ON INTERPOLATING SUBDIVISION SCHEMES. REPRODUCING CIRCLE ARCS. Dayron Garc´ıa Pérez*. Wilfredo Morales Lezca**. Sof´ıa Behar Jequ´ın**.
ON INTERPOLATING SUBDIVISION SCHEMES REPRODUCING CIRCLE ARCS. Dayron Garc´ıa P´ erez* Wilfredo Morales Lezca** Sof´ıa Behar Jequ´ın** Jorge Estrada Sarlabous* *ICIMAF, Cuba **Universidad de la Habana, Cuba
Abstract It is well known that among all simply-connected closed plane curves, the circles are the ones that minimize the average bending energy functional. But it does not hold true for plane curves interpolating points with arbitrary tangent directions. We propose a functional, which is a linear combination of the bending energy and arc-length functionals, and show that for a special selection of the coefficients of the linear combination, the functional has the following property: if two points and tangent directions are sampled from a circle C, then C is the B´ezier conic plane curve minimizing that functional. This fact gives rise to the definition of 3 interpolating subdivision schemes, whose properties such as Gk -continuity, interpolation of previously prescribed tangent directions, reproduction of line segments and circle arcs, affine invariance, etc. are discussed in the present work. Key words: Conic spline, bending energy, subdivision scheme, Hermite interpolation. AMS Subject Classification: 65D17, 68U05, 53A04
References [1] Bajaj,C. L., Chen,J., Holt,R. J. and Netravali, A. N. Energy formulations of A-splines. Computer Aided Geometric Design, V 16, pp. 3959, 1999. [2] D´ıaz, R., Esquema de subdivisi´ on interpolatorio con par´ ametros de tensi´ on local basado en spline c´ onico. Tesis presentada en opci´ on del grado de Licenciado en Matem´aticas, La Habana, 2010. [3] Farin, G., Curves and Surfaces for Computer Aided Geometric Design: a practical guide. Academic Press Inc. ,1997. [4] Garc´ıa, D. Un esquema spline c’onico de Hermite fair Tesis presentada en opci´on del grado de Licenciado en Matem´ aticas, La Habana, 2016. [5] Horn, B.K.P. The curve of Least Energy, AMS trans. Math. Software, vol. 9, No 4, pp 441-460, 1983. [6] Levien, R., S´equin C., Interpolating Splines: Which is the fairest of them all? Universidad de California, 2009.
1
[7] Young, I.T., Walker, J.E. and Bowie,J.E., An analysis technique for biological shape I, Info Control, V 25 , pp. 357-370, 1974