Multi-Scale Numerical Modelling of Phase Transition

0 downloads 0 Views 2MB Size Report
71. 1.16 Temperature variation of Al isothermal compressibility . . . . . . . . . . . . . 72. 1.17 Temperature variation of Pb isothermal compressibility . . . . . . . . . . . . . 72.
    

                                                

                         



                   





                                   

!



"         # $%        &'



             ( $%         

           ( $%                       ( $%           )                       

*

+

                                    

,

*

-     .          -       .                                    

,



" -         /   0  ,+1                

2



3          ! 14  5                 

!

,

6     3                5     



7

"       5                  

+

2

6    )              5             

*

 ! 6     3                8    





"       8                 



  6    )              8             



 + "    4    5  4                      

,!

 * "    4      4                     

,

  "    4    5                        

,

  "    4    5                     

,

 , "    4                         

,

 7 "    4    5 9                     

,+

 2 "    4     9                    

,+

! "    4    5                    

,*



8          .   4     0                Æ       

                                         

,,



)     3'                           

22



"               3'  4 

 4    :

+



                      

"                3'  4 

 4     ;  Æ               

*

 !!                      

!

6                  5   /     4     



/            

 

      

 

"

0    

    !      *  =      

    0          I J 9   4    I +J0 

4            $   %    4           $     4    %     I J "  4     4  

            ;            9  

  





L  

> $%  $% $ 7%  4 I J 

 ) 









  

> $%  $%  

  

# > $ %  $ %

$ 2+%

          4 4      " 4   0

     0      4 $   %    4  0       4 I J





 L ,  O$4 %O$!%  +

$ 2*%

 

O$4 % L 

   





> $%> $% M

    

 

%* $%

 $



$ 2%

"    4      .0 '   '.         

   

, 

.!   Æ 

)  1              Æ     /  I +0 J        ;  Æ   

   "

 ;  Æ           ;                0   4   .   I +0 J #



' L   

I  $%   $!%J 

 $ 2%

"  .        4              4        I +0 J

% &      /

' 

=       

                  

 4   4                    # 

" 4    ;  Æ                 4           8  



" 4       0       0       4          4           8  +

*

" /             0               0              0     ; 4

             "                 ; 4         0                    IJ =    4                 0 4                                  =   -  0        

                          4                                4  5  4        0 4        0  

                   4               4 

/

'     &. 

-    44  50 80 0 580 -    5-   '              ;   0            4   

    *2!  ,!*!  # 

*2!    5                  0             0              Æ  



*2!     5   8                 

 

#+   #-



,!*!     5        



*7!    511 $I*+J%

! P>11

- !11 $I*+J%

+! P>11

- ! $I*+J%

!! 1>

-  

!

 4   

+  4

+!2 4

  

!

 4   

!* 4

2 4

 P>11

                      I**J0  4            0        0            .            I**J  ; 4   =   4          

         4        

       0   

   =              !!! -              !1      "    /      !!!!     !1        7

,+1   !!!!    "     /      !!!!    

,+1 " 

                      =         0  

        4                   

          "  0   

   # " -         /   0  ,+1

                             

/

.  (    

=   -   4                     4      4    30 /  $ 2%0            0 /  $ ,!%0  5   8    5           0            0                    Æ     2

       5      0        0    Æ   

     )                             I J 5    *2! 5      88          " 3"-       /          !!!!     !  " 3      /       !   /  $ 2%       5     Æ         ;             4 5                 0  4  3          4                   "    /    4                  88                          !,   

     D0       *2! 5  0        

70

radial distribution function, Al lattice, 0 K "RADIAL"

60

g(r)

50 40 30 20 10 0

0

0.5

1 1.5 2 r/atomic diameter

2.5

   # 3          ! 14  5

     ! !

   !!!!   0            

                 0   4     !

       4                               4      !  "  0       4          0              4 

  4     "             Æ       

            "      4     3 $              3          4      %    ,$% 5          ! ! 0     /      !!!!       4  3      

         ,$% 9      ,$%       4

         3                   /   5      4     0                                      ,$%0                              /    I J               9        /                ! !  !   !!!!   0                0         Æ               ,$%       3           ! !  !1 G       !10  /      !!!!       3               ,$% "                     

         !1    

                 4     7 "             0                             

     0                    4  "    

                       *2! 5            7 =    7$%         /              4    7$%   $%0                    88            /     4 "            "    

1.8

Al lattice solidification from 2010 K 10 10 K "RADIAL"

1.6 1.2

4

1

g(r)

g(r)

"RADIAL"

5

1.4

0.8 0.6

3 2

0.4

1

0.2 0

Al lattice melting from 10 K to 2010 K

6

0

0.5

1 1.5 2 r/atomic diameter

2.5

0

3

0

0.5

liquid Al at 2010 K

2.5

g(r)

1

g(r)

"RADIAL"

3

1.2 0.8 0.6

2 1.5

0.4

1

0.2

0.5

0

3

Al lattice at 10 K

3.5

"RADIAL"

1.4

2.5

a

b

1.6

1 1.5 2 r/atomic diameter

0

0.5

1 1.5 2 r/atomic diameter

2.5

0

3

0

c

0.5

1 1.5 2 r/atomic diameter

2.5

3

d

radial distribution function for Al

   ,# 6     3                5

/                         4     )                                0 4  0       ;  Æ   "             0 : 0        0 4                  4  )                  /   "   ;      4   )          4        /                  5   0  4     )                           2       0  4             )              2$% "          /   0       )                        2$%        0      0        4              



Al at equilibrium 2010K

Al at 10K b

a

Interatomic potential used: RTS

Al at equilibrium, 10K c

   7# "       5               

        4              2$% " 4        )                /     !                  ! !  "       2$% =              0           "    4         4        @  

 4       $                     '  14 %0     *2! 8          /      !1   !!!!    " 8          !1  +! !1   +!!!!

   "     /      +! !1  !!!!    " 4     3           /                   !$%    !$%  4 9          +! !1

 !1   +!!!!         /     !1   !!!!   0 +

Al lattice solidification from 2010 K 10 10 K

Al lattice melting from 10 K to 2010 k

-1400

"gib" "potential"

-1250

gibbs free energy and potential energy (ev)

gibbs free energy and potential energy (ev)

-1200

-1300 -1350 -1400 -1450 -1500 -1550 -1600 -1650 40000 42000 44000 46000 48000 50000 52000 54000 56000 58000 60000 time-step

"gib" "potential"

-1450 -1500 -1550 -1600 -1650 -1700 -1750

0

2000

4000

6000

8000 10000 12000 14000 16000 18000 20000 time-step

b

a

liquid Al at 2010 K

-1565 "gib" "potential"

gibbs frre energy and potential energy (ev)

gibbs free energy and potential energy (ev)

-2000

-1800

-1600

-1400

-1200

-1000 20000 22000 24000 26000 28000 30000 32000 34000 36000 38000 40000 time-step

Al lattice at 10 K "gib" "potential"

-1570 -1575 -1580 -1585 -1590 -1595

-1600 60000 61000 62000 63000 64000 65000 66000 67000 68000 69000 70000 time-step

c

d

gibbs free energy and interatomic potential for Al

   2# 6    )              5

*

       

    4 4  3       !$%    !$% 5                     

         /           4     9      7$%   

$%

$%0      

     

              "      4             ;                

Cu lattice melting from 10 K to 3010 K

9

"RADIAL"

8

3

6

2.5

5

g(r)

g(r)

"RADIAL"

3.5

7

4

2 1.5

3 2

1

1

0.5

0

Cu at 10 K

4

0

0.5

1 1.5 2 r/atomic diameter

2.5

0

3

0

0.5

1 1.5 2 r/atomic diameter

b

3

a

Cu at 3010 K

0.8

2.5

Cu solidification from 3010 K to 10 K

2.5

"RADIAL"

"RADIAL"

0.7

2

0.6 1.5

0.4

g(r)

g(r)

0.5 0.3

1

0.2 0.5

0.1 0

0

0.5

1 1.5 2 r/atomic diameter

2.5

3

0

0

0.5

c

1

1.5 r/atomic diameter

2

2.5

3

d

radial distribution function for Cu

    !# 6     3                8

"                    @    

 )           /         "      

           4   )                5 . 0      0  4                    "     5   80  /    0

         /                  

Cu at equilibrium 3010K

Cu at 10K b

a

Interatomic potential used: RTS

Cu at equilibrium, 10K c

# "       8               

Cu lattice solidification from 3010 K to 10 K

-1000 gibbs free energy and potential energy (ev)

   

"gib" "potential"

-1100 -1200 -1300 -1400 -1500 -1600 -1700 50000

55000

60000

65000 time-step

70000

75000

80000

    # 6    )              8



          / 

"                 4       3             



"                 4               /      



"       0        0       

       /   

& 0        4                           /       0   0  4  

                     =   0                         0    

                                  

/*

3    

=   -  0              # 

- 4   $        %



9  $4     %



=        $       %



?      $        %



-   $      %



D    $      %

"                             @ $ 8  +%        0       ,

          Æ     4  5  4             0            "   .   4              40

  '  $    /       .  %      Æ     .   4                                             

        8  + " 4           

     4    4  4   D=-" $D   =     -       "  F-5%  D? $D     ?    F1% C.   4                      4   4        =         4   .   4         4         .       4 0      4     0       4      5                      4       =  " +0    4            ;        /  $ ,2%    4  " 4                 4 /  $%                  " 4                " + "      0 :      5          .   4 "       4         2        5     4 " 4        $   %      4           /  $ 8  +% 6           4        4            4 D        30                   "  0        3                

7

" +   " $1%



$4%

   $ >5+%

* !

 ,+*

!*+

 !

 +

!27

27

  ,

!7

!*

  *

!7

 !

  *

!7

7 !

 !

!2

%0 : 1 Æ

 1 Æ

*

:$+ $1>%  *

 5 " $1%



$4%

%0 :  Æ

   $ >5+%

+ !

 2, *

 2

 !

 2++

 7

, !

 2!*

 ,

2 !

 7,7

!2!*

2+!

 7,,

!7,

2*!

 7,

!7

! !

 7,

!,

 !

 7 *

!272

7

 Æ

:$+ $1> % 

= " *0       .   4    4  0                  5          "     4  0  0                    /  $ 2+%0 $ 2*%   $ 7,%  4 C.         5  0    4         .   4 5      +    *0  4   4                   4        4          ;  4                             0       0    2

" *   

"

  

5

2,+

4  

!!!

1>

!!! ** 1>



+!!

4  

!!!  1>

!!! + 1>

5

+!!

 

,! )

!7 )



+!!

 

* )

*7 )

5

+!!

 

 )

2 )



+!!

 

 )

,+ )

5

+!!

       

!! *+ >)

!! 2, >)



+!!

       

!! >)

!!++ >)

C. 

-  

variation of the Al shaer viscosity with temperature

1.8

"visal.dat" 1.75

shaer viscosity (gr/sm)

1.7

1.65

1.6

1.55

1.5

1.45

1.4 200

400

600

800 1000 temperature (K)

1200

1400

1600

    +# "    4    5  4         4  4         .   4         5  0                .   4 "    4        /  $ 7% "      

       "      4                       /    8  + 6           5         4         ,  4 "        /  $ 7,% "                       K 4        ,!

the variation of the Pb shear viscosity with Temperature

0.0016

exp value=0.0015 0.0015

shear viscosity (Kg/sm)

0.0014

0.0013

0.0012

0.0011

0.001

0.0009 400

450

500

550

600

650 700 temperature (K)

750

800

850

900

    *# "    4      4  

variation of Cp with temperature for Al

10

experiment MD simulation

Cp Cal/MolK

8

6

4

2

0 200

400

600

Temperature K

800

1000

1200

    # "    4    5   

     0         "      4                 4       '  " 4          /                0       "                Æ   " 4                 4                    70  2   ! "                    

         0                    

         .       

,

variation of the Al isothermal compressibility with temperature

0.0245

Kt 0.024 0.0235 0.023

Kt (1/GPa)

0.0225 0.022 0.0215 0.021 0.0205 0.02 0.0195 300

400

500

600 700 Temperature (K)

800

900

1000

    # "    4    5        

variation of Pb isothermal compressibility with temperature

0.0285

Kt 0.028 0.0275 0.027

Kt (1/GPa)

0.0265 0.026 0.0255 0.025 0.0245 0.024 0.0235 0.023 300

400

500

600 temperature (K)

700

800

900

    ,# "    4            

,

variation of the Al bulk modulus with temperature

51

exp=70 50 49

Bulk Modulus (GPa)

48 47 46 45 44 43 42 41 300

400

500

600 700 temperature (K)

800

900

1000

    7# "    4    5 9 

variation of Pb bulk modulus with temperature

43

exp=45 42

Bulk modulus (GPa)

41

40

39

38

37

36

35 300

400

500

600 temperature (K)

700

800

900

    2# "    4     9 

4         4  ;  88      $50 80 0 D 0 50 5    %0          5  0       

       4 5     0 4        Æ 

              4  /  $ 2 %   $ 72%0    4 

' (   & ) =   8                                       4   

,+

variation of the shear modulus with temperature

9.6

Al Pb

9.4 9.2

Shear modulus (GPa)

9 8.8 8.6 8.4 8.2 8 7.8 7.6 300

400

500

600

700 temperature (K)

800

900

1000

1100

   !# "    4    5     

                              0       "                      0           4    0     8      + "       H                 # 

"                 /         / 

    4               0 )                     



"  4    0              4            

5               /      0 /  $ 2%  

     4          0 /  $  !%0                                "  

     "         0                      4                      # 

"         0 ,*



" 4            0  



"                    

5              /   4  4 0           0 /  $ ,!%             0 /  $ 2%   5     ,    !0                    0                        

   0        0                 "         4    7   

  88    

"                            2     "                 

                 0     )                        *  -     0          4   !<    9       0           0  

        0                               5                        4     0     0        0  4               /            A     4             4                            8       4   .   4   4

       4 " 0 +   * 9   "0     4            .     "                           8  + "          0     4     

    0     '  $    /       .  %0   4    0            0            ,

" 4    ;  Æ  $    /  $ 2%%        $   /  $%%    4 8   " 4     

            8  0       5    /  $%0                    

    0 /  $ ,2%    4       &                   /                @               8   -  0           8  0     



                     /       



"                    0   4      0  0  ' 

"                                       4               0       0                       ;           $    %

,

Isoentropic compressibility (Ks), Thermal pressure coefficient (Gv)

    # 8          .   4     0                Æ        

,,

         

*  

"               /        /                        0    8   "               /           

     I 0 7J                     /      

  

   .         /    

            0           /             "    

 ' 

"      .  

   ' 0             0    @            

  0 4   H          

  4    6                          =   8  0                 4        "   $    %0                4                      ;  Æ   "         50 5+(# 

=   -  0  4               $                4        7!Æ    4%       )            " 4     

 4                     " 4        4     ;        4             4  =                     0    4

           0            !,

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90

   *# 8    3'   0                     !!           

      "                           '      9          0                                       =          0     

        "  ;   0           / .          5 !       *Æ    0 % !1>       *Æ    0 % 1>       2!Æ    0 % !1>       2!Æ    

+7

variation of the LF with T for Sn 10%w Pb alloy with contact angle 45 Deg

1

10 K/s 2 K/s 1 K/s

0.9 0.8

liquid fraction

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0

50

100

150

200

250 300 temperature K

350

400

450

500

550

   * # ? /     4                *0 - !   

:  > ?;+

"                                   .    0        0                  "      .        5-=      $ 227% I+J -X 8 0  0 6 ++0 D 0 2,, I+,J " "; 0   0 8 5    0  ="  0 27, I+7J &1 6     A   0 5 =    8         I+2J P5 -

   -)3 9  0 8  -     C;   5 6    )  -     8 0 5     0 6 +,0 D ,0  7!+ 7 !0 272 I*!J &0      8        "   0 8   0 6 70  7+! 0 27+ I* J 8 4 5 8 .  0 =    ? /  -    0 P A    - 0 2, I*J 3 &   0 3? G 0  5     11 10 -  6  "            9   50 P A 0 2+ I*+J - 5  0 =  " = 0 27 I**J 3)  0 A X 0        "   5    0  22* I*J  8  0 -      0 ) & 0 2,*

7

I*J 5  0 5  C/   0 C4  0 2 I*,J A A  0 3  -  0 P   5  6 +*0 2+ I*7J A A  0 3  -  0 P   5  6 +0 2* I*2J 3  -  0 P   8   )  0 6 +0 27 I!J P 5 -

   - ) 3 9  0 5   0 6 +,0 D ,0  7!+ 7 !0 272 I J  P - 4 '0   5   0  - -   ) - )  0 5   0 6 +0  ,2+0 27* IJ  P - 4 '0   ) - )  0 5   0 6 ++0  ++0 27 I+J  P - 4 '   ) - )  0 5   0 6 +*0  7++0 27 I*J D &

0 - X    & D  0 -    0 6  0  *,0 27, IJ  P - 4 '0   5     ) - )  0 5   0 6 +0 D 20  *2 *+70 27* IJ & A &    = 3 )0 5      0 6 +20 D 20   + *+0 22 I,J A 1 '0 9 ) 4    3 " 4 0 5   0 6 +*0 D 0  7+7+!0 27 I7J Y " 0 89   0 =     P   &    "   0 6 * 0  *!*!20 227 I2J P  & 0 U &   - ?0 -    -       0 C   = G       -  0 22+ I!J  3'   & "4'0 5   0 6 +0 D ,0  *7, *2,0 27, I J 8 X A    8 9   0    -     C   0 5 , 0  22 22+ 7,

0

IJ 8 5 )  0  3'    A 0          "     50 6 50 P  22 I+J 8 9     8 X A 0 -    -     C   0 C   = G       -  0 22 I*J Y "    8 9   0 P   8   )  0 6 7,0  72+!0 227 IJ 6  0 5 8 0  

   8 9   0 C/ .    -    -   0 -  70 227 IJ = -  0 8 9   0 9 1    U ? 0 5    0 6 *,0 D +0  2, 270 222 I,J 9 8    5 60 P 8   )  0 4 *0  !20 2,, I7J  3'   8 5 )  0 5      0 6 * 0 D 0  +*+!0 22+ I2J  3'0 =        34 0 6 +*0 D +0 272 I,!J = .   5 &0 5   0 6 +0    2, I, J 8 8  0 5 P    3'0 5      0 6 *0 D 0  +2++20 22* I,J 8 5 )  0 8 8     3'0 =-=P =    0 6 +0 D 0   ,0 22 I,+J 8 5 )     3'0 5    0 6 * D 0   7, 20 22, I,*J 1 X ?   8  & 0 -    -       0 C   = G       -  0 22 I,J  "4'0 P ?      3'0   "   50 6 !50    272 I,J   -     ) F0   "   50 6  50 5  22!

77

I,,J 8 5 )     3'0 5      0 4 *0 D ,0  ++*0 22* I,7J -       9  H0        8  5 ==0 C   6 3 6   -   0 22 I,2J  C )     3 D - 0   "   50 6 +50    22 I7!J & 8   P   ' 0        "   50 6 ,50 5 22 I7 J  8 -     P  )0        "   50 6 750 P 22, I7J 8 8    3 ? 0 -    -     C   0 C   = G       -  0 22 I7+J 8 3 -     6 3 6 0   "   90 6 +90 G  22 I7*J    8 0 A    54  -      6==0  D U 0 1 8     3  9  0 C    8    P 8 0 22 I7J 8A )   0 &   -    0 -  0 9  0 27 I7J - 3  0 9 "     5 5 8 40 P   8   )  0 6 * 0   2++0 22* I7,J A A     3  -  0 P   5   0 6 +0  ***0 2* I77J & 3 " 0 ?&   8 0 P 8  # 

 0 6 !0  +,0 227 I72J 5 ? 0 1 ) 4    3 -0 P   8   )  0 6 70  2 2,0 227 I2!J P 80 8 0 9

     &  0 22, I2 J ) C    0     0 277 I2J - 6    0 D       @  @0 27!

72

I2+J " D 8  0 F       6 5   -  0 "  0 3     " 0 F 4    )   0 ?  0 227 I2*J 6 3 6   8 3 -   0 )   - 9    -       D     0  90 2$%# , 720 22 I2J )5 " 0  " 0 F 4    )   0 22 I2J  =   0   A

0     &    "   0 A 0 22! I2,J   ) 0 F 4    )   0 222 I27J =       33  

2!

Suggest Documents