microsimulaIon  

4-­‐step     SequenIal     StaIc    

IntegraIon    

Dynamics    

State of advanced practice: Microsimulation of traveler choices on multimodal networks with explicit simulation of flow processes (simulation-based multimodal DTA)

Important role played by FHWA and SHRP2 program in development and initial demonstration.

Integrated   acIvity-­‐based   demand  &   network     microsimulaIon  

MAJOR  INTEGRATION  CHALLENGE:     AddiIonal  behavioral  realism  on  the  demand/acIvity  side   translates  into  major  challenges  for  path  finding  and   computaIonal  burden  in  network  modeling  side.     Examples:     1.  Heterogeneous  users–  different  values  of  Ime  for   different  users,  thus  possibly  different  shortest  paths;   approach:    parametric  shortest  path  for  conInuously   distributed  VOT  (in  pricing  applicaIons).     2.  Travel  Ime  reliability  as  ajribute  in  choice  models  (of   route,  mode,  departure  Ime…):    non-­‐addiIve  across   links  to  obtain  path  disuIliIes  or  generalized  costs.   3.  Nonlinear  uIlity  funcIon  specificaIons–  non-­‐addiIvity.   4.  Different  behavioral  rules  (other  than  disuIlity   minimizaIon),  especially  for  decisions  under  risk–  path   finding  in  stochasIc  dynamic  networks.  

My  Big  Themes  for  DTA  ApplicaIons   q  Heterogeneity  

§  Supply-­‐side  (flow  enIIes)   §  Demand-­‐side  (user  preferences,  e.g.  VOT  and  VOR;  behavior  rules–  BRUE)  

q  MulBmodality  

§  Varying  forms  of  urban/regional  transit   §  TNC’s  (shared  mobility,  ride-­‐hailing,  hybrid  transit)   §  Service  vehicles  (freight,  deliveries,  snow  plows…)  

q  StochasBcity  

§  Travel  Ime  reliability  impact  on  user  choices  (VOR  in  generalized  cost,  alt.  rules)   §  UIlity  dispersion  and  stochasIc  dynamic  equilibria  (path  correlaIons)  

q  IntegraBon  with  acBvity-­‐based  models   q  SpaBal  learning  and  day-­‐to-­‐day  dynamics   §  Role  of  informaIon,  social  influence  

q  Online  DTA-­‐based  esBmaBon,  predicBon  and  control  

§  PredicIve  control  framework,  off-­‐line  evaluaIon  of  online  DTA-­‐based  predicIve   control  

q  Leveraging  (vehicle,  traveler)  trajectories  for  calibraIon  and  validaIon  of   network  models     1/14/2013  

18  

My  Big  Themes  for  DTA  ApplicaIons   q Heterogeneity   §  Supply-­‐side  (flow  enIIes)   City  streets  increasingly   directed  to  mulIple  users     Not  limited  to  developing   countries  or  Amsterdam     Limited  observaIon  for   performance  model   development        

1/14/2013  

19  

q Heterogeneity  

§ Demand-­‐side  (user  preferences,  e.g.  VOT  and  VOR;  behavior  rules–  BRUE)  

Heterogeneous  Users  with   Different  Value  of  Time   For Chicago regional network: Four Different Continuous Value of Time Distributions for different groups of users based on income level (Vovsha et al., 2013)

Household income group

N HH

Mean Person in HH

N Person

HH weights

Person weights

0-30,000 [$]

1,081,423

1.99

2,153,288

0.274

0.202

30,0001-60,000 [$]

1,189,229

2.65

3,156,618

0.302

0.296

60,001-100,000 [$]

988,625

3.15

3,119,355

0.251

0.292

100,001+ [$]

684,051

3.29

2,248,882

0.173

0.211

Total

3,943,328

2.77

10,678,143

1

1

0-30K

30-60K

60-100K

100K+

Aggregated

VOT

6.01

8.81

10.44

12.86

9.68

VOTTollConst

2.18

3.20

3.79

4.67

3.48

VOTTSD

0.80

1.17

1.39

1.71

1.27

VOTTSD w/o network ratio

1.52

2.22

2.64

3.25

2.42

q Heterogeneity  

§ Demand-­‐side  (user  preferences,  e.g.  VOT  and  VOR;  behavior  rules–  BRUE)  

τ τ c'τodp (α ) = TC odp + α × TTodp

Determine  the  breakpoints  that  parIIon  the  feasible  VOT  range  and  define  the   master  user  classes,  and  find  Ime-­‐dependent  least  generalized  cost  path  tree   for  each  user  class.   Tree(1)  

Tree(2)  

Tree(3)  

Tree(4)  

Tree(5)  

αmin   Time  

Tree(6)  

VOT  

αmax   • Each  tree  consists  of  Ime-­‐ dependent  least  generalized  cost   paths  from  all  origin  nodes  to  a   desInaIon  node,  for  all  arrival   Ime  intervals.   • To  determine  the  subinterval  of   VOT,  in  which  the  current  tree   Tr(α)  is  opImal.   Cost  

Mahmassani et al. (2006), & Lu, & Mahmassani, (2008).

My  Big  Themes  for  DTA  ApplicaIons   q  Heterogeneity   §  Supply-­‐side  (flow  enIIes)   §  Demand-­‐side  (user  preferences,  e.g.  VOT  and  VOR;  behavior  rules–  BRUE)  

q  MulBmodality   §  Varying  forms  of  urban/regional  transit   §  TNC’s  (shared  mobility,  ride-­‐hailing,  hybrid  transit)   §  Service  vehicles  (freight,  deliveries,  snow  plows…)  

1/14/2013  

22  

Least  Cost  Hyperpaths  in  MulI-­‐Modal  Transit  Networks   ProperIes   • 

MulI-­‐modal   –  –  –  – 

• 

Transit  modes   Walking   Biking   Structurally  easy  to  add  new  modes  including   passenger  cars  and  other  highway  modes  

MulI-­‐pajern  (route  variaIons)  

–  A  transit  route  may  consist  of  more  than  one   sequence  of  stops/staIons  

• 

Movement/approach  dependent  

–  The  cost  at  a  node,  as  well  as  the  ajracIve  set  of   opIons  is  dependent  on  what  link,  mode  and   pajern  one  arrives  at  that  node  

• 

Time-­‐dependent  

• 

Frequency-­‐based  

• 

Vehicle  capacity  constrained  

Stay  

Get  off  and  walk   Get  off  and  wait  for  red  bus   Keep  walking   Wait  for  a  bus   Stay   Get  off  and  walk   Get  off  and  wait  for  blue  bus  

23  

Least  Cost  Hyperpaths  in  MulI-­‐Modal  Transit  Networks   Hyperpath  

•  Assume  a  transit  traveler  can  walk  either  to  

–  To  Stop  A,  where  there  is  a  train  service  going  to  his  desInaIon   –  Or  to  Stop  B,  where  there  are  three  slower  bus  services  all  going  to  his   desInaIon  

•  In  a  shortest  path  formulaIon,  he  would  always  go  to  Stop  A  and   wait  for  the  train.   •  Assuming  that  the  headway  distribuIons  of  the  three  buses  are   independent  of  each  other,  the  combined  waiIng  Ime  at  Stop  B   would  be  5  min.  with  a  boarding  probability  of  1/3  for  each  bus.   •  A  hyperpath  is  a  strategic  path  where  the  choice  of  opIons  are   not  binary  but  probabilisIc.   A

B

15  min.  wait,  40  min.  travel:  2x15  +  40  =  70  

5  min.  wait,   50  min.  travel:     2x5  +  50  =  60   24  

Least  Cost  Hyperpaths  in  Mul3-­‐Modal  Transit  Networks MulI-­‐Modal  and  Time-­‐Dependent  Cost  Structure    at  a  node  

25  

Transit  Assignment Time-­‐Dependent  User  Equilibrium  

26  

Transit  Assignment  &  Simula3on Transit  SimulaIon:    NUTrans  

Least  Cost   Hyperpaths  

Experience  

Assignment  

27  

Transit  Simula3on SimulaIon  of  Travelers  

•  Moving  travelers  in  the   network  using  Ime   queues  for  every   instance   •  •  •  • 

Walking   Biking   WaiIng   Boarding  or  being   rejected  

•  Capturing  

•  The  heterogeneity  in  the   experienced  waiIng   •  The  disconInuity  in   transfers/missed   connecIons   •  The  disconInuity  in   boarding/gepng  rejected   28  

Transit  Simula3on SimulaIon  of  Vehicles  

•  Moving  vehicles  in  the   network  using  Ime   queues  for  every   instance   •  Vehicle  movement   •  Riders  on  board   •  AlighIng  travelers   •  Seat  assignment  

•  Capturing   •  The  disconInuity  in   seaIng/standing  

29  

Transit  Assignment  &  Simula3on Test  Network  

CTA  Bus  and  Rail  Network   •  1,072  zones   •  13,754  nodes  

•  11,610  stops/staIons   •  2,144  centroids  

•  63,602  links   •  134  routes   •  823  pajerns   •  Vehicle  trips  

•  20,736    for  full  day   •  5,975  for  7  am  –  12  pm  

•  Transit  traveler  demand  

•  1,261,320  for  full  day   •  438,687  for  7  am  –  12  pm   30  

Transit  Assignment  &  Simula3on Results  –  Full  Day  

31  

Transit  Assignment  &  Simula3on Results  –  Full  Day  

32  

My  Big  Themes  for  DTA  Applica3ons q Heterogeneity   §  Supply-­‐side  (flow  enIIes)   §  Demand-­‐side  (user  preferences,  e.g.  VOT  and  VOR;  behavior  rules–  BRUE)  

q MulBmodality   §  Varying  forms  of  urban/regional  transit   §  TNC’s  (shared  mobility,  ride-­‐hailing,  hybrid  transit)   §  Service  vehicles  (freight,  deliveries,  snow  plows…)     Fundamental  Ques9ons:     What  is  nature  of  equilibrium  in  this  market?     Demand  paIern  and  operator/TNC  company’s  behavior?  

1/14/2013  

33  

My  Big  Themes  for  DTA  Applica3ons q Heterogeneity   §  Supply-­‐side  (flow  enIIes)   §  Demand-­‐side  (user  preferences,  e.g.  VOT  and  VOR;  behavior  rules–  BRUE)  

q MulBmodality   §  Varying  forms  of  urban/regional  transit   §  TNC’s  (shared  mobility,  ride-­‐hailing,  hybrid  transit)   §  Service  vehicles  (freight,  deliveries,  snow  plows…)   Required  capabili9es:     1.    Modeling  and  simula9ng  tours  in  DTA     2.  Decisions  result  of  company  ac9on–  op9mizing  logis9cs  opera9ons     3.  Incorpoa9ng  real-­‐9me  informa9on  in  fleet  opera9ons.     4.    Ques9on:    Is  Equilibrium  appropriate  for  these  vehicles?    Approach  is  to   provide  best  equilibrated  travel  9mes  for  op9mal  rou9ng  calcula9ons.   1/14/2013  

34  

A  Priori  Rou3ng  Planner:   Leveraging  DTA  Model  &  Simulator § Time-­‐dependent  travel  Imes  are  given  by  DTA  model   and  simulator  based  on  equilibrated  network.   § A  priori  rouIng  planner  adopts  soluIon  algorithm  for   TDVRPTW  (Time-­‐Dependent  Vehicle  Rou9ng  Problem   with  Time  Window)  with  Ime-­‐dependent  travel  Imes.   § SoluIons  are  then  re-­‐simulated  in  DTA  simulator  under   various  traffic  events,  recognizing  all  waiBng  Bmes  and   service  Bmes  at  customer  sites.   § SIMILAR  CAPABILITY  ENVISIONED  FOR  AUTONOMOUS   VEHICLE  MODELING   (Jiang  &  Mahmassani,  2013)   35  

My  Big  Themes  for  DTA  Applica3ons q Heterogeneity  

§  Supply-­‐side  (flow  enIIes)   §  Demand-­‐side  (user  preferences,  e.g.  VOT  and  VOR;  behavior  rules–  BRUE)  

q MulBmodality  

§  Varying  forms  of  urban/regional  transit   §  TNC’s  (shared  mobility,  ride-­‐hailing,  hybrid  transit)   §  Service  vehicles  (freight,  deliveries,  snow  plows…)  

q StochasBcity  

§  Travel  Ime  reliability  impact  on  user  choices  (VOR  in  generalized  cost,  alt.  rules)   §  UIlity  dispersion  and  stochasIc  dynamic  equilibria  (path  correlaIons)  

q IntegraBon  with  acBvity-­‐based  models   q SpaBal  learning  and  day-­‐to-­‐day  dynamics   §  Role  of  informaIon,  social  influence  

q Online  DTA-­‐based  esBmaBon,  predicBon  and  control  

§  PredicIve  control  framework,  off-­‐line  evaluaIon  of  online  DTA-­‐based  predicIve  control  

q Leveraging  (vehicle,  traveler)  trajectories  for  calibraIon  and  validaIon  of   network  models    

1/14/2013  

36  

IntegraIon  of  DTA  with  ABM   –  Based  on  recently  completed  work  on  development   of  integrated  mulImodal  DTA-­‐ABM  capability  for   the  Chicago  Metropolitan  Agency  for  Planning   –  Acknowledgment:       •  Peter  Vovsha,  PB  Americas  Inc.   •  Kermit  Wies,      CMAP  

Research  ObjecIves   Ø Create  an  integrated  micro-­‐level  mulImodal  network   analysis  and  predicIon  capability–  building  on  a  micro-­‐ simulaIon  acIvity-­‐based  model  (ABM)  within  a  dynamic   mulImodal  network  simulaIon-­‐assignment  capability.   Ø MulImodal  in  the  core–  transit  and  non-­‐auto  travel   essenIal,  not  aherthought.   Ø Explore  and  implement  appropriate  equilibraIon   concept  and  algorithmic  scheme  for  the  integrated   framework.   Ø Large-­‐scale  network  applicaIon:  computaIonal   implicaIons   Ø A  robust  producIon  tool  for  CMAP  planning  work  

EQUILIBRIUM  CONCEPT  FOR  ABM  AND   DTA  INTEGRATION  

39  

WHAT  INTEGRATION  IS  NOT   Aggregate  LOS  OD  Skims  Feedback     Microsimulation ABM

Aggregate LOS skims for all possible trips

List of individual trips

Microsimulation DTA

ALL  ABOUT     THE  CHAIN!  

1/14/2013  

41  

DefiniIon  of  Equilibrated  State   Ø Individual  travelers  cannot  increase  their   uIlity  by  unilaterally  changing  their  ac8vity   chain  (acIviIes,  duraIons,  schedule).     Ø An  ac8vity  chain  is  defined  by  a  sequence  of   acIviIes  with  departure  Ime  and  duraIon  for   each  of  acIvity  in  the  chain.  

42  

DefiniIon  of  Variables   Ø ABM  outputs  individual  trip  chain  with  acIvity  chain,   departure  Ime,  and  acIvity  duraIons:   ai = [ai1 , ai2 , … , aiM ] τ iABM = [τ i1, ABM ,τ i2, ABM ,…,τ iM , ABM ]   d i = [d i1 , d i2 , … , d iM ] Ø DTA  load  individual  trip  chain  and  outputs  experienced   travel  Ime  and/or  generalized  travel  cost:   a = [ai1 , ai2 , … , aiM ]

             i                             DTA

τ i = [τ i1, DTA ,τ i2, DTA ,…,τ iM , DTA ] d i = [d i1 , d i2 , … , d iM ] 43  

Fixed  Point  FormulaIon   U(a,τ , d ) = S(P(A(U(a,τ,d))))

Experienced  UBlity  or  Generalized   Cost  

44  

Fixed  Point  FormulaIon   U(a,τ , d ) = S(P(A(U(a,τ,d))))

Experienced  UBlity  or  Generalized   Cost  

45  

Fixed  Point  FormulaIon   U(a,τ , d ) = S(P(A(U(a,τ,d))))

Experienced  UBlity  or  Generalized   Cost   AcBvity  Chain  from  ABM  

46  

Fixed  Point  FormulaIon   U(a,τ , d ) = S(P(A(U(a,τ,d))))

Experienced  UBlity  or  Generalized   Cost   AcBvity  Chain  from  ABM   User  path  (trajectory)  from   assigning  acBvity  schedules  

47  

Fixed  Point  FormulaIon   U(a,τ , d ) = S(P(A(U(a,τ,d))))

Experienced  UBlity  or  Generalized   Cost   AcBvity  Chain  from  ABM   User  path  (trajectory)  from   assigning  acBvity  schedules   UBlity  obtained  from  simulaBng   user  path  (trajectory)   48  

Fixed  Point  FormulaIon   U(a,τ , d ) = S(P(A(U(a,τ,d))))

Experienced  UBlity  or  Generalized   Cost   AcBvity  Chain  from  ABM   User  path  (trajectory)  from   assigning  acBvity  schedules   UBlity  obtained  from  simulaBng   user  path  (trajectory)   49  

ProperIes  

Fixed  Point  Equilibrium  FormulaIon  

•  SoluIon  Existence   o ConInuity  of  the  FuncIons    

•  SoluIon  Uniqueness   o Monotonocity  of  the  FuncIons    

•  SoluIon  Stability      

50  

Challenges  

Fixed  Point  Equilibrium  

TheoreIcal  Challenges   •  Large  scale  problems     •  No  closed  form  funcIon   •  Unavailable  derivaIves   PracIcal  Challenges     •  Large  scale  Networks   –  Consistency  of  spaIal  and  temporal  resoluIons  between   ABM  and  DTA   –  Maintaining  spaIal  and  temporal  consistencies  of   interdependent  trips  within  DTA   51  

Linking  the  Variables     ABM   ⎛ ai ⎞ ⎜ ABM ⎟ ⎜τ i ⎟ ⎜ ⎟ ⎝ d i ⎠

MulB-­‐Modal   DTA  

U iABM Planned  Individual  UBlity  

TT GC

⎛ ai ⎞ ⎜ DTA ⎟ ⎜τ i ⎟ ⎜ ⎟ ⎝ d i ⎠

U iDTA Experienced  Individual  UBlity   52  

Convergence  Criteria:  Gap  Measure  I  

ABM   ⎛ ai ⎞ ⎜ ABM ⎟ ⎜τ i ⎟ ⎜ ⎟ d ⎝ i ⎠

MulB-­‐Modal   DTA  

U iABM Planned  Individual  UBlity  

⎛ ai* ⎞ ⎜ ⎟ ⎜τ i* ⎟ ⎜ * ⎟ ⎜ d i ⎟ ⎝ ⎠

U i*

OpBmal  Individual  UBlity

TT GC

⎛ ai ⎞ ⎜ DTA ⎟ ⎜τ i ⎟ ⎜ ⎟ d ⎝ i ⎠

U iDTA Experienced  Individual  UBlity   53  

Convergence  Criteria:  Gap  Measure  II  

ABM   ⎛ ai ⎞ ⎜ ABM ⎟ ⎜τ i ⎟ ⎜ ⎟ ⎝ d i ⎠

MulB-­‐Modal   DTA  

U iABM ,k

TT GC

⎛ ai*,k ⎞ ⎜ ⎟ ⎜τ i*,k ⎟ U i*,k ⎜ ⎟ * ⎜ d i ,k ⎟ ⎝ ⎠ ⎛ ai ⎞ ⎜ DTA ⎟ ⎜τ i ⎟ ⎜ ⎟ ⎝ d i ⎠

U iDTA ,k

* At  equilibrated  state,  we  have:   U iDTA = U ,k i ,k (ak ,τ k , d k ), ∀i ∈ N

1 GAP = N

N

DTA * ( U − U ∑ i , k i , k ( ak , τ k , d k ) ) i

54  

SoluIon  Approach:  Outer  Loop   ABM   ⎛ ai ⎞ ⎜ ABM ⎟ ⎜τ i ⎟ ⎜ ⎟ d ⎝ i ⎠

U iABM ,k

DTA  

TT GC

⎛ ai*,k ⎞ ⎜ ⎟ * ⎜τ i ,k ⎟ U i*,k ⎜ ⎟ ⎜ d i*,k ⎟ ⎝ ⎠ ⎛ ai ⎞ ⎜ DTA ⎟ ⎜τ i ⎟ ⎜ ⎟ d ⎝ i ⎠

U iDTA ,k

The  planned  acBvity  chain  for  the  next  iteraBon  is  updated  for  a  subset   of  travelers  based  on  the  magnitude  of  their  gap  measure  (e.g.   likelihood  of  selecBon  for  update  proporBonal  to  experienced  gap).     * $ ! ai,k+1 $ ! ai,k $ ! ai,k # & # & # & ABM ABM * DTA * #τ i,k+1 & = #τ i,k & + f (Ui,k ,Ui,k ) #τ i,k & ## && ## && ## * && " di,k+1 % " di,k % " di,k %

55  

SoluIon  Approach:  inner  loop   ABM   ⎛ ai ⎞ ⎜ ABM ⎟ ⎜τ i ⎟ ⎜ ⎟ d ⎝ i ⎠

MulB-­‐Modal   DTA   ⎛ ai ⎞ ⎜ Adj ⎟ ⎜τ i ⎟ ⎜ Adj ⎟ ⎝ d i ⎠

⎛ ai ⎞ ⎜ DTA ⎟ ⎜τ i ⎟ ⎜ ⎟ d ⎝ i ⎠

TT GC

Schedule   Adjustment  

ObjecBve:  schedule  consistency    

56  

Schedule  Consistency:  Planned  AcIvity  Chain  

57  

Schedule  Consistency:  Experienced  AcIvity  Chain  

58  

Schedule  Consistency:  Experienced  AcIvity  Chain  

The  experienced  arrival   Bme  is  later  than  the   planned  depart  Bme  

59  

Schedule  Consistency:  Adjusted  AcIvity  Plan  

60  

Schedule  Consistency:  Adjusted  AcIvity  Plan  

Adjust  the  depart  Bme   and  duraBon  Bme  of   the  previous  acBvity  

61  

SoluIon  Approach:  ComputaIonal   ConsideraIons  for  Outer  Loop  

ABM   ⎛ ai ⎞ ⎜ ABM ⎟ ⎜τ i ⎟ ⎜ ⎟ d ⎝ i ⎠

U iABM ,k

DTA  

TT GC

⎛ ai*,k ⎞ ⎜ ⎟ ⎜τ i*,k ⎟ U i*,k ⎜ ⎟ * ⎜ d i ,k ⎟ ⎝ ⎠ ⎛ ai ⎞ ⎜ DTA ⎟ ⎜τ i ⎟ ⎜ ⎟ d ⎝ i ⎠

U iDTA ,k

However  calculaIng  UDTA  and  U*  requires  full  run  of  ABM  which  is   computaIonally  demanding;  instead  we  propose  defining   “surrogate  uIliIes”    that  do  not  require     ~ DTA ~ * 62   running  the  full  ABM   U and U

SoluIon  Approach:  ComputaIonal   ConsideraIon  for  Outer  Loop   Run  ABM  for   selected  users   ⎛ ai*,k ⎞ ⎜ ⎟ ⎜τ i*,k ⎟ ⎜ ⎟ * ⎜ d i ,k ⎟ ⎝ ⎠

⎛ ai ⎞ ⎜ ABM ⎟ ⎜τ i ⎟ ⎜ ⎟ ⎝ d i ⎠

U

ABM i ,k

MulB-­‐Modal   DTA  

TT GC

⎛ ai ⎞ ⎜ DTA ⎟ ⎜τ i ⎟ ⎜ ⎟ d ⎝ i ⎠

~ *

U i ,k

~ DTA

U i ,k

63  

Methodology  

ABM  DTA  IntegraIon  

•  Surrogate  Gap  Measure:   ABM   Planned  AcIvity  DuraIon   Planned  Trip  Arrival  Time   Planned  Trip  Departure  Time  

Surrogate  Gap   UDTA  ,  U*  

ABM   U

GC   DTA  

64  

Problem  Approach  

Level  2  IntegraIon    

Defined  Gap  Measures   •  Inconsistent  Schedule  Penalty   •  Number  of  NegaIve  AcIvity  Households   •  DTA  relaIve  gap    

65  

Problem  Approach  

Level  2  IntegraIon    

SelecIon  Strategies   •  Schedule  Adjustment   o Only  Households  with  unrealisIc  schedules   o Random  selecIon  +  unrealisIc  schedule  households   o Households  with  higher  penalIes  than  a  pre-­‐specified   threshold  

 

Problem  FormulaIon   𝑃𝐿𝐷 𝑖 : (  𝐹𝑃𝐿𝐷 𝑖 , 𝑃∗ 𝐿𝐷 𝑖 , 𝑃𝐿𝐷 𝑖 )    

AcIvity  Scheduling    Penalty  associated  with  late  departure  of  traveler  𝑖      

𝑃𝐸𝐷 𝑖 : (  𝐹𝑃𝐸𝐷 𝑖 , 𝑃∗ 𝐸𝐷 𝑖 , 𝑃𝐸𝐷 𝑖 )      Penalty  associated  with  early  departure  of  traveler  𝑖       𝑃𝐿𝐴 𝑖 : (  𝐹𝑃𝐿𝐴 𝑖 , 𝑃 ∗ 𝐿𝐴 𝑖 , 𝑃𝐿𝐴 𝑖 )    

 Penalty  associated  with  late  arrival  of  traveler  𝑖      

𝑃𝐸𝐴 𝑖 : (  𝐹𝑃𝐸𝐴 𝑖 , 𝑃 ∗ 𝐸𝐴 𝑖 , 𝑃𝐸𝐴 𝑖 )    

 Penalty  associated  with  early  arrival  of  traveler  𝑖      

𝑃𝐿𝑇 𝑖 : (  𝐹𝑃𝐿𝑇 𝑖 , 𝑃 ∗ 𝐿𝑇 𝑖 , 𝑃𝐿𝑇 𝑖 )    

 Penalty  associated  with  activity  duration  lengthening  of  traveler  𝑖      

𝑃𝐸𝑇 𝑖 : (  𝐹𝑃𝐸𝑇 𝑖 , 𝑃 ∗ 𝐸𝑇 𝑖 , 𝑃𝐸𝑇 𝑖 )    

 Penalty  associated  with  activity  duration  shortening  of  traveler  𝑖      

𝑖,𝑡𝑟 𝑖,𝑡𝑟 𝑖,𝑡𝑟 𝛿𝑆𝐼𝑛 : (𝛿𝐷𝐿,𝐸 , 𝛿𝐴𝑖,𝑡𝑟 𝐿,𝐸 , 𝛿𝑇𝐿,𝐸 )              Schedule  inconsistency  of  type  𝐼𝑛  for  trip  𝑡𝑟  of  traveler  𝑖     𝑖,𝑡𝑟 𝑖,𝑡𝑟 𝑖,𝑡𝑟 ∆𝑆𝐼𝑛 : (∆𝐷𝐿,𝐸 , ∆𝐴𝑖,𝑡𝑟 𝐿,𝐸 , ∆𝑇𝐿,𝐸 )              Schedule  inconsistency  of  type  𝐼𝑛  for  trip  𝑡𝑟  of  traveler  𝑖  

𝑖,𝑡𝑟 ∆𝑆𝐼𝑛

=7

𝑖,𝑡𝑟 𝑖,𝑡𝑟 𝑖,𝑡𝑟 𝑖 𝑖 𝐹𝑃𝐼𝑛 + 𝑃𝐼𝑛 ∗ 𝛿𝑆𝐼𝑛                                                                          𝛿𝑆𝐼𝑛 < 𝑇𝑆𝐼𝑛  

  𝑖,𝑡𝑟 𝑖,𝑡𝑟 𝑖,𝑡𝑟 𝑖,𝑡𝑟 𝑖,𝑡𝑟 𝑖 𝑖 𝐹𝑃𝐼𝑛 + 𝑃𝐼𝑛 ∗ 𝛿𝑆𝐼𝑛 + 𝑃 ∗ 𝑖𝐼𝑛 ∗ (𝛿𝑆𝐼𝑛 − 𝑇𝑆𝐼𝑛 )                        𝛿𝑆𝐼𝑛 > 𝑇𝑆𝐼𝑛   𝑚𝑖𝑛 > (∆𝐷𝑡𝑟 + ∆𝐴𝑡𝑟 + ∆𝑇 𝑡𝑟 )   𝑡𝑟 ∈𝜑 ′

𝑖

67  

Methodological  Structure   Step 0: Initialization (Time-dependent OD demand, time-dependent link pricing, VOT distribution, and initial path assignment, ,DTA Iteration=0, Iteration=1)

DTA Iteration= DTA Iteration+1

Step 1: Network Loading and Simulation: DYNASMART + NUTrans (Obtain link travel times and costs)

NO Step 3: DTA Convergence Checking Iteration=Iteration+1

Step 2: Path Set Generation and Path Assignment (Implement parametric analysis method (PAM ) to calculate Bi-criterion Time-Dependent Least Generalized Cost Path trees and corresponding VOT breakpoints)

YES

NO

Step 5: Convergence Checking

Step 4: Schedule Adjustment (find the descent direction: MSA based gap minimization)

YES Stop

68  

MULTI-­‐MODAL  DTA   NU-­‐TRANS  

Transit   Experience   OMAZ-­‐DMAZ   Transit  Sub-­‐Tours   by  User  Class  

Inner  Loop  

Generalized   Least  Cost   Paths  for   OTAP-­‐DTAP  

Chains  with   Given  Trip   Modes  

Chain/ Tour   Processor  

Outer  Loop  

Level  2   Schedule  Adj   Connector   Travel  Times   for  PNR  and   KNR   OMAZ-­‐DMAZ   Car  Sub-­‐Tours   by  User  Class  

ODT  LOS  and  Experienced   Trajectories  (mulBmodal)   Car   Experience  

Level  1     AcIvity  &   Schedule   Planning/ Replan  

Bus  Link   Travel   Times  

Dwell  Times  

ABM  

Level  3     Real-­‐Ime  Schedule   Adjustment  

69  

Network  ConfiguraIon  

Large  Scale  Chicago  Network  

•   1961  Zones   •   13093  Nodes   • 40443  Links  

• 36722  Arterials   • 1400  Freeways  

•   2000481  Vehicles  loaded   • 4864686  Total  planned  trips      

70  

Gap  Measures    

Level  2  IntegraIon  

71  

Level  2  IntegraIon  

Results  

Number of Households subject to schedule adjustment

12000   Random  SelecIon   Penalty  Based  

10000  

UnrealisIc  Only   8000  

6000  

4000  

2000  

0   0  

2  

4  

6  

8  

10  

12  

Level  2  IteraBon  Number  

72  

Level  2  IntegraIon  

Results   3000  

Number  of  Households  with  UnrealisBc  Schedule  

Random  SelecIon   Penalty  Based  

2500  

UnrealisIc  Only  

2000  

1500  

1000  

500  

0   0  

2  

4  

6  

8  

10  

12  

Level  2  IteraBon  Number  

73  

Level  2  IntegraIon  

Results   16  

Random  SelecIon  

Average Inconsistent Schedule Penalty

14  

Penalty  Based   UnrealisIc  Only  

12  

10  

8  

6  

4  

2  

0   0  

2  

4  

6  

8  

10  

12  

Level  2  IteraBon  Number  

74  

Conclusion   •  Generalized Equilibrium Concept proposed with activity schedules: practical operational definition for integrating longterm ABM and DTA. •  Real-Time Activity Adjustment and Rescheduling: Important frontier in extending ABM logic into dynamic mechanisms for integration in DTA simulation.

75  

My  Big  Themes  for  DTA  ApplicaIons   q  Heterogeneity  

§  Supply-­‐side  (flow  enIIes)   §  Demand-­‐side  (user  preferences,  e.g.  VOT  and  VOR;  behavior  rules–  BRUE)  

q  MulBmodality  

§  Varying  forms  of  urban/regional  transit   §  TNC’s  (shared  mobility,  ride-­‐hailing,  hybrid  transit)   §  Service  vehicles  (freight,  deliveries,  snow  plows…)  

q  StochasBcity  

§  Travel  Ime  reliability  impact  on  user  choices  (VOR  in  generalized  cost,  alt.  rules)   §  UIlity  dispersion  and  stochasIc  dynamic  equilibria  (path  correlaIons)  

q  IntegraBon  with  acBvity-­‐based  models   q  SpaBal  learning  and  day-­‐to-­‐day  dynamics   §  Role  of  informaIon,  social  influence  

q  Online  DTA-­‐based  esBmaBon,  predicBon  and  control  

§  PredicIve  control  framework,  off-­‐line  evaluaIon  of  online  DTA-­‐based  predicIve   control  

q  Leveraging  (vehicle,  traveler)  trajectories  for  calibraIon  and  validaIon  of   network  models     1/14/2013  

76  

PREDICTIVE ANALYTICS:

Basis for Intelligent Control Strategies Consistent  anBcipatory  travel  Bme     InformaBon  and  rouBng  decisions   (Reference:  Dong  and   Mahmassani,  2010,  2014)  

Dynamic  pricing  for  managed  lane  operaBons   Link Toll Generator Predicted data

Toll values

Traffic Prediction

Real World Traffic Traffic data

(Reference:     Dong  et  al.  2012)   77  

PREDICTIVE ANALYTICS

Weather-­‐sensiIve  TrEPS   Weather-­‐sensiBve  traffic  operaBons  model   EsBmaBon:  weather-­‐sensiIve  traffic   simulaIon-­‐assignment  model  

Weather  data   Weather  monitoring  systems  

PredicBon:  weather-­‐sensiIve  traffic   simulaIon-­‐assignment  model  

Weather  forecast    

Weather-­‐responsive  traffic   management  strategies  

Alert  weather   condiBons  

78  

Project  ObjecIves   Ø  Integrate  and  operaIonalize  the  weather-­‐sensiIve  TrEPS  models   calibrated  for  Salt  Lake  City  to  support  weather-­‐responsive  traffic   signal  Iming  implementaIon     –  Evaluate  different  possible  signal  Iming  strategies  under  weather-­‐related   scenarios   –  Determine  when  to  deploy  such  weather-­‐responsive  signal  Iming  plans    

Ø  Monitor  the  implementaIon  of  the  TrEPS-­‐based  decision  support   system,  and  its  effecIveness  in  terms  of  weather-­‐responsive  traffic   management    

79  

Real-­‐Bme  Surveillance  Data   §  Freeway  detectors   •  30-­‐second  observaIon  interval   •  occupancy,  vehicle  counts,  speed  

§  Riverdale  road  cameras   •  Vehicle  counts,  speed   80  

Real-­‐Bme  Traffic  Management  

81  

PREDICTIVE  STRATEGIES  FOR  REAL-­‐TIME  PICK-­‐UP  AND  DELIVERY   OPERATIONS  (CITY  LOGISTICS)   Overall  Architecture   Real-Time Traffic Data and Events -Travel Times -Traffic Incidents

Dynamic Traffic Assignment Model and Simulator

Real-Time Requests

State Prediction Module

Online Booking Processor

A Priori Requests

A Priori Routing Planner

Service Network: Nodes: Unserved customers and NEWLY accepted customers, locations of fleets Links: time-dependent shortest paths linking nodes

Online Rerouting Planner

Lan  and  Mahmassani  (2013,  2014)   82  

   

A  footnote–  Trajectory  Data  

My  Big  Themes  for  DTA  ApplicaIons   q  Heterogeneity  

§  Supply-­‐side  (flow  enIIes)   §  Demand-­‐side  (user  preferences,  e.g.  VOT  and  VOR;  behavior  rules–  BRUE)  

q  MulBmodality  

§  Varying  forms  of  urban/regional  transit   §  TNC’s  (shared  mobility,  ride-­‐hailing,  hybrid  transit)   §  Service  vehicles  (freight,  deliveries,  snow  plows…)  

q  StochasBcity  

§  Travel  Ime  reliability  impact  on  user  choices  (VOR  in  generalized  cost,  alt.  rules)   §  UIlity  dispersion  and  stochasIc  dynamic  equilibria  (path  correlaIons)  

q  IntegraBon  with  acBvity-­‐based  models   q  SpaBal  learning  and  day-­‐to-­‐day  dynamics   §  Role  of  informaIon,  social  influence  

q  Online  DTA-­‐based  esBmaBon,  predicBon  and  control  

§  PredicIve  control  framework,  off-­‐line  evaluaIon  of  online  DTA-­‐based  predicIve   control  

q  Leveraging  (vehicle,  traveler)  trajectories  for  calibraIon  and  validaIon  of   network  models     1/14/2013  

84  

A  Footnote:  Trajectory  Data   Ø Collected  by  probe  vehicles  equipped  with  on   board  GPS  devices   Ø A  trajectory  is  the  path  followed  by  the   moving  object  through  the  spaIal  area  over   which  it  moves     85  

Trajectory  Data   Ø  InformaIon  that  can  be  extracted  from  trajectory  data    

–  from  individual  trajectory:   •  •  •  •  •  •  •  • 

Time,  i.e.  posiIon  of  this  moment  on  the  Imescale;     PosiIon  of  the  vehicle  in  space;     Trip  origins  and  desInaIons  ;     DirecIon  of  the  vehicle‘s  movement;     Speed  of  the  movement;     Dynamics  of  the  speed  (acceleraIon/deceleraIon);   Accumulated  travel  Ime  and  distance.   Individual  path  and  temporal  characterisIcs  

–  from  groups  of  trajectories:  

•  DistribuIon  of  speed/travel  Ime;   •  Probe  vehicle  density;   •  Inferred  traffic  volume.  

86  

2D Trajectories First car trajectory

1km

2D trajectories (along segment) have played essential role in development of traffic theories for individual highway facilities. However, in validation and application of traffic simulation models, the focus has been on measurements taken at a point (using fixed sensors) 87  

3D Trajectories in a Network t

y destination

origin

destination

origin

x 88

Network 3D Time-Space Diagram t

y x

x y

3D trajectories of 1,000 simulated vehicles in Irvine, California Saberi, Mahmassani, Zockaie (2014)

89

Edie’s Definitions Extension to Networks

Courbon  and  Leclercq  (2011)     Saberi, Mahmassani, Zockaie (2014) t

 

d (ω ) Q(ω ) = Lxy (ω ) × Δt

3D shape ω

Δt y

 

t (ω ) K (ω ) = Lxy (ω ) × Δt

origin destination

x

where Q(ω) and K(ω) are the network-wide average flow and density for the specified shape ω; d(ω) is the total distance traveled by all the vehicles in the shape ω, t(ω) is the total time spent by all vehicles in the shape ω, Lxy(ω) is the total length (in lane-miles or lane-kms) of the network on the x-y plane associated with the shape ω, and Δt is the time height of the shape ω.

90

ACTIVITY PATTERN INFERENCE: Socio-demographic characteristics

Time 12 am

Home 7 pm

Model

5 pm

Grocery Shopping 3 pm 2 pm

School 10 am 8 am 5 am

Home

Z1

Space 91  

Source: Mahdieh Allahviranloo

Z2

Z4

Z3 2

New  era  of  trajectory-­‐driven  traffic  and     network  performance  analysis    

 

–  More  complete  and  compact  descripIon  of  system  state   –  Capture  all  aspects  of  individual  acIons  (most  complete   record  of  actual  behavior),  with  no  loss  of  ability  to   characterize  systems  at  any  desired  level  of  spaIal  and   temporal  aggregaIon/disaggregaIon   –  Retain  ability  to  extract  stochasIc  properIes  of  both   individual  behaviors  and  performance  metrics   –  Enable  bejer  model  formulaIon/specificaIon  at  all   levels  of  resoluIon,  and  model  calibraIon   –  EffecIvely  unify  model  calibraIon  and  network   performance  analysis   –  Most  promising  hope  to  recognize  and  capture  collecIve   effects  and  interacIon  mechanisms.   92  

KEY  TAKEAWAYS   §  DTA  has  come  a  long  way  since  the  seminal  work  by  Merchant  and  Nemhauser  in   1978,  both  as  a  core  topic  in  transportaIon  science,  as  well  as  an  essenIal  component   of  the  modern  toolkit  of  transportaIon  modelers  for  planning  and  operaIons   applicaIons.         §  Deeper  insight  into  the  various  models’  properIes  has  been  gained,  and  robust   algorithms  have  emerged  to  compute  equilibria  and  other  fixed  points  of  the  models.       §  At  the  same  Ime,  the  boundaries  of  applicaIon  have  conInued  to  evolve  through     §  computaIon  over  larger-­‐scale  networks,     §  integraIon  with  acIvity-­‐based  models  (on  the  planning  side),   §  consideraIon  of  heterogeneous  user  preferences  in  applicaIons  to  wider  range  of  policy   quesIons  and  intervenIons  (e.g.  managed  lanes,  value  pricing),  and     §  providing  a  core  capability  for  real-­‐Ime  esImaIon  and  predicIon  (for  online  operaIons).  

§  Increasingly  it  is  the  tool  of  choice  for  analyzing  impacts  of  new  technologies,  new   service  concepts,  novel  policies  because  DTA  tools  capture  four  criIcal  phenomena:      (1)  Behavior,  (2)    Networks,  (3)  Conges8on,  and  (4)  Dynamics.   §  Yet  agency  pracIIoners  are  not  totally  on  board     §  Growing  range  of  moIvaIng  applicaIons  raises  many  challenges–  both  fundamental   and  methodological,  as  well  as  pracIcal  and  implementaIon-­‐related  (devil  is  in  the   details).   §  Successful  applicaIon  requires  solid  theory,  and  powerful  methodological   foundaIonal  research  moIvated  by  these  challenges.     1/14/2013  

93  

KEY  TAKEAWAYS  

DTA  DOES  WORK  IN  PRACTICE!    

1/14/2013  

94  

We Love Feedback   QuesBons/Comments  

Email:  [email protected]  

  Follow  Me  

Twijer  @b_raIonal  

Connect  with  NUTC  

95