Extended Real Intervals and the Topological Closure of ... - Oracle

0 downloads 0 Views 534KB Size Report
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. .... In “A More Complete Interval Arithmetic,” [?] ... evaluation of an expression at every value in the argument intervals. ... represented using unbracketed, uppercase letters. ..... ment sets: All inputs are shown as singleton sets and results are shown either as ...
Extended Real Intervals and the Topological Closure of Extended Real Relations G. William Walster, E. R. Hansen and J. D. Pryce

Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303 1 (800) 786.7638 1.512.434.1511

Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, EJB, EmbeddedJava, Enterprise JavaBeans, Forte, iPlanet, Java, JavaBeans, Java Blend, JavaServer Pages, JDBC, JDK, J2EE, J2SE, and Solaris trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements. RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.22719(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun. Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. Sun, Sun Microsystems, le logo Sun, EJB, EmbeddedJava, Enterprise JavaBeans, Forte, iPlanet, Java, JavaBeans, Java Blend, JavaServer Pages, JDBC, JDK, J2EE, J2SE, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun. CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

P lea se R e c y c le

Contents Introduction.................................................................................... 1 The Containment Set....................................................................... 17 Basic Arithmetic Operation Containment Sets .................................. 26 Irrational Expressions...................................................................... 32 Variable and Value Equality ............................................................. 34 Containment-Set-Equivalent Expressions ......................................... 35 Conclusion ..................................................................................... 35 Appendix A. References ....................................................................... 37

Extended Real Intervals and the Topological Closure of Extended Real Relations

Introduction The set of real numbers is: IR

= {x : −∞







j

.

j

0

0

j

.

,

0

,

.

,

j

0 >

0

,

,

0

,

0

0
1

.

= ∞ and x0 ∈ {0, +∞} , then the results in the previous case hold. 



If y0 = ∞ and x 0 = 1, then exp y j ln x j can approach any non-negative finite or infinite value. For example: To get any finite z 0, let x j

= exp 

To get z0

= 0, let x j = exp −√1y j

To get z0

= +∞ let x = exp ,

j





ln z0 yj

 .

 . 1 +√y j

 .

Extended Real Intervals and theTopological Closure ofExtended Real Relations

33

∈ {−∞ 0} are similar. Therefore, the following closure of exp y ln x ∈ {−∞ 0 +∞} and x ∈ {0 1 +∞} excluding y x = = 0 is needed because ln {x } can be infinite when x ∈

The cases of y0 is justified for y0 (0, 1) . Including y0 0, .

{ +∞}

,

(

, ,

, ,

0

(

,

)

( 0, 0)

0 )

0

∈ {−∞ +∞} and x ∈ {0 +∞} cset exp y ln x { x y } = {exp signum y × signum x − 1 × ∞ } (48) For y ∈ {−∞ +∞} and x = 1 or y = 0 and x ∈ {0 +∞} cset exp y ln x { x y } = [0 +∞] (49) ,

For y0

(

(

,

0

,

) , ( 0, 0) )

,

0

,

0

(

(

(

( )

0

(

,

0

) , ( 0, 0) )

,

)

) .

,

.

Variable and Value Equality Theorem 1 establishes the identity of containment sets and closures. Therefore, the distinction between the equality of variables as contrasted with equality only of their values applies both to containment sets and closures. For example, cset (x x , x0 (or equivalently, cset ( x y , ( x0 , y0 ) x y )), and cset ( x y , (x 0 , y0 ) x0 y0 ) are different. The following examples are illustrative.

− {

− {} | = }

− {

| =}

− x {x } = cset x − y { x x } | x = y = {0}        1 1 { { cset x × x } = cset x × x x } | x = y = {1} x y   x  x { { cset x } = cset x x } | x = y = {1} x y

cset ( x

,



,

,

(

0 )

 cset x

34

×

, ( 0 , 0)

0

−y {x

, ( 0, y0 )

  1 y

)

{

(50a)

, ( 0, 0 )

0

Alternatively, cset (x

, ( 0, 0)

.

|x = y } = {IR0}∗

, ( x0 , x0 )

∈ IR ∈ {−∞ +∞}   all x ∈ IR − 0 |x = y } = {IR1}∗ for if x ∈ {−∞ 0 +∞} 

0 )

0

0

0

(50b)

for all x0 if x0

,

,

0

0

(50c)

, ,

(51a)

,

(51b)

)

and





{ }∗

  1

| = y =  IR

x cset , ( x 0 , x0 ) x0 y

0

[0,

∈ IR − 0 = ∈ {−∞ +∞}

for all x0 if x0 0 ] if x0

+∞

.

(51c)

,

Containment-Set-Equivalent Expressions Two expressions are containment-set equivalent if they have identical containment sets for all possible values of their arguments. The interval evaluation of containment-set-equivalent expressions produces an enclosure of their common containment set. Therefore, containment-set-equivalent expression exchange cannot cause a containment failure. This result can be used to choose the “best” containment-set-equivalent expression for a particular purpose.

{ }∈

{}⊆

{}

Without loss of containment, expression h can replace expression f in any expres∗n sion, if for all x0 ( IR ) , cset ( f , x0 ) cset (h , x0 ). Example 3 The functions, f1 , f2 , and f3 on page 17 are containment-set-equivalent expressions. Therefore, the interval expression f 2 ([X 1 ] , [X 2 ])

∩f

3 ([X 1 ] , [X 2 ])

(52)

is a sharp enclosure of the common containment set of the functions f 1 , f 2 , and f3 . In (52) f1 is not needed, as the width of f 1 exceeds that of the intersection of f2 and f3 .

Conclusion Traditional interval analysis is defined for single-valued operations and functions with operands and arguments in their natural domains. Because intervals are sets, interval systems can be extended to: 1. permit interval argument endpoints to be any values in IR ∗ , whether partly or totally outside an expression’s natural domain; and,

Extended Real Intervals and theTopological Closure ofExtended Real Relations

35

2. permit interval expressions to be enclosures either of functions or of relations. The key new concept needed to make the required extensions is the containment set of possible results that an enclosure must contain, including argument values for which point expressions are not defined. The containment-set closure identity provides an operational definition of the containment set of any expression, whether a function or relation. The practical consequences of these results are: 1. Interval arithmetic can be used to bound the range of relations as well as functions. 2. Closed interval systems can be implemented on a computer so that no undefined events, or IEEE exceptions, are logically possible. 3. Containment-set equivalence defines the set of expressions within which substitutions can be made without loss of containment.

36

References

37

Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303 1 (800) 786.7638 1.512.434.1511 http://www.sun.com

March 2002

Suggest Documents