Oct 15, 2003 ... UMAT and VUMAT are the user subroutines for the definition of USER based ...
Example: Gurson Model. *POROUS METAL PLASTICITY ...
Implementation of VUMAT Wenhai Wang Advisor : Dr. Antonios Zavaliangos October 15th 2003
UMAT & VUMAT UMAT and VUMAT are the user subroutines for the definition of USER based constitutive models UMAT
ABAQUS/Standard
--implicit time integration, must provide "material stiffness matrix" for use in forming the Jacobian of the nonlinear equilibrium equations;
VUMAT
ABAQUS/Explicit
--Explicit time integration, not necessary forming the Jacobian matrix.
Where Does VUMAT “Fit” in ABAQUS? ABAQUS
X i (t ), Vi (t ), Fi (t )
σ i (t )
Solving equations of equilibrium
Fi (t + ∆t )
σ i (t + ∆t )
VUMAT Solving equations of mechanics
X i (t + ∆t )
∆ε i
Why Is VUMAT Important? ABAQUS
Stress at t time & strain increment σ t , ∆ετ
SUBROUTINE
trial stress: update the stress at t+dt time using trial stress
σ (t + dt ) = σ * P(t + dt ) = P*
YIELD CONDITION
σ* σ * , P*
hydrostatic Pressure & equivalent stress
Combine the flow rule, Update the stress at t+dt time
VUMAT
•ABAQUS constitutive library is extensive BUT; 9Some models are missing; 9Some models are not flexible enough; Example: Gurson Model *POROUS METAL PLASTICITY, RELATIVE DENSITY=0.95 1. , 1. , 1.
•We can develop our models.
Debug and Run a VUMAT Input File:
Subroutine (VUMAT):
ABAQUS Command: C:\>abaqus job=test input=dpnodev user=vumat datacheck C:\>abaqus job=test input=dpnodev user=vumat
Structure of VUMAT Elasticity σ (t + dt ) = σ (t ) + Lijkl (∆ε el )
Strain decomposition
= σ (t ) + Lijkl (∆ε − ∆ε pl ) = σ (t ) + Lijkl ∆ε − Lijkl ∆ε pl
Flow rule
∂Φ 3 σ kl 1 ∂Φ δ kl ) + = σ (t + dt ) − Lijkl λ ( 3 ∂P ∂σ 2 σ '
*
Stress: Strain increment:
σ (t ) ∆ε f (t )
State variables:
...
σ (t + dt ) f (t + dt ) ...
An 1-D Example of UMAT u (t )
σ
u (t ); σ (t ) know ABAQUS:
L
1.Calculate u (t + dt ) from Boundary Conditions
?
σ (t )
2.Strain increment ∆ε =
ε
u
ε (t )
ε (t + dt ) = ε (t ) + ∆ε
t
u (t + dt ) − u (t ) L
VUMAT: ∆ε = ∆ε el + ∆ε pl ∆ε =
σ (t + dt ) − σ (t )
If λ = 0 If λ ≠ 0
E
∂Φ +λ ∂σ 11
, step is elastic; , step is plastic;
An 1-D Example of UMAT (cont.) STEPI: Assume step is elastic ∆ε =
σ (t + dt ) − σ (t ) E
+λ
∂Φ ∂σ 11
If σ (t + dt ) > σ Y , If σ (t + dt ) < σ Y ,
σ (t + dt ) = σ (t ) + E∆ε Plastic. Go to STEP II; Elastic. End and return to ABAQUS;
STEPII: Only if plastic ∆ε =
σ (t + dt ) − σ (t ) E
∂Φ +λ ∂σ 11
σ (t + dt ) = σ (t ) + E∆ε − λ
∂Φ ∂σ 11
Plastic means σ (t + dt ) = σ Y σ (t ) + E∆ε − σ Y λ= ∂Φ / ∂σ 11 Problem is complex for 3D and complex models
Idea of The Algorithm
(σ ) ' (t + dt ) =
1
∂Φ 1 ⎞ ⎛ + 1 3 G λ ⎜ ⎟ ∂σ σ ⎠ ⎝ ∂Φ P(t + dt ) = P * (t + dt ) − Kλ ∂P
(σ *)' (t + dt )
Yield Condtions ELLIPSE MODEL
Φ (σ , p, D) = A( D)σ 2 + B( D) p 2 − 1 = 0 GURSON MODEL σ2 3q p Φ(σ , p, D) = + 2q1 (1 − D) cosh( 2 ) − (1 + q12 (1 − D) 2 ) = 0 σY 2 σY
CRITICAL STATE MODEL/CAM CLAY MODEL Φ (σ , p, f ) = A( f )(
p σ 2 ) + B ( f )( − pcr ( f )) 2 − 1 = 0 σY σY
DRUCKER-PRAGER Fs = σ − p tan β − d = 0 Fc = A( p − p a ) 2 + B( Rσ ) 2 − 1 = 0
Associated and Non-associated
Non-associated
Associated
Outline of A Typical VUMAT 1. Trial stress:
σ * (t + dt ) = σ (t ) + L * ∆ε
2. Check if Φ * ≤ 0
if yes, the new stress is equal to the trial stress:
σ (t + dt ) = σ * (t + dt ) if no, call VUMAT_SUBROUTINE
3. VUMAT Subroutine: calculate the
λ
by using Newton-Raphson method
4. Update the new stress (σ ) ' (t + dt ) =
1
(σ *)' (t + dt )
∂Φ 1 ⎞ ⎛ ⎟ ⎜1 + 3Gλ ∂σ σ ⎠ ⎝ ∂Φ P (t + dt ) = P * (t + dt ) − Kλ ∂P
5. Return to ABAQUS
Difficulties & Disadvantages ¾Convergence of newton-raphson method; ¾Time step increment selection; ¾Time consuming.
Single Element Compress 4
3
2
1
1
Initial geometry:
2
Final geometry:
CPU Time: ABAQUS : VUMAT = 00:00:04 : 00:00:10
S22
ABAQUS VUMAT
VVF (Porosity)
ABAQUS VUMAT
Cylinder Compression Initial geometry:
Final geometry:
CPU Time: ABAQUS : VUMAT = 00:08:15 : 01:25:04 If Purely elastic problem, ABAQUS : VUMAT = 00:04:25 : 00:05:01
Most of the CPU time on VUMAT subroutine !
S22 ABAQUS:
VUMAT:
VVF ABAQUS:
VUMAT:
S22 at Selected Points S22 at element15:
S22 at element 1915:
ABAQUS VUMAT
VVF at Selected Points VVF at element 30:
VVF at element 801:
ABAQUS VUMAT
Rolling ABAQUS:
VUMAT: CPU Time: ABAQUS : VUMAT = 00:58:04 : 06:04:23
RF2 ABAQUS VUMAT
Future Work ¾Implementation of the Drucker-Prager Model for Explicit; ¾Calibrate from the experimental data and derive the models; ¾Develop other models for powder compaction.