IGCSE Physics Notes - Ugnus.uk.eu.org

455 downloads 53671 Views 123KB Size Report
IGCSE Physics Notes. –. Contents.  General Physics. . .. Length & Time . ... Thermal Physics. . .. Simple Kinetic Molecular Model of ...
IGCSE Physics Notes

–

Contents 







General Physics



.

Length & Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Speed, Veloci & Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Mass & Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Densi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Densi of a Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Energy, Work & Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Pressure



.



Pressure in Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thermal Physics



.

Simple Kinetic Molecular Model of Maer . . . . . . . . . . . . . . . . . . . .



Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Thermometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Thermocouples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Transfer of Thermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Properties of Waves



.

General Wave Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .







Electricity & Magnetism



.

Simple Phenomena of Magnetism . . . . . . . . . . . . . . . . . . . . . . . . .



.

Elerical Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Eleric Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Dangers of Elerici . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Eleromagnetic Effes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Cathode Ray Oscilloscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



 Atomic Physics



.

Radioaⅳi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

The Nuclear Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Appendices



A Symbols, Units & Definitions



B Equations Reference



List of Figures 

Using a round boomed flask of known volume . . . . . . . . . . . . . . . . . .





Liquids ansmit pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





The Magdeburg Hemispheres. . . . . . . . . . . . . . . . . . . . . . . . . . . .





A mercury barometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



List of Tables 

General Physics

.

Length & Time

.

Speed, Velocity & Acceleration

.

Mass & Weight

.

Density ( Density

g kg or 3 3 cm m

) =



M ass (g or kg) V olume (cm3 or m3 )

ρ=

M V

ρ(H2 O) = 1 ± 0.1

.

g cm3

Density of a Gas to vacuum pump

scales Figure : Using a round boomed flask of known volume

. Take mass when emp (under vacuum). . Let air in and take mass. . The difference between the two masses is the mass of the air. . ρ =

M(air) V(f lask)

.

Forces

.

Energy, Work & Power

.

Pressure



Pressure ( P ressure

N or P a m2 

) =

F orce (N ) Area (m2 )

P =

F A

1Pa = 1

N m2

1 bar = 105 P a

.

Pressure in Liquids

Pressure in a liquid is direly proportional to depth. d 100

P =

P ∝d P = kd

k=

P =

1 100

ρV g F = = ρgh A A

( ) ) ( ) ( N kg N P pressure, 2 = ρ density, 3 g gravity, h (height, m) m m kg kg m · kg · N N N ×m= = 2 × m3 kg m3 · kg m • Liquids ansmit pressure • Solids ansmit force

• At X: F = 1000 N A = 1 m2 1000 P = = 1000 P a 1



X

Y 10,000N 10m

1000N 1m2

Figure : Liquids ansmit pressure.

• At Y: F = 10, 000 N A = 10 m2 • Overall effe is equilibrium: 1000 P a × 10 m2 = 10, 000 N

30 cm

Force on hemispheres om atmosphere: surf ace area = πd2 ≈ 0.3 m2 ∴ F = P × A = 1 × 105

N × 0.3 m2 = 3 × 104 N m2

Figure : The Magdeburg Hemispheres.

 .

Thermal Physics Simple Kinetic Molecular Model of Matter

• Eⅵdence for kinetic theory: – Brownian motion – crystals • Pressure laws: 

vacuum me  column

height of column depends on amount of a    

a     pushes down

p    height of me  pushes down equally me 

  

Figure : A mercury barometer.

– liquids: p = ρgh – gases: p = ρgh Brownian Motion Brownian Motion occurs when inⅵsible molecules of a liquid or gas bombard a ⅵsible particle due to random thermal movement. If the ⅵsible particle is small enough (but still large enough to be clearly observed) it is seen to undergo Brownian Motion, i. e. a random mmoⅵng around, on an unprediable path, no net change of position. visible pa  

molecules impacting pa  

  observed   

visible 

This theory supports kinetic theory because it is the only complete explanation, and it involves molecules (and/or atoms). Thermometers



Calibration

• we need  fⅸed points:

– ◦C – ◦C • Place thermometer in: – melting ice – steam above boiling water Linearity allows us to fill in the scale Sensitivity the change in mercury level per change in temperature Range difference between the largest and smallest possile readings Thermocouples • Temperature difference across two ends of a wire produces a small voltage (potential difference) • Conneing a sensitⅳe voltmeter with a different pe of wire allows us to measure this voltage • The effe is not linear so a calibration table is required



. Thermal Properties . Transfer of Thermal Energy



Properties of Waves

.

General Wave Properties

. Light . Sound

 .

Electricity & Magnetism Simple Phenomena of Magnetism

. Electrical Quantities . Electric Circuits . Dangers of Electricity . Electromagnetic Effects .

Cathode Ray Oscilloscopes



Atomic Physics

.

Radioactivity

.

The Nuclear Atom

Appendices A

Symbols, Units & Definitions

Quantity length area volume weight mass

Symbol(s) l, h, x . . . A V W m, M 

Unit(s) km, m, cm, mm , , N kg, g

Quantity time density speed acceleration acceleration of free fall force moment of force (torque) work done power pressure atmospheric pressure temperature specific heat capacity specific latent heat frequency wavelength focal length refractive index angle of incidence angle of reflection/refraction critical angle voltage/P. D. current charge e. m. f. resistance

Symbol(s) t ρ u, v a g F M, τ, F W, E P p p θ, t c L f λ f n i r c V I Q E R

Unit(s) ,,s , ,,

N J W Pa, mbar ◦C , , Hz m, cm m, cm (dimensionless) ◦ ◦ ◦

V, mV , C, V Ω

B Equations Reference Weight

Speed

W =m·g

d s= t

Density ρ=

Acceleration

m V

Hooke’s Law ∆v a= t

F =k·x 

Newton’s Second Law

Refractive Index

F =m×a

n=

cvaccum cmaterial

Moment of a Force Snell’s Law

M =F ×d

n=

sin i sin r

Kinetic Energy Critical Angle for TIR

1 E = mv 2 2

sin C = Gravitation Potential Energy E =m·g·h

1 n

Electric Circuits V =I ·R

Work Done ∆W = F · d Power P = Pressure p=

Electric Power P =V ·I

E t

Electric Energy Transfer E =V ·I ·t

F A

Total Resistance in Series Circuits

Liquid Pressure

Rtotal = R1 + R2 + R3 + · · ·

p=h·ρ·g

Total Resistance in Parallel Circuits

Boyle’s Law

1

p1 V1 = p2 V2

Rtotal

=

1 1 + ··· R1 R2

or

Energy to Raise Temperature

Rtotal =

E = m · c · ∆T Energy to Change State

R1 R2 R1 + R2

Voltage & Coils in Transformers

E = m · lf

Np Vp = Vs Ns

or E = m · lv

Voltage & Current in Transformers Wave Equation

Vs · Is = Vp · Ip

v =f ·λ 