It was possible to get hold of data from the A38 Sutton Coldfield bypass for a ... and Deflectograph runs at the Southbound of A38 Sutton Coldfield bypass.
PAVEMENT EVALUATION WITH PARTICULAR REFERENCE TO THE USE OF A CURVIAMETER AND DEFLECTOGRAPH
By
AYAD T. SUBHY, B.Sc. (Civil Engineering)
This Dissertation is submitted by the Candidate in Partial Fulfilment of the Requirements for the Degree of MSc (Eng) Transport Planning and Engineering
Submission by the Candidate does not imply that its’ content or standard is endorsed by the Examiners
Institute for Transport Studies The University of Leeds
September 2011
Abstract Pavement evaluation is an important tool of Pavement Management System PMS. Nowadays, the general trends of pavement management is developing and adopting new technologies that can nondestructively collect continuous data about pavement condition in a faster way and causing minimal disruption to the travelling public. The Curviameter is presented here as a faster technology that measure the deflection of flexible pavement at a constant speed of 18km/hr by applying a rolling load transmitted through dual rear wheels varied between 80 and 130 KN to meet the terms of the different standards. The Deflectograph has been the main method of evaluating the structural condition of pavement in the UK. The Curviameter is compared with the Deflectograph to see if it is possible to get it accepted in the UK. Data from three different sources are analysed in order to derive a reliable correlation between the two machines. The first set of data was collected by using the elastic layered programs BISAR and deflections calculated according to the load magnitude and tyre footprint of each machine. The second set of data were trials of two machines in 1995 given by Testconsult Ltd. Finally, the third set of data were also trials of both machine conducted by EUROCONSULT and Amey Co. in 2011. A correlation formula from regression analysing is proposed for each set of data. The differences between the derived correlation equations were statistically analysed using a method called A-statistic. The repeatability of the two devices from the1995 data were examined as the two machines were performed with several runs on the same road section by using a statistical t-test. Both machines produce acceptably a repeatable deflections on a range of UK pavement types. The deflection results of both machines from 1995 trials were well correlated with adjusted R2 values ranging from 0.67 to 0.98, but the 2011 trials cannot be proved to be a validated correlation due to factors outside the control of the writer. Finally, further trials are suggested to be conducted at a range of different pavement types and a range of temperatures. The trials should be carried out in a side-by-side field tests and in conjunction with the visual survey.
i
Table of Contents Abstract ............................................................................................................................. i List of Tables .....................................................................................................................iv List of Figures.................................................................................................................... v Chapter 1: Introduction..................................................................................................... 1 1.1 Preface: ......................................................................................................................................... 1 1.2 Objectives and Scope:................................................................................................................... 1 1.3 The proposed Methodology: .......................................................................................................... 2 1.4 Report Outline: .............................................................................................................................. 3
Chapter 2 : General literature review in pavement evaluation. .......................................... 4 2.1 Introduction: ................................................................................................................................... 4 2.2 Pavement evaluation properties: ................................................................................................... 4
2.2.1 Visual condition surveys. ........................................................................................................ 5 2.2.2 Functional condition. .............................................................................................................. 8 2.2.3 Structural condition. ............................................................................................................. 17
Chapter 3 : Evaluation the bearing capacity of flexible pavement using Nondestructive Deflection Testing. .......................................................................................................... 21 3.1 An overview of Nondestructive Deflection Testing. ..................................................................... 21 3.2 Pavement Deflection Surveys. .................................................................................................... 22
3.2.1 Benkelman Beam.................................................................................................................. 22 3.2.2 Falling Weight Deflectometer (FWD). .................................................................................. 23 3.2.3 Rolling dynamic deflectometer (RDD). ................................................................................. 25 3.2.4 Rolling weight deflectometer (RWD). .................................................................................. 27 3.3 Applications of measuring pavement deflection. ......................................................................... 29
3.3.1 Backcalculation process of pavement system...................................................................... 29 3.3.2 Estimation of remaining service life of flexible pavements. ................................................ 30 3.3.3 Homogeneous sections. ....................................................................................................... 32
Chapter 4 : General description of Deflectograph and Curviameter.................................. 33 4.1 Introduction. ................................................................................................................................. 33 4.2 Deflectograph testing................................................................................................................... 33 4.3 Curviameter testing. .................................................................................................................... 37 4.4 Factors affecting the deflection measurements. ......................................................................... 41
4.4.1 The effect of loading type. ................................................................................................... 41 4.4.2 The effect of climate............................................................................................................. 44 4.4.3 The effect of pavement condition. ....................................................................................... 47 ii
Chapter 5 : Data collection, results and analysing. ........................................................... 48 5.1 Introduction. ................................................................................................................................. 48 5.2 BISAR data, methodology, result and analysing. ........................................................................ 48 5.3 Curviameter and Deflectograph trials correlations in 1995. ........................................................ 52
5.3.1 Correlations trials at the TRL Small Roads Section (SRS). ..................................................... 52 5.3.2 Correlations trials on the A4091 near Tamworth. ............................................................... 61 5.3.3 Correlations trials on the M23 motorway. ........................................................................... 65 5.4 Correlations trials on the A38 in Birmingham. ............................................................................. 69 5.5 Critical review and overall comparison of the correlation equations. .......................................... 76
Chapter 6: Conclusions and Recommendations. .............................................................. 79 6.1 Introduction. ................................................................................................................................. 79 6.2 Conclusions. ................................................................................................................................ 79 6.2 Recommendations....................................................................................................................... 81
ACKNOWLEDGMENTS ..................................................................................................... 82 REFERENCES ................................................................................................................... 83 APPENDICES ................................................................................................................... 88 APPENDIX [1] The raw data (uncorrected) of Curviameter runs at SRS. ........................................ 88 APPENDIX [2] The temperature corrected data of Curviameter runs at SRS. ................................. 89 APPENDIX [3] The raw data of Deflectograph runs at SRS. ............................................................ 90 APPENDIX [4] The temperature corrected data of Deflectograph runs at SRS. .............................. 91 APPENDIX [5] The mean of eight runs of the Curviameter and the mean of four runs of Deflectograph averaged over 25m intervals..................................................................................... 92 APPENDIX [6] The calculation of the t-test. ...................................................................................... 93 APPENDIX [7] The 11 runs of the Curviameter at Tamworth. .......................................................... 94 APPENDIX [8] The Curviameter runs averaged over 50m intervals at Tamworth. ........................... 97 APPENDIX [9] The Curviameter and Deflectograph runs at M23. .................................................... 98 APPENDIX [10] The Curviameter and Deflectograph runs averaged over 50m intervals at M23. . 106 APPENDIX [11] The Curviameter and Deflectograph raw data at the Northbound of A38. ........... 108 APPENDIX [12] The Curviameter and Deflectograph raw data at the Southbound of A38. ........... 116 APPENDIX [13] The Curviameter and Deflectograph data averaged over 100m intervals at the Northbound and Southbound of A38. .............................................................................................. 124
iii
List of Tables Page
Table 2.1: Condition Index Scale ................................................................................................ 6 Table 2.2 Recommended Categorisation levels- A survey in the Greater Manchester ........... 10 Table 2.3 Recommended Minimum Skid Number for Main Rural Highways. ......................... 14 Table 4.1: Time of Year and Survey Categories ........................................................................ 36 Table 4.2: Repeatability of deflections .................................................................................... 39 Table 4.3 Deflection at different speeds .................................................................................. 43 Table 5.1 The input data of calculating deflections by using BISAR 3. .................................... 49 Table 5.2 Repeatability testing results using statistical t-test. ................................................ 61 Table 5.3 Assumed category to evaluate the A-statistic.......................................................... 77 Table 5.4 Comparison between the SRS correlation formula and other equations . .............. 78
iv
List of Figures Page Figure 2.1: Individual present serviceability rating .................................................................... 9 Figure 2.2: IRI range by road type. ........................................................................................... 10 Figure 2.3: The quarter-car model ........................................................................................... 10 Figure 2.4: Theoretical frequency response (gain) of the quarter-car model ......................... 12 Figure 2.5: Regression analysis between the IRI and σ. ........................................................... 13 Figure 2.6: Microtexture and macortexture. ........................................................................... 15 Figure 2.7: Comparison of volumetric water content estimates ............................................ 18 Figure 3.1: Benkelman Beam configurations. ......................................................................... 23 Figure 3.2: FWD principles ....................................................................................................... 25 Figure 3.3: RDD Loading System .............................................................................................. 26 Figure 3.4: The process of measuring deflection by RWD optical sensors .............................. 26 Figure 3.5: Relationship between maximum deflection of the Curviameter and ESAL .......... 32 Figure 4.1: Chassis Details for Deflectograph Vehicles ............................................................ 34 Figure 4.2: Deflectograph Measuring Beams ........................................................................... 34 Figure 4.3: Schematic of Curvature Function (CF). .................................................................. 35 Figure 4.4: General view of Curviameter. ................................................................................ 38 Figure 4.5: Cycle measurement system.. ................................................................................. 38 Figure 4.6 : Temperature correction coefficient ...................................................................... 40 Figure 4.7: Deflectograph tyre footprint .................................................................................. 41 Figure 4.8: Curviameter tyre footprint ..................................................................................... 42 Figure 4.9: Deflection versus load speed in flexible and semi rigid pavement. ...................... 43 Figure 4.10 Periodic models: (a) AC layer; (b) resilient modulus ............................................. 46 Figure 4.11 Distribution of deflection with Fatigue Index. ...................................................... 47 Figure 5.1: Typical pavement section....................................................................................... 48 Figure 5.2: Curviameter and Deflectograph correlation using BISAR3. ................................... 50 Figure 5.3: Curviameter and Deflectograph correlation using BISAR3/speed correction ....... 51 Figure 5.4: Curviameter runs on small roads section. ............................................................. 54 Figure 5.5: Deflectograph runs on small roads section. .......................................................... 55 Figure 5.6: Theoretically calculated CT ..................................................................................... 56 Figure 5.7: Relation between deflections and temperatures. ................................................. 56 v
Figure 5.8: Curviameter and Deflectograph correlation of Small Roads Section. ................... 57 Figure 5.9: Coefficient of variation of the Curviameter and Deflectograph at SRS. ................ 58 Figure 5.10: The eight runs means with the error amount /Curviameter. .............................. 59 Figure 5.11: The four runs means with the error amount /Deflectograph ............................. 60 Figure 5.12: The Coefficient of Variation of the Curviameter on the A4091. .......................... 62 Figure 5.13: The 11 runs of the Curviameter at Tamwoth....................................................... 63 Figure 5.14: The 11 runs means over 50m intervals with the error amount .......................... 64 Figure 5.15: Two Curviameter runs (50m averaged) on the M23. .......................................... 66 Figure 5.16: Two Deflectograph runs (50m averaged) on the M23. ....................................... 67 Figure 5.17: Means of the two Curviameter runs Vs means of the two Deflectograph runs . 68 Figure 5.18: Curviameter and Deflectograph correlation of M23. .......................................... 69 Figure 5.19: Locational referencing diagram of the surveyed section by the two machines. . 70 Figure 5.20: Curviameter and Deflectograph runs at the Northbound of A38 ....................... 71 Figure 5.21: Curviameter and Deflectograph runs at the Southbound of A38 ....................... 72 Figure 5.22: Curviameter and Deflectograph runs at the Southbound and Northbound ....... 72 Figure 5.23: Google earth snap shows the surface distress on the Northbound of A38 ........ 74 Figure 5.24: Google earth snap shows the surface distress on the Southbound of A38......... 75 Figure 5.25: Curviameter and Deflectograph correlation for the southbound of A38 ........... 76 Figure 5.26: A-statistic determination. .................................................................................... 77 Figure 5.27: Correlation equations for all investigation. ........................................................ 78
vi
Chapter 1: Introduction. 1.1 Preface: Pavement evaluation is an important tool in pavement management and conducted to determine either one or more of visual, functional and structural condition of the pavement. The availability of continuous data associated to the condition of pavement will enable the authorized agencies to (i) characterising the existing pavement into homogenous section and identifying the effective scheme of maintenance or rehabilitation for each section, (ii) predicting the remaining service life RSL of the pavement which help in prioritising the maintenance and budgeting the funding, and (iii) calculating the modulus of elasticity of pavement layers from the measured surface deflections. There is a growing area of interest in pavement management to develop technologies that can nondestructively collect continuous data about pavement condition at the minimal cost and causing minimal or no interference to the travelling public. The latest version of the Curviameter offers measuring the deflection bowl continuously at 5m intervals while the vehicle travels at constant speed at 18 km/hr. This compares with the Deflectograph that operates at a maximum speed of 2.5 km/hr. Deflection results from the two machines are compared and analysed in this study to derive a global correlation relationship and show the broad comparability between them . A theoretical comparison is also carried out using the elastic layered programs BISAR, and proposed a correlation formula. 1.2 Objectives and Scope:
The main objective of the study is to correlate the Curviameter deflections with Deflectograph deflections and derive a global correlation equation on different road construction types.
A reliable correlation allows to introduce more realistic evaluation for the modulus stiffness of foundation layers of pavement as the Curviameter produces a full information about the deflection bowl defined by 100 point deflection.
Measuring and testing the repeatability of the Curviameter and Deflectograph by using a statistical analysing.
1
It also presents an overview of current technologies and general literature review of pavement evaluation, projected improved methods of pavement condition data collection.
Introducing the Curviameter as a faster technology of measuring the surface deflection and examining its validity for use on pavements in the UK.
Highlighting the advantages and limitations of the Curviameter and presenting a general description of the machine.
Assessing carefully the factors that affecting measured deflection in order to understand the discrepancies in deflections measured by different devices.
1.3 The proposed Methodology: The study starts from an extensive literature review of pavement evaluation. The main pavement evaluation properties which are visual, functional and structural condition are deeply illustrated. The main method and technology used in collecting data about pavement condition are also introduced. A general literature review and description about the main devices which used to measure the surface deflection of the pavement will also discussed. The methodology will then move forward and draw attention to the Curviameter and Deflectograph. This will involve in providing a general description of both machines and the philosophy behind each one. The information of literature review was mainly obtained from the journals and articles of pavement research, books, conference proceeding, and reports. Date from three different sources are collected. The first set of data was collected by using the elastic layered programs BISAR and deflection calculated according to the load magnitude and tyre footprint of each machine. Eight different deflection measurements were calculated for each machine, the eight deflections are then plotted in a scatter graph and a correlation formula is derived. The eight deflection data of both devices are then corrected for speed and a gain another correlation equation is obtained. The second set of data were trials of two machines in 1995 given by Testconsult Ltd, these data represents a three different site. The correlation equations were derived by the same way after plotting the data graphically. Some data were averaged over 25m or 50m intervals and some data were temperature corrected for a reference of temperature of 20o C. As the trials of both machines were conducted with several runs on the same road section, it was possible to examine the repeatability of both 2
machines using a statistical t-test. The third set of data were also trials of both machine conducted by EUROCONSULT and Amey Co. in 2011, the correlation formula was also derived for a particular section after averaging the data over 100m intervals. Finally, The differences between the derived correlation equations were statistically analysed using a method called A-statistic. 1.4 Report Outline: Chapter 1: This chapter serves as an introduction to the study. This includes
describing briefly the main methodology used in this study and the objectives of this report. Chapter 2: is a literature review of pavement evaluation. The main pavement
evaluation properties (visual, functional and structural condition) are discussed. Chapter 3: is a more detailed chapter about evaluation the structural condition of pavement. Non-destructive testing based on deflection basin methods are considered in this chapter. Various methods and devices that are currently or historically used to measure the surface deflection of pavements are presented including (Benkelman Beam, FWD, RDD and RDW), the type of applied load, the mechanism of measuring deflection and the efficiency of each device are highlighted in this chapter. The applications of measuring deflection including (backcalculation the modulus of elasticity of pavement layers, estimation the remaining service life of the pavement and dividing the road into homogenous sections) are also discussed. Chapter 4: in this chapter the Curviameter and Deflectograph are described, this includes describing the main characteristics of each device and the type of applied load and so on. The factors that affecting the measured deflection including (loading type, climate effects and pavement condition) are also introduced. Chapter 5: The data of the Curviameter and Deflectograph from trials or using BISAR software program are analysed and compared. This includes the methodology used, presents the results obtained in figures and tables and discussing the results. Chapter 6: contains the conclusions and recommendations of this study.
3
Chapter 2 : General literature review in pavement evaluation. 2.1 Introduction: Pavement evaluation is essential to set appropriate maintenance managements. The general trend of transport policies in developed countries is to minimise the need of building new infrastructure roads and keeping the existing road networks in an acceptable functional and structural condition. This trend requires an effective management system and regular monitoring for the network. At the network level, pavement evaluation is important to prioritise maintenance and funding. At the project level, it helps to identify the root causes of distress and hence establishes an appropriate rehabilitation scheme or strategy in terms of economics and time criteria. Many innovative approaches and techniques have been addressed in minimising data collection cost, labour intensity, time consuming and accuracy. It was argued that pavement condition surveys are carried out to identify the conditions of existing pavement in one or more of the three areas: visual distress, functional conditions (roughness and skid resistance) and bearing capacity of the pavement layers (Gramling, 1994). In this chapter, a general literature review of flexible pavement evaluation will be highlighted, including an overview of the main pavement evaluation properties which are visual condition, functional properties and structural conditions. The most common measuring equipments used are also described briefly. 2.2 Pavement evaluation properties: Pavement evaluation is an essential part of pavement management systems by which most effective strategies for maintenance and rehabilitation can be developed (Huang, 2004). It also helps to give information on any hidden defects that can affect the pavement and hence take an appropriate preventative maintenance at the correct time. To achieve these objectives, the pavement engineer will need to quantify and qualify carefully the visual, functional and structural condition of the pavement to set priorities for maintenance or rehabilitation efforts and funding as well as establishing the root causes of existing distress in order to determine the best rehabilitation strategies.
4
2.2.1 Visual condition surveys. 2.2.1.1 Literature review. Visual survey is considered the most important and basic survey type. Most pavement conditions properties related to its ability to serve traffic in acceptable serviceability state can be attained by visual inspections. However, not everything about pavement performance can be obtained by visual survey, a pavement engineer would need to make a deeper diagnos in order to make the right decision of choosing the most effective maintenance or rehabilitation scheme and budgeting appropriately the available funds. Conventional visual survey based on inspector's training and experience of collecting highway data about pavement distress is simple and considered fundamental. However, the subjectivity and uncertainty are the major limitations which usually lead to inconsistencies in visual evaluation of pavement surface. Typically manually completed forms have been used by the agencies to identify and weigh different distress types and their severity and incidence in order to minimising the variability associated with the evaluators. (McKay et al. 1999) suggested an indicative scale ( condition index CI) to give a perception about the visual and functional condition of the infrastructure. Condition Index CI consists of a scale from 0 to 100 and has three action zones and seven condition levels as shown in Table 2.1. Several distress types and functional properties such as cracking and rutting with their different types, general loss of surface, patching, roughness and skid resistance can be aggregated in the condition index. It is referred to as Index level approaches. Condition indexes can be statistically and mathematically analysed and used to help engineers set maintenance prioritization and budget the funds. However, these indexes are here to give a snapshot of condition and they are not predictive parameters or an absolute indicator to tell when and what type of maintenance should be done because the last decision is based on human judgment (McKay et al. 1999). Many automated distress detection methods have been introduced with developing new technologies. (Cheng and Miyojim 1998) proposed skeleton analysis algorithm of images to detect and classify precisely the distress which can contribute for practical automated Pavement Management System PMS. To handle adequately qualitative data and variations due to subjectivity and uncertainty, many approaches have been developed over the years such as regression models, neural network methods, probability distribution and so on. (Pan et al. 2011) proposed a fuzzy linear regression model to minimise the subjectivity and 5
variability associated with pavement condition indexes and characterize accurately the fuzziness of pavement conditions. Table 2.1: Condition Index Scale. Source (McKay et al. 1999). Zone (1)
Condition index (2)
Condition description (3)
Recommended action (4)
1
85 to 100
Excellent: No noticeable defects. Some aging or wear may be visible. Good: Only minor deterioration or defects are evident. Fair: Some deterioration or defects are evident, but function is not significantly affected. Marginal: Moderate deterioration. Function is still adequate Poor: Serious deterioration in at least some portions of the structure. Function is inadequate. Very Poor: Extensive deterioration. Barely functional. Failed: No longer functions. General failure or complete failure of a major structural component.
Immediate required.
70 to 84 2
55 to 69
40 to 54
3
25 to 39
10 to 24 0 to 9
action
is
not
Economic analysis of repair alternatives is recommended to determine appropriate action.
Detailed evaluation is required to determine the need for repair, rehabilitation, or reconstruction. Safety evaluation is recommended.
2.2.1.2 Typical flexible pavement distresses: There are many types of surface defects which have been identified in flexible pavements and various agencies use their own definitions and standards to identify these distresses. The causes of distress are also varied and range from improper construction and materials, environmental influences, repeated and/or heavy traffic loadings, and improper design. However, it has been argued that most pavement deteriorations are caused by deficiencies in construction, materials, and maintenance rather than related directly to design (Huang, 2004). Some of the distress type are described briefly here: Cracking: there are many types of cracking found on flexible pavement surfaces. They can be transverse, longitudinal, alligator, block cracking, wheel track cracks...etc. The causes of cracking are also various and can be climate effects, traffic load, reflective cracks from underneath layers damages or simply because the base layer is tougher than the asphalt surface as in 6
composite flexible pavement. Water might infiltrate in the pavement foundation through these cracks and cause pumping mud. Alligator cracking indicates that there is a structural distress in the pavement as water has access to the body of pavement which can soften the foundation and then causes vertical deformation. Typical remedies vary from simple sealed crack or surface, overlay to full depth reconstruction. Rutting: can be structural or non structural rutting. Structural rutting is caused by base or subgrade consolidation due to heavy traffic and/or deficiencies in drainage system which leads to increased moisture content in the foundation layers. Non-structural rutting is narrower than the first and is caused by surface course instability in which poor mix design or compaction was used. Rutting can have an effect on the functionality and ride quality of the pavement. Rutting bowls are filled by water after rainfall and causes skid resistance problems as well as splashing problems particularity in the urban roads where there are high proportion of pedestrians. The severity of the rutting depends on its depth and can be measured manually by a straight edge and steel ruler or automated rut bar. General loss of surface: there are many causes of loss of surface integrity, amongst them are, progressing of alligator cracking, inadequate or poor binder, poor compaction, inadequate tack coat application, mat was laid out at outside temperature limits and inadequate cleaning of surfaces layers during mat laying out. More general loss of integrity can be developed if no immediate maintenance is implemented. This can result in damage to vehicles and discomfort ride quality. Water can also infiltrate into foundation layers and increase water content of the sub-grade layer which leads to more deteriorations. The general repairs of potholes is patching the deteriorated area after cutting the entire defected area in a rectangular shape and fill in with new asphalt materials. However, potholes are sometime remedied just by filling in with new asphalt materials.
7
2.2.2 Functional condition. Measuring and monitoring the functionality of pavement might be considered to be the most important pavement performance because it is directly regarded by the travelling public, road users who mainly evaluate the quality of a pavement according to its roughness and appearance. One of the main PMS objectives is to keep pavement serving users in a reliable and safe manner. Roughness and skid resistance are the major indicators of measuring functional performance of pavement. Both roughness and skid resistance not only depend on pavement surface characteristics but also on vehicle properties. It was shown that poor surface pavement would affect user comfort , cause reductions in speed and hence increase travel time, fuel consumption and damage to vehicle (Gillespie and Sayers 1983). 2.2.2.1 Pavement roughness. Roughness is simply defined as the longitudinal profile of the pavement or the variation in level of pavement surface due to poor construction quality and surface distresses which has impacts on vehicles vibration, users comfort and the dynamic loads on the pavement. Knowledge the roughness of a pavement is functional and a useful indicator of pavement condition because it is related to user’s feeling of discomfort (Loizos and Plati 2008). Many statistic values have been used to represent the longitudinal roughness such as International Roughness Index (IRI), slope variance (SV), root-mean square of vertical accelerations (RMSVA) and standard deviation of longitudinal roughness (σ). The international roughness index (IRI) is widely used for assessing the pavement roughness condition. Additionally, the present serviceability index PSI is mainly derived from measuring the roughness condition and distress data just contributes by 5% in PSI, and many authorities compute the PSI from only the roughness data due to difficulties in obtaining the distress data (Huang, 2004). "Present serviceability index (PSI) is a mathematical combination of values obtained from certain physical measurements so formulated as to predict the PSR for those pavements within prescribed limits" (Huang, 2004). PSI was developed by AASHO Road Test based on the pavement ability to serve mixed traffic. It has a rating range from 0 to 5 as shown in Figure 2.1. The mean slope variance, mean rut depth and cracking and patching are formulated and summarized to estimate the PSI by using multiple linear regression analysis. However, (Huang, 2004) highlighted some shortcomings in PSI equation, they are:
8
1. The Road Test rating panel is very old and the public's perception of serviceability is not as 30 years ago as vehicles, highway characteristics, and travel speeds have changed significantly. 2. Combining the ride quality and surface defects in one index will not be that helpful to use it in management of pavement inventory. 3. The Profilometer used in the Road Test is no longer in use today. Errors are multiplied when the original AASHO PSI equation is used with a different method for measuring roughness.
Figure 2.1 : Individual present serviceability rating. Source (Huang 2004: by Carey and Irick (1960)) The IRI is computed statistically by summarising the deviations of surface elevation data which is collected using a wide range of equipment either mechanical or laser profiler, rod and level and so on. Figure 2.2 shows the range of typical IRI by the type of road, the lower IRI the smother wearing course and hence better ride quality. Survey work was carried out by Dynatest in the Greater Manchester, a range of IRI levels were recommended as shown in Table 2.2 and the mean IRI of 1km section was 1.88m/km with a standard deviation of 0.46m/km (Pearson, 2011). Interestingly, the surveyed roads were relatively new, and its IRI value (1.88) which matches to the IRI values suggested in Figure 2.2.
9
Figure 2.2: IRI range by road type. Source: (Pearson, 2011) Table 2.2: Recommended Categorisation levels- A survey in the Greater Manchester. Source: (Pearson, 2011) Condition IRI (m/km) Very Good Good Acceptable Poor Unacceptable
2.5 2.5-3.0 3.0-4.0 4.0-4.5 4.5
Figure 2.3: The quarter-car model. Source (Loizos and Plati 2008).
10
A dynamic model called a quarter-car model is used to simulate and calculate the vertical motion of suspension system of car transferring along road profile. The quarter car system shown in Figure 2.3 consists of two parts a sprung mass representing the vehicle chassis and an unsprung mass representing the set of wheel. The quarter car system runs at a constant speed 80 Km/hr, during the simulation, the road irregularities impose a vertical movements in the sprung and unsprung masses at speeds (Zs and Zu). These vertical motions are accumulated at defined unit length of the profile and can be expressed mathematically according to
this equation:
(ASTM 2005).
where: IRI = International Roughness Index (in mm/m or m/km). L = length of the section (m). x = longitudinal distance (m). v = speed of the quarter-car model (m/s). x/v = time the model takes to run a certain distance x. dt = time increment. Zs= vertical speed of the sprung mass. Zu = vertical speed of the unsprung mass. The response of the quarter system to different road sinusoids is given an indicator about the ride quality of the road and user's comfort. The frequency response function can be obtained from the differential equations which controlling this suspension system as following: (Sun 2001).
where:
11
and
Figure 2.4: Theoretical frequency response (gain) of the quarter-car model. Source (Loizos and Plati 2008) It can be seen from Figure 2.4 that the quarter-car system responds highly to particular wavelengths between 2-30m while no significant response to other wavelengths. It should be mentioned that IRI calculations based on constant speed 80km/hr, therefore, perceiving ride quality and vehicle resonance at same sinusoids profile but at different speeds is questionable. Consequently, (Loizos and Plati 2008) stated that IRI is not adequate to describe ride quality, and cannot express pavement surface profile as the perceiving ride quality is different at various speeds. Power spectral density (PSD) is suggested to be more useful to represent the sinusoids of pavement surface profile which have impacts on ride quality, but its main criticism is that the influences of vehicle characteristics and speeds are not taken into account. Research by (Loizos and Plati 2008) presented a new approach to rating pavement roughness based on vehicle response (VRI) which computed by using Golden car parameters, it takes into account the vehicle characteristics, vehicle speed, the sinusoids that have impacts on the pavement surface irregularities and PSD spectrum. It is also considered portable and stable with time as IRI. Nevertheless, the IRI and standard deviation of longitudinal roughness (σ) were correlated and a
12
regression statistical model developed as shown in Figure 2.5 (De Souza et al. 2006). It can be seen that there is a strong correlation between IRI and σ with R2 = 0.93, despite the fact that σ is based solely on the geometric characteristics of the pavement surface. This can prove false what (Loizos and Plati 2008) stated that IRI does not represent
properly the surface profile irregularities and the increasing
criticisms against the indexes which are based only on geometric characteristics.
Figure 2.5: Regression analysis between the IRI and σ. Source (De Souza et al. 2006)
2.2.2.2 Skid resistance. One of the main objectives of a wearing surface is to provide adequate friction between the tyre and the surface to ensure that skidding or hydroplaning will not occur. The friction force is important for traffic safety to keep the vehicle under control in emergency stopping situations. Lack of skid resistance has a potential influence on traffic accidents. Polishing and wear actions of repeated traffic cause smoothing and rounding of exposed aggregates and resulting in low skid resistance. Table 2.3 shows the minimum skid number requires, recommended for main rural highways by (Kummer and Meyer 1967).
13
Table 2.3: Recommended Minimum Skid Number for Main Rural Highways. Source. (Kummer and Meyer 1967) . Traffic speed
SN measured at traffic
SN measured at
(mph)
speed
40 mph
30
36
31
40
33
33
50
32
37
60
31
41
70
31
46
Many factors contribute to tyre- pavement friction, they can be categorized into three groups: tyre characteristics (pattern of tread, pressure), condition of pavement (dry or wet and water film thickness, temperature, the existence of oil or detritus on the pavement), type of pavement surface (microtexture and macrotexture) (Henry 1986). Other factors also affect the skid resistance such as vehicle speed, properties of vehicle braking and suspension and distribution and magnitude of load. The friction theories state that friction force is generated from two components: adhesion and hysteresis (Bowden and Tabor 1950).The adhesion is normally generated by microtexture which is the irregularities in the surface of the aggregate, also called fine-scale texture. These irregularities are responsible for the roughness of the aggregate, and also the capability of an aggregate to resist the polish and wear actions of repeated traffic. Controlling the behaviour of microtexture under repeated traffic can be done by selecting an aggregate which has high polish-resistant characteristics. It has been recognized that microtexture and adhesion mainly contribute to skid resistance at speeds less than 48 km/hr while macrotexture provides a significant contribution in skid resistance as speed increases (Galambos et al. 1977). Macrotexture or coarse-scale texture represents the pits and voids in the pavement surface and the angularity of the aggregate particles that affects hysteresis. It very important for providing channels to push out the trapped water between tyre and surface, and hence reducing hydroplaning. The size, shape and gradation of coarse aggregates used in pavement construction as well as mix design and techniques used in laying of the pavement surface layer are the main parameters that control the magnitude of macrotexture (NAPA 1996). Many practical methods have been used to determine macrotexture such as using putty to fill 14
surface irregularities, tracing by stylus and measuring the outflow rate. However, the most popular is the sand patch method, specified as ASTM E 965 "Standard Test Method for Measuring Surface Macrotexture Depth Using a Sand Volumetric Technique." "Unfortunately, no practical method has been developed to measure microtexture directly. A commonly used substitute is to measure low-speed friction by the British Pendulum Tester, as specified in ASTM E 303 (Standard Method for Measuring Surface Friction Properties Using the British Pendulum Tester)" (Huang, 2004).
Figure 2.6: Microtexture and macortexture. Source (Society of Chemical Industry (SCI), 2011) Different methods and devices have been used to compute the coefficient of friction between surface and tyre. Whatever the devices are used, there are two common methods of skid-testing: braking-force coefficient (BFC) or the sideways-force coefficient (SFC). The locked-wheel skid trailer is mainly used to evaluate surface properties and measure pavement friction under wet pavement condition (American Society for Testing and Materials, 2000b). Sideways force Coefficient Routine Investigation Machine (SCRIM) is also largely used for routine network monitoring. The complexity of obtaining the coefficient of friction comes from the variability of parameters which affect the friction, therefore; all the factors not related to the pavement must be fixed or clearly defined so that the only variables are the pavement properties (Huang, 2004). Surface friction is generally determined by this equation:
, where F is friction force,
is the coefficient of friction and W
and applied load. Skid number SN is computed by multiply the coefficient of friction by 100:
. It was discovered that most of the slippery surface have a
15
high coefficient of friction at low speeds, but decrease quite a lot as speeds increase (Moyer, 1942). The following equation developed by (Leu and Henry 1978) expresses the relationship between skid number SN and speed V:
Where: SN0 is the skid number at zero speed and PNG is the percent normalized gradient of the SN versus V curve. PNG can be derived from the above equation as:
It was evident that PNG is deeply related to macrotexture and SN0 to microtexture (Henry 2000). (MEYER, 1991) presented two regression equations, one linear equation between the zero intercept skid number, SN0, and the BPN as: R=0.85 And another between percent normalized gradient PNG and mean texture depth MTD as: R= 0.96 Where PNG is in h/mile and MTD is in inches. Among all these regression models, and based on many sets of data, the best fitting regression equation was proposed by (Alexandros and Olympia 1998):
where: mi is the average depth of pavement surface microtexture expressed in micrometers, ma is the macrotexture depth expressed in mm and w is the distance between adjacent asperities (wavelength), expressed as the times this distance is greater than the magnitude of the asperities themselves. If there is no information about w (which is the most common situation) the factor 4.25*w0.1 should be replaced by the value 5.165.
16
2.2.3 Structural condition. Visual and functional evaluation of pavement provide a lot of information, but not everything. A pavement engineer would also need to know the bearing capacity of the pavement layers in which an appropriate maintenance and rehabilitation strategies could be adopted. The importance of identifying the structural condition comes from, (a) providing an acceptable estimation of remaining service-life of a pavement, (b) estimating the bearing capacities and condition of foundation layers which might indicate unexpected premature fatigues, it can also give information about the efficiency of drainage system, and (c) helping to take the right decisions for the type of maintenance and rehabilitation schemes. Cores and trail pits are the basic methods used to reveal the type of layers, thicknesses, any old overlays, lack of bond and general visual assessments. Rutting and cracks depth can be identified from cores and trial pits, and revealing water related-damage or other factors. However, labour intensity, time consumption and traffic disruption make them less desirable than other Non-destructive testing NDT such as wave propagation techniques. Additionally, in most cases cores do not provide adequate information about the existence of water in the foundation layers because of the added water during coring process for cooling core cutter. Dynamic cone penetrometer (DCP) is a simple device and commonly used to measure in situ properties of pavement, it somewhat simulates conceptually the California Bearing Ratio RBC. A profile of material quality, strength of underlying soil and thicknesses can be generated by DCP. However, some limitations have been identified with DCP such as, subjectivity in testing, test-speed and its validity to only soft pavement layers (Loizos and Plati 2007). Non-destructive testing is considered less disruptive to traffic and does not cause any damage to the existing pavement structure. It also provides a reliable and consistent test technique in collecting data. The repeatability of NDT as well as its ability to collect tremendous of data at the same section in a rapid way, can provide a robust statistical reliability from these data. Fundamentally, NDT methods can be classified into two categories: (a) deflection basin methods and (b) surface wave methods. The main objectives of NDT methods are to monitor the in situ pavement material performance by measuring: type and thicknesses of layers, density, stresses, strains, deflections, temperature, and water content. Deflection methods are basically based 17
on measuring surface deflections of pavement generating by the applied load, and then using backcalculation techniques to determine material stiffness modulus of each pavement layer. On the other hand, surface wave tests can be divided into (a) stress/Elastic wave method and (b) electromagnetic wave method. It involves in applying load and propagating through pavement, and record the Rayleigh wave which induced by the load. Adopting spectral analysis of surface waves (SASW) to examining the wavelength data and calculate the travel time between consecutive receivers for different excitation frequencies. Ground penetrating radar (GPR) is geophysical testing device that utilize a high frequency electromagnetic of radio waves, it has the ability to estimate accurately the water content of sub-asphalt soils and continuous measurement of the layer thicknesses. It is well known that water content of pavement foundation layers have significant impacts on bearing capacity of pavement and hence greater pavement deflections. (Grote et al. 2005) made a comparison between the water content estimates from GPR travel time data and from gravimetric water content measurements, the difference between the two methods was approximately 0.02 cm3/cm3 Figure 2.7. Therefore, GPR is suggested to be an acceptable technique of non-invasive water content measurement in pavement layers as well as evaluating the efficiency of pavement drainage system.
Figure 2.7: Comparison of volumetric water content estimates derived from GPR data and from gravimetric sampling. Source: (Grote et al. 2005)
18
Various NDT devices are used to measure the surface deflection and their discrepancies are related to the variation in loading conditions and the locations of measurements (Goktepe et al. 2006). Dynaflect road rater and falling weight deflectometer (FWD) are generally considered as typical basin testing (Collop and Cebon 1996) as well as the Curviameter and rolling weight deflectometer (RWD), while Deflectograph and Benkelman beam as typical for maximum deflection. The rolling weight deflectometer (RWD), High Speed Deflectograph (HSD) and Curviameter are the fastest machines in collecting deflection data, and they are less disruptive to traffic than other devices. In general, surface deflection is influenced by many factors including, loading type, loading magnitude, duration of loading, layer stiffness and thickness, temperature and moisture content of foundation layers. The term of backcalculation is briefly described as the procedure of determining material stiffness of pavement layers by using theoretical models such as finite element methods or layered elastic theory, these techniques involve calculating theoretical deflection according to given traffic loads and assumed stiffness modulus of pavement structure. Computed deflection values are matched up to deflections measured by NDT device, this processes continue until the differences between computed and measured deflections stay less than or equal to an acceptable error criterion. It should be mentioned that knowledge the stiffness of pavement layers is essential in pavement rehabilitation design requirements. The type of applied loading is the main factor that differentiates between different NDT devices. Types of applied loads are commonly categorized into three types, static, steady-state vibratory, and the time domain impulse. Loading type in terms of duration and magnitude has a significant influence on pavement deflection; therefore, applying loads simulates the design loads in magnitude and duration is highly recommended. Unfortunately, many of commercial NDT devices are not able to simulate the design load in both magnitude and duration. However, FWD is transient impulse loading device and considered the best device can simulate the design loads in duration and magnitude (Lytton, 1989). The impact load applied on the pavement using with FWD can be altered either by weight magnitude, loading plate or the falling height, thus different loads can be simulated. FWD has a disadvantage that it is not particularly effective at large network level investigation
19
because the measuring process of deflection takes several minutes at each point and hence poor time efficiency. Static loading is simple but not highly recommended because it cannot simulate the design loads. The relationship between the magnitude of deflection and applied load is difficult to be extrapolated because of the paving materials response nonlinearly to the applied load, thus using heavy truck loads with NDT devices is preferred (Huang, 2004). It is also stated that asphalt layer is highly responsive to temperature and loading conditions (duration and magnitude), while the granular layer and subgrade are more sensitive to stress conditions (Lekarp et al. 2000).
20
Chapter 3 : Evaluation the bearing capacity of flexible pavement using Nondestructive Deflection Testing. 3.1 An overview of Nondestructive Deflection Testing. Measuring the pavement surface deflection under a certain applied load is considered the best way to reflect the ability of the pavement to carry the traffic load. Various NDT equipments are used to measure the surface deflections at the load point and outwards from it, and using different load types which are static, steady state or transient impulse type (ASTM D4694, 2003). Wave propagation methods produce a useful and continuous data about pavement properties but they do not directly reflect the engineering characteristics of pavement
as deflection-based
methods do (Bay et al. 1998). However, it is recommended to combine data from more than one method, as more precise and continuous pavement profile can be achieved (Abdallah et al. 2001). Correspondingly, (Saarenketo and Scullion 2000) stated that FWD or RDD data combined with GPR can give a practical information about pavement layer thicknesses and its elastic properties. Many models have been used to determine the pavement parameters based on data from either deflection or seismic methods. The main differences among backcalculation techniques are linked to the type of pavement response (strain, deflection, stress..etc) and the optimization processes (nonlinear least squares, database search algorithm (DSA), and genetic algorithm (GA) (Goktepe et al. 2006). "There are more than 30 backcalculation softwares in use, mostly based on the multilayer elastic theory, and many new softwares continue to appear having little to differentiate from existing ones other than a name" (Huang, 2004). Due to the numerous factors that affect pavement performance, none of the current models can give realistic modulus values for every deflection basin measured (Huang, 2004). On the other hand, some models have been developed to be more realistic by taking into account the key factors that affect pavement response. (Siddharthan et al. 2002) adopted the 3D-MOVE finite-layer mechanistic model and taking into consideration the main factors that affect moving traffic loading conditions such as vehicle speed and the non-uniform tire pavement contact stress distribution.
21
3.2 Pavement Deflection Surveys. Pavement engineers can practically perceive the structural strength of pavement layers as in situ layer elastic moduli by measuring surface deflections. The availability of continuous deflection profiles of pavement enables characterising homogenous sections and easily identifying the deficiencies which are important in prioritizing the maintenance and budgeting the funds. Many approaches and equipment have been developed to measure pavement deflections. The main discrepancies among these devices are the type of applied load (static, pseudostatic, dynamic, magnitude) and mechanism of deflection measurement (elevation datum, inertial reference). In this chapter, the main deflection devices testing will be presented (Benkelman Beam, FWD, RDD, RWD), this includes their features, limitations, advantages and their mechanism. Curviameter and Deflectograph are deliberately excluded, as the next Chapter will be allocated to them. 3.2.1 Benkelman Beam. Simple, inexpensive, oldest, and least costly to maintain and operate. Maximum deflection is measured by applying very slow rolling weight, so it is not appropriate for obtaining the pavement mechanistic properties. Figure 3.1 shows the Benkelman Beam simplistically. The 244cm probe arm is necessary to ensure that the influence of the loaded area does not extend the reference frame, otherwise, the measured deflection will be affected. However, this length is considered insufficient with rigid pavements because their deflected regions are larger than this length, thus the reference legs can be inside the deflection bowl (Scrivner et al. 1966), so one or two additional devices are suggested to be used to overcome this drawback (Bay et al. 1998). A crew of three technicians is required with Benkelman testing and the typical production is 50 to 100 measured points per day (Smith and Lytton 1985). The dial gauge has relatively low accuracy and measures half the total deflection. It also has a poor repeatability, and past studies show that large coefficients of variation were observed about 20% when repeated the test more than once on the same point (Elkins et al. 1987). The probe arm is located between dual truck tyres with a singleaxle load normally 80 KN, the maximum deflection is measured after the truck is moved slowly away. Benkelman beam can also be used to obtain the deflection basin, by measuring the deflection at several
chosen point located at different
distances from the probe point (Huang, 2004). The Benkelman beam is widely used in developing countries because of its low cost and simple operation. In developed 22
countries, it is rarely used and recommended only where the design method of pavement is based on Benkelman beam measurements (Elkins et al. 1987).
Figure 3.1: Benkelman Beam configurations. Source: (Carneiro, 1966) 3.2.2 Falling Weight Deflectometer (FWD). FWD devices utilize an impulsive dynamic load applied on the pavement and measure the induced deflection. Three FWD types have been introduced: Phoenix, Dynatest and KUAB. The impulsive dynamic load is used with FWDs devices practically simulates the moving vehicular traffic. The applied load can be altered in duration and magnitude by changing the falling weight, the spring system, the drop height and the properties of the pad that the falling load strikes. Various force levels and pulse durations are applied by FWD devices, and typically FWDs have a load range from 4.45KN to 156KN and duration of load 30 msec to 40 msec (Bay et al.1998). However, it was found that vehicular wheel loads of a truck moving with speed 80 km/hr imposes an impulsive loads on the pavement about 120 msec wide (Hoffman and Thompson 1982). The Dynatest model 8000 FWD is widely used by several agencies in the USA (Huang, 2004). Repeatability tests were carried out for several deflection devices, it was found that Dynatest had the smallest coefficient of variation about 0.6% compared to 20% with the Benkelman beam (Elkins et al. 1987). The Dynatest 8000 FWD is highly recommended for analytically based methods to determine the mechanistic properties and structural behaviour of the 23
pavement due to its ability to simulate the loads, amplitude and duration of heavy traffic load and its accuracy to measure the deflection at different distances from the centre of load (Pearson, 2011). The deflection bowl is measured by a linear array of transducers distributed at different distances from the centre loading and up to 2.5m as shown in Figure 3.2, the number of transducers varies from one device to another. For example, Dynatest employs up to seven transducers placed at any location from the centre loading, while three geophones are used with Phoenix FWD, one located at the centre of the load plate, the second at 30cm and the third at 75cm from the centre of loading plate (Smith and Lytton 1985), however, current FWDs all tend to use 9 geophones but the Dynatest can handle up to 15. The maximum deflection is occurred at the centre of loading plate. Obtaining a half-shape of deflection basin from FWD testing can be used to determine practically the in situ moduli of pavement components after defined the layers thicknesses. Generally, the deflection at central loading is strongly influenced by the stiffness of bond layers, while the stiffness of granular base and subgrade are more related to the deflections measured by transducers located away from the central loading, so the outer spacing of transducers is recommended to reach 210cm from the central loading to model the effect of the subgrade (Pearson, 2011). There is no strict limitations to specify the number of transducers and their distribution. It is stated that 6 sensors is recommended as an absolute minimum value (Pearson, 2011). The radial spacing of the geophones is normally in multiples of the diameter of loading pad (30cm), and an additional one is preferred to be added nearer to the centre of load. However, selecting a particular number and distribution of geophones is also ruled by the strength and type of the pavement. Backcalculating procedures requires obtaining the actual thicknesses of pavement layers, and many commercial software are able to determine and differentiate the layer stiffness as many as 5 bound layers or more. However, and from pavement expert's point of view, "it is not possible to differentiate between the relative stiffness of adjacent bound layers if the modular ratio is less than 2 or even 3" (Pearson, 2011).
24
Figure 3.2: FWD principles. Source (APTS Services) 3.2.3 Rolling dynamic deflectometer (RDD). RDD is an extensive modification of a Vibroseis truck which used in the examination of oil prospecting by applying large dynamic forces to the ground in order to generate seismic waves (Bay et al. 1998). RDD is one of the non-destructive device used for measuring continuous deflection profile of pavement. Obtaining continuous deflection profile by RDD in relatively short time is very valuable for Pavement Management System PMS, and enables pavement engineers to identify effectively and promptly the homogenous sections of large network according to the pavement condition. Continuous deflection data also helps to detect other distresses such as cracks, joints and weak sections as well as evaluating the pavement layers during construction as part of quality assurance (QA) and quality control system(QC). FWD, spectral-analysis-of-surface-waves (SASW) technique and other devices based on discrete deflection data can provide more accurate and clearer picture of individual pavement layers than devices or techniques based on continuous deflection data. Continuous data enables one to locate and characterize sections that exhibit higher fluctuated deflections profile and hence more discrete tests should be carried out while sections with a similar continuous deflection profile do not need detailed or a large number of discrete tests. Therefore, using continuous data in conjunction with other discrete deflection data can save great time and effort. RDD can continuously
25
collect deflection data at a speed of up to 2.4 km/hr and its typical output is 6.4 to 14.4 Km per day (Bay et al. 1998). RDD measures surface deflection by applying a large sinusoidal load generated by designed loading rollers. The surface deflections are measured by rolling sensors which are designed in such a way as to minimise the effect of noise created by coarse pavement surfaces. Figure 3.3 illustrates the main elements of RDD. The applied loads on pavement are combined static and dynamic force which are generated by hydraulic loading system. This system can generate a dynamic load up to 154KN per roller at frequencies 5 to 100Hz (Bay et al. 1998). RDD is also provided by load cells to measure the applied load and locational referencing system to track the machine.
Figure 3.3: RDD Loading System. Source (Bay et al.) It can be seen from Figure 3.3 that there are a number of rolling sensors which are used to measure the dynamic deflections. Their position can be changed into different locations from the loading rollers to meet the purposes of defined survey. " The RDD uses specially designed rolling sensors to measure vertical dynamic displacements and to minimize the rolling noise in the displacement measurement" (Bay et al. 1998). Rolling sensors are affected by many factors, amongst them are: pavement roughness, velocity, the number of rolling sensors used and wheel geometry dimensions. The slower the speed test the more accurate measurement deflections can be obtained. The key operating parameters that affect the performance of RDD are: (a) the testing speed, (b) positions of rolling sensors, (c) data acquisition sampling rate and filter setting, (d) magnitude of applied loads, and (e) the operating frequency (Bay et al. 1998). All these parameters are selected 26
according to the pavement conditions, pavement type (flexible, rigid, composite) and the requirement of the study. Knowledge of the mechanical properties of the pavement foundation is essential to set an optimal frequency and speed operating, generally, low operating frequency is desirable unless it is not near to site resonances and with allowable noise because low frequencies are noisier than high frequencies. Higher frequencies can eliminate the noise effects but it will affect the sensor contact with the pavement because of increasing the acceleration levels of the pavement surface, the following equation using to determine the vertical acceleration of the pavement surface for steady-state harmonic motion, it shows that operating frequencies are squared term, hence have an important affect on acceleration (Bay et al. 1998):
Where:
is the frequency in radians per second
3.2.4 Rolling weight deflectometer (RWD). The Rolling Weight Deflectometer is a trailer-mounted device that measures pavement surface deflections at traffic speed. RWD employs pseudostatic rolling load applied by a single pneumatic tyre installed on the rear of the truck. The applied load can be changed from 76.3 KN to 89 KN by removing or adding static load (Bay et al. 1998). The deflection measurements are carried out at varied speed (up to 32 km/hr) and over every 0.3 m interval (Elseifi et al. 2011). RWD measures surface deflection using four optical sensors which measure the distances between the defined datum by laser and pavement surface. The philosophy behind measuring deflection with RWD sensors is simple and can be illustrated by the following two steps Figure 3.4 to determine the deflection at point P3: a) From Time=T1, the distance (h) between the projected line of points P1 and P2 and pavement surface which is not deformed, can be computed using the geometry of similar triangles, so b) From Time=T2, the distance (h') is equal to h plus the deflection 27
where : A is the distance from the optical distance sensor A to the pavement B is the distance from the optical distance sensor B to the pavement C is the distance from the optical distance sensor C to the pavement D is the distance from the optical distance sensor D to the pavement Therefore, the deflection at P3, h' - h . (Bay et al.1998).
Figure 3.4: The process of measuring deflection by RWD optical sensors. Source (Bay et al. 1998). It is clear from the calculation above that ensuring a good accuracy of measurement deflection will need the RWD stays at the same path, otherwise, there is no guarantee that sensor D for example measured the same point P3 that sensor C had done. As a result, RWD is not valid at curved sections in which RWD can be easily turned from the scanned path. It was stated that recommended minimum curvature of pavement section is less than 1190 m to ensure that at least 50% of regions which scanned by optical subsequent sensors are overlapped (Johnson and Rish 1996). A comparison study between RWD and FWD was carried out on about 230 m of an airport taxiway concluded that a good correlation was found between the two devices, and continuous deflection of RWD identified weaknesses features that FWD was not able to detect them (Johnson and Rish 1996). A study was also done to evaluate the RWD performance, the repeatability tests of RWD was satisfactory with an average coefficient of variation of 14% and the deflection measurements reflected properly the pavement conditions (Elseifi et al. 2011). The main parameters that 28
affect RWD performance are testing speed, driver skills, and diameter of the spot of laser light on the pavement surface. 3.3 Applications of measuring pavement deflection. The main applications of measuring pavement deflection are (i) Evaluate the structural condition of the pavement, and backcalculate the modulus of elasticity for pavement layers from the subgrade to asphalt layer,(ii) estimating the remaining service life (RSL) of pavement, (iii) characterizing the pavement into homogeneous sections. All above applications are essential in an effective Pavement Management System PMS and designing an appropriate maintenance and rehabilitation schemes. Deflection-based method is also used in conducting pavement design and determine the required overlay thicknesses. 3.3.1 Backcalculation process of pavement system. Backcalculation process of pavement system is a complicated process, and simply defined as numerical process for obtaining pavement layers stiffness based on the measured surface deflections many techniques have been employed to determine the mechanical properties of pavement components. The main discrepancies among them are related to the type of optimization algorithm and the type of the pavement response analysis (static or dynamic) (Goktepe et al. 2006). These methods and techniques have also been developed to introduce a generalised backcalculation analysis in pursuing the simplicity and accuracy (May and Von Quintus1994 ). The regression method is simple and can quickly reach a solution but it has drawback in that inaccurate results sometime arise with this method (Lenngren, 1991). The dynamic backcalculation analysis is considered more advantageous than the static approach and can give more precise results as both the maximum deflection and deflection basin are considered in the dynamic approach as well as the viscoelastic characteristics of asphalt layer is practically represented in dynamic analysis (Uzan, 1994). Additionally, the dynamic approach is also able to take into consideration the impacts of noise and loss of energy due to irregularities of pavement surface and seismic wave radiation (Chang et al. 1992). On the other hand, static approach is desirable due to its simplicity and can give acceptable error ranges if a stiff bedrock layer is as deep depth as 12 to 15m (Roesset and Shao 1985; Mamlouk 1985). Additionally, empirical equations can be used directly to compute the stiffness of layers, the subgrade resilient modulus and the effective modulus of all pavement 29
layers above the subgrade can be determined using the following equations which developed by (AASHTO, 1993) which based on measuring deflection at location far enough from the centre of load:
(AASHTO, 1993)
Where: MR = back-calculated subgrade-resilient modulus (psi); P = applied pressure (psi); and dr = deflection at a distance r (in.) from the centre of the load (in). It should be mentioned that sensor deflection should be at minimum distance ,r, calculated from this equation so r ≥ ae:
(AASHTO, 1993)
where: a=radius of load plate (in.); D=total thickness of pavement layers above the subgrade (in.); and EP = effective modulus of all pavement layers above the subgrade (psi) as described in this equation.
(AASHTO, 1993)
where: d0= central deflection (in.); q =load plate pressure (psi); a=load plate radius (in.); and D=total thickness of pavement layers above the subgrade (in.). 3.3.2 Estimation of remaining service life of flexible pavements. "Remaining service life (RSL) has been defined as the anticipated number of years that a pavement will be functionally and structurally acceptable with only routine maintenance" (Daba et al. 2010). It is expressed by either time or in “equivalent standard axle loads” (ESAL). Knowledge of RSL is important to prioritise maintenance and budgeting the funding which all leads to successful PMS. Calculating the RSL is a complicated process and can be computed by three approaches (i) functional failure-based method, (ii) structural failure-based method 30
and (iii) functional and structural failure-based method (Witczak, 1978). The RSL is function of many factors including the actual daily traffic loads, the structural properties of the pavement (thicknesses, type of layers, stiffness), the environmental effects, the efficiency of drainage system and maintenance actions. There are many software programmes used to estimate acceptably the RSL
based on deflection
data. After backcalculated the elastic modulus of pavement layers the actual tensile strain
at the base of asphalt layer and the actual compressive strain
at
the top of the subgrade layer can be calculated. These values are then compared with the permissible tensile and compressive strains which derived in the UK from the following strain transfer equations, these are presented in LR1132 (Pearson, 2011). - Fatigue -Deformation Where Nf and Nd are the number of load repetitions that pavement can tolerate before defined strain criteria are met. The RSL can be then estimated in respect to the differences between the actual number of load repetitions and the permissible of load repetitions. There are also empirical equation used by some agencies to calculate the RSL, Kansas Department of Transportation (KDOT) currently uses the following empirical equation which developed by URS Corp. (2000) to estimate the RSL of flexible pavement. This equation is based on surface conditions data and deflection data.
where DL_flex=design life of a nonroutine maintenance action (years); FDBit=full-design bituminous (FDBit) index (FDBit pavement =1; otherwise=0); Eq thick=equivalent thickness (in.) of the action; TCRprior=equivalent transverse cracking before the action; D−ADL=design lane ADL (80 KN/day) in the year of the action; and
31
d6=average surface deflection (microns) obtained from the most distant sensor of FWD (Deba et al. 2010). Additionally, a sigmoidal RSL model and linear submodels were developed by (Deba et al. 2010) as shown below:
where d0 is the central deflection and used as an independent .
are
derived by linear submodels based on parameters including pavement thickness, traffic, cracking, rutting, and structural data. Figure 3.5 is also a graphical format shows the relation between the maximum deflection obtained by the Curviameter with load 100KN and equivalent standard axle loads ESAL (80 KN) (Geem, 2010). Maximum Deflection of Curviameter (mm/100)
1000
100
10 100000
1000000
10000000
100000000
Equivalent standard axle loads ESAL (80KN)
Figure 3.5: Relationship between maximum deflection of the Curviameter and ESAL (80KN). Source (Geem, 2010). 3.3.3 Homogeneous sections. Having a deflection profile of a road enables pavement engineers to divide the road into homogenous zones. A “homogeneous zone” is a section has same structural characteristics in terms of its response to the applied load. The main advantage of segmenting the road into homogeneous zones is to help the authorized agency to prioritize the maintenance budgeting and decide rationally the type of action that should be taken on each particular homogeneous zone. The deflections in each homogeneous section should not be significantly diverged. Segmenting the road into practically homogeneous sections based on deflection data can be conducted by different techniques. A statistical method is well known to classify conveniently and effectively the deflection data into homogeneous sections using a cumulative sum CUMSUM approach (Pearson, 2011).
32
Chapter 4 : General description of Deflectograph and Curviameter. 4.1 Introduction. The Deflectograph is well known in the UK and has been used to evaluate the pavement performance of UK networks since 1970s. Many relationships and studies have been established to relate the measured deflections of the Deflectograph with the long term performance of the pavement under defined traffic loads in which the remaining service life RSL and the type of necessary strengthening actions are indentified. The 2.5 km/hr speed of the Deflectograph causes a considerable disruption to the public traffic and needs lane closure as well as limits its daily outputs. On the other hand, Curviameter provides a continuous deflections data at speed 18 km/hr which allows the survey to be carried out using rolling closure and with minimum disruption to traffic. In this chapter, a general descriptions of the two machines will be presented, this will include, highlighting the main characteristics of both the Curviameter and Deflectograph, the mechanism of measuring deflections and the effects that influence the measured deflections. 4.2 Deflectograph testing. The Deflectograph is a truck-mounted device that automatically measures the pavement surface deflections at a speed of 2.5 km/hr. The transient deflections are measured in both wheelpaths under an applied rolling load through dual rear wheels. The Deflectograph employs a load applied by the dual rear wheels, the total rear axle load is 6350 kg ± 10%, and other chassis details of Deflectograph are shown in Figure 4.1 by (HD 29/08). The deflection measurements are continuously taken at approximately 4m intervals. Since the deflection survey is conducted at a slow speed of 2.5 km/hr, a considerable disruption to traffic is caused by Deflectograph, hence the needs for road closure (HD 29/08). Another drawback of Deflectograph is the reference beam itself is placed within the deflected region, thus the measurement does not represent an absolute value of surface deflection. The measurement system is based on the deflection beam principle. The Deflectograph consists of a deflection system assembly installed on the chassis by a reference frame and data recording electronics as shown in Figure 4.2. The measurement cycle starts when the deflection beam and reference frame are motionless and the dual rear wheels creep towards the deflection beam at speed 2.5km/hr, the maximum deflection D0 is
33
then recorded. After that the deflection beam and reference frame are pulled forward at twice the vehicle speed to the first situation and the cycle are repeated.
Figure 4.1: Chassis Details for Deflectograph Vehicles. Source (HD 29/08).
Figure 4.2: Deflectograph Measuring Beams. Source HD 29/08
Care must be taken for locational referencing, the deflection data must be linearly referenced to the network sections. The identifiable features such as bridges, junctions, schools..etc must be marked and regarded to the surveyed sections at 500m intervals as minimum so that the deflection readings are linked to their 34
positions on the road (HD 29/08). The raw deflection data include information of nearside and offside deflections every 3-4m intervals, start and end of intranodal points, date and time of surveyed section, temperatures at 40mm depth and optional record of machine name. The raw deflection data should be temperature corrected to a reference temperature of 20°C. Pavement teperatures are taken at a 40mm depth below the surface. The survey data is processed using the PANDEF computer program, or other programs approved by the Overseeing Organisation for management purposes. The construction and traffic data are required using PANDEF and this information must be kept up to date of survey being processed. The typical outputs of PANDEF are overlay thicknesses required, residual pavement life, identifying the flexible pavements with asphalt base that need an overlay to be upgraded to long-life pavement and selection maintenance site according to remaining life. The shape of deflection basin is represented by the curvature function CF which is the difference between the maximum deflection D0 and the deflection at an offset 200mm D200 from the point of maximum deflection, hence CF= D0 - D200 as shown in Figure 4.3.
Figure 4.3: Schematic of Curvature Function (CF). Source (Austroads Test Method AG:AM/T007). The machine needs to be regularly calibrated for dynamic and static situation at least every 6 months or 500 lane-km of testing according to manufacturer’s User Manual (Austroads Test Method AG:AM/T007). The asphalt layers are extensively affected by the temperature and this effect varies with the thickness, age and the condition of bituminous layers. The parameter ESBM (Equivalent Thickness of Sound Bituminous Material) is calculated to take into account these factors for correcting the deflection data to a standard temperature (HD 29/08). It is recommended that the 35
Deflectograph survey being carried out during prescribed conditions defined by the survey category as shown in Table 4.1 (HD 29/08). Table 4.1: Time of Year and Survey Categories. Source (HD 29/08)
It can be seen from Table 4.1 that the most preferred condition for deflection surveys (Category 1A and 1B) is during autumn and spring because pavement layers properties and particularly the moisture content of sub-grade layer is seasonally varied. For example, during a rainy period in winter the moisture content and water table of sub-grade is comparatively high hence the measured deflections will be higher than in reality. Conversely, the hot and dry season during summer will increase the stiffness of sub-grade, therefore, the measured deflections will not reflect the actual condition of the pavement. As the Deflectograph measurements are carried out at low speeds, the survey should be avoided during high temperature because the visous effects of the asphalt layer will considerably affect the accuracy of deflection measurements. Due to the seasonal and temperature constraints the remaining operating period is about 100 days per year in Categories 1 and 2, this gives total Delfectograph output during this period more than 1000 lane Km (HD 29/08). The Deflectograph is applicable on flexible pavement, however, a speciallyadapted version of the Deflectograph can be used to evaluate the the condition of joints in concrete pavements by measuring the deflection at both sides of a joints and then comparing them to assess the load transmit qualities of the joints. It should be mentioned that slab concrete temperature has a considerable effect on load transfer, therefore, it is recommended that testing should be done at pavement temperatures less than 10°C (HD 29/08).
36
4.3 Curviameter testing. The Curviameter is a high-performance piece of equipment used to evaluate the structural conditions of large roadway network by measuring continuously the deflections of flexible pavement. The deflection measurement is carried out at speed 18 km/hr. The maximum deflection, the curvature radius, temperature of pavement surface and the deflection bowl are determined every 5m intervals. The deflection basin is defined by 100 points of deflection measurements. The deflections are measured by applying a rolling load transmitted through dual rear wheels, the applied load can vary between 80 and 130 KN to meet the terms of the different standards. The deflection system which is mounted on a truck consists of a 15m long chain positioned between the dual right rear wheels, three geophones installed at 5m spacing on the chain and central computer (see Figure 4.4). The chain is moved at a perfectly synchronised speed with the truck. At anytime during the measurement period a 6 meters length of the chain is in contact with the pavement surface. Figure 4.5 illustrates the measurement cycle of Curvaimeter. At point 1 (t=0.0) geophone 1 starts taking measurements and geophone 3 is lifted from the pavement. After 0.2sec or 1m length, the geophone 1 is located exactly between the dual rear wheel and the maximum deflection is measured as well as 25 deflection points were measured at 1m ahead the rear wheels. At t= 0.8 sec, the geophone 1 has measured other 75 deflection points at 3m behind the rear wheel and stopped taking measurements, at this time geophone 2 is located on the pavement at 2m ahead of the rear wheel. At t= 1.0 sec, geophone 2 at 1m ahead the rear wheel and ready to take measurements, whereas geophone 1 has been lifted from the pavement. Same process is repeated with geophone 2 and 3. In general, all sensors take 25 points of deflection measurements at 1m ahead the rear wheel and 75 points at 3m behind the rear wheel, also all sensors are lifted from the pavement when they are 3.5m behind the rear wheels.
37
Figure 4.4: General view of Curviameter.
Figure 4.5: Cycle measurement system. Source (Domínguez and García 2008).
38
The benefit from taking three quarter of deflection basin measurements behind the rear wheels is to minimise the influences of the front wheels load. The output of the sensors is transmitted to the computer via the flexible metal chain. The data are then processed using the PEGASE software in which numerical and graphical form are displayed in real time for the operator. The data generated by PEGASE are then processed to another software called CORRIRES in which the signal tails are corrected. The analysing data statistically and segmenting the pavement length surveyed into homogeneous zones are then carried out by using the CURVIA software. The vertical particle velocity, d(t), of the pavement surface is measured by the geophone, hence the pavement displacement is computed by integrating the particle velocity which is measured by the geophone (Bay et al. 1998). The pavement curvature, C(x), is equal to:
where: R(x) is the radius of curvature, d"(x) is the second derivative of displacement with respect to distance. The curvature C(x) can be determined from the geophone output by using the following relationship:
where: V is the vehicle velocity (Bay et al. 1998).
The repeatability of the Curviameter is considered acceptable and comparable with other deflection devices, and depends on the class of deflections as indicated in Table 4.2. Table 4.2: Repeatability of deflections (Geem, 2010). Deflection class (in 1/100 mm)
20 – 40
40 – 60
60 – 80
80 – 100
Repeatability (in 1/100 mm)
+/- 2
+/- 3
+/- 4
+/- 5
The raw deflection data obtained by the Curviameter need to be corrected for temperature to a reference temperature of 20°C , and humidity. The temperature effects on the pavement can be considered by either applying an adjustment coefficient to the E-moduli of the asphalt mix layer that calculated from uncorrected deflection data or correct the raw deflection data by applying a correction 39
temperature factor Ct, for example, in Spain the correction temperature coefficient is obtained from Figure 4.6 (6.3-IC Spanish standard). The humidity factor Ch is applied when the moisture content of the subgrade is not met the standards values, however, it is recommended that testing should be carried out when the moisture content of the subgrade at its maximum according to climate characteristics of each region. In any cases, the survey must not be taken when the subgrade is very dry or frozen (Domínguez and García 2008).
Figure 4.6 : Temperature correction coefficient. Source (6.3-IC Spanish standard) Many objectives can be obtained from the continuous deflection measurements of the Curviameter, amongst them are: allow to determine effectively the areas with homogenous behaviour, identify the sections which have structural problems, establishing priorities for the strengthening of roadways, evaluating the pavement conditions at crack, and deteriorated areas and also used in conjunction in conjunction with discrete testing data to categorize which areas need a few or more details of discrete testing. The Curviameter can also used to evaluate the structural condition of pavement layers from the subgrade to the wearing course during the construction process, this helps to establishing a base for future maintenance projects as well as for purposes of quality assurance (QA) and quality control system(QC). However, the main drawbacks of the Curviameter are, (i) it is unable to measure the very small deflections accurately due to the sensitivity constrains of the 40
geophones, thus it is not valid to evaluate the structural conditions of rigid pavement, (ii) it cannot negotiate bends with small radius, therefore its use on roundabouts is unworkable and (iii) the invalid readings or "dropouts" are extremely high at rough pavements because of the unstable seating of the geophones on the pavement with rough surface. 4.4 Factors affecting the deflection measurements. There are increasing area of interest in pavement research to weigh up precisely the factors that influence the deflection measurements. All factors should be carefully taken into account when carrying out non-destructive tests. 4.4.1 The effect of loading type. The magnitude and duration of the applied load have a considerable impact on the measured deflection. Researchers
have shown that the wheel/axle load
configuration contributes significantly to the surface deflections (Minkwan and Joo 2011). Deflectograph and Curviameter employ same axle configuration (single axle load) but different wheel characteristics in terms of axle load, tyre inflated pressure and contacted patch area with the surface of pavement as shown in figures 4.7 and 4.8.
Figure 4.7: Deflectograph tyre footprint. Source (HD 29/08)
41
Rear axle load
80-130 KN
Twin rear wheel load
40 - 65 KN
Tyre pressures
0.7 – 0.9 Mpa
Figure 4.8: Curviameter tyre footprint. Source (6.3-IC Spanish standard) The applied load of non-destructive devices is designed to simulate as much as possible the actual design load by heavy vehicle in magnitude and frequency. However, it is hardly ever to find a commercial non-destructive device can simulate both the magnitude and duration of actual design load (Huang, 2004). FWD is assumed the best non-destructive device can replicate the actual moving loads in magnitude and duration (Lytton, 1989). Many studies have been evaluated the maximum deflection measured under different magnitudes of loads, a correlation equation was evoked by (Gorski, 1999) to evaluate the maximum deflections measured by the Curviameter using two different applied loads 127 KN and 105 KN axle load:
The factor (1.22) here is quite close to the loads ratio (
, however, in
reality this is not always the case because the behaviour of pavement materials particularly the base and subbase layers is nonlinear with the state of loads or stresses, therefore, it is not accurate to make pavement deflections to be proportional to load. Additionally, many of correlation or regression equations usually have great scatter and errors as well as it is only valid to a particular type of pavement structure, definite construction practice and environmental conditions. The load speed also has a considerable effect on measured deflection, as the response of some road materials and subgrade vary according to the rate of applied load. As the rate of the load increasing the modulus of these materials increased and hence the measured deflection decreased, the Deflectograph shows a 5% change in 42
measured deflections corresponding to 1 km/hr change in speed (Kennedy, 1978). An extensive study was done by (Romero et al. 1994) to assess the different load speeds on measured deflection. The study was carried out by using the CEDEX test track simulation, the deflections were measured by embedded sensors at different speeds of load simulation vehicle. The study concluded that the maximum deflection and deflection basin length decrease as the speed increases according to the pavement type as shown in Table 4.3 and Figure 4.9. Table 4.3 Deflection at different speeds (test track vehicle; 70 C; 550,000 load applications). Source ( Romero et al. 1994). SPEED (Km/h) 1.5
1.8
5.2
10
15
20
30
38
-2
PAVEMENT
Deflection in 10 mm
1
10.7
10.4
7.9
7.4
7.9
7.0
7.0
7.0
2
30.0
30.0
26.7
24.8
25.4
24.3
23.1
21.2
3
11.1
9.6
8.4
7.4
7.7
7.3
6.6
6.1
4
8.3
8.0
7.1
6.4
6.7
5.9
5.6
5.2
5
40.7
39.3
30.8
30.8
32.2
30.4
30.1
27.4
6
11.9
11.0
9.1
8.4
8.8
8.1
----
----
Figure 4.9: Deflection versus load speed in flexible and semi rigid pavement. Source (Romero et al. 1994).
43
4.4.2 The effect of climate. Temperature and humidity are the main climatic factors that influence the measured deflection of pavement. High temperatures make the bituminous layers softer and hence increasing in deflection measurements. The viscoelastic behaviour of the asphalt surface is extremely varied with its temperature, where at high temperature conditions it behaves as a viscous material in which the deformation due to traffic loading will not come back to the first point after the loading release. On the other hand, and at low temperature conditions the asphalt layer becomes stiffer and acts as an elastic solid materials, thus the induced strain can be recovered (Tschoegl, 1989). Therefore; it is essential to take into account the pavement temperature when measuring pavement deflection and determining the stiffness of pavement layers. Many studies have been developed to predict temperature profile within asphalt layer and identifying the annual maximum or minimum pavement temperature in which a suitable binder performance grade is selected (Diefenderfer et al. 2006). The temperature gradient within the asphalt layer depends on ambient temperature, solar radiation, wind speed, and reflectance of the pavement surface (Diefenderfer et al. 2006). Many models have been developed to estimate the temperature gradient within pavement layers, these models can be built in statistics-based models or heat transfer models (Wang et al. 2009). The measured deflections by different nondestructive devices are usually corrected according to the surface pavement temperature or at defined depth of asphalt layer. For example, during the Deflectograph survey pavement temperatures are measured every 30 minutes from the start to the end of the survey and at depth 40mm below the surface (HD 29/08). Applying empirical formulas which are based on the air or ambient temperature rather than drilling holes to estimate the pavement temperature at desired depth could save time and effort. However, care must be taken when using these models because they are usually only valid for the original sample data on which the model was based on, additionally in the case of pavement with thicker asphalt layer the temperature gradient is relatively large, therefore, assuming the surface temperature is representative of the average temperature of the upper layer can result in considerable errors in corrected deflection (HD 29/08). For backcalcualting the Emoduli of the asphalt layer a temperature adjustment coefficient is applied to the Emoduli which backcalculated from the uncorrected deflection data, or, applied to the measured deflections. In the UK, the E-moduli of asphalt layers obtained from 44
backcalculating analysis are adjusted to the standard reference temperature of 20o C using the following formula:
Where: E20 = Stiffness at 200C; ET= Stiffness at temperature T of the asphalt at the time of testing measured at 100mm depth (HD 29/08). There are several temperature adjustment factors CT have been developed to adjust the measured deflections at the temperature of the asphalt during the auscultation to a standard reference temperature of 20o C. Most of the existing adjustment coefficients are dependent on one or more of the following variables asphalt temperature at the time of testing, total thickness of asphalt layer, cracking condition, test lane location, the type of the materials of the base and subgrade and location of deflection point regarding to the load application (García and Castro 2011). It should be mentioned that most of these factors are locally functioned where they are based on the properties of pavement materials and climatic conditions for each region. However, all temperature coefficients have the following features in common (García and Castro 2011):
In general, Tref = 20oC.
If T < Tref, then CT > 1.
If T = Tref, then CT = 1.
If T > Tref, then CT < 1.
Generally, as the temperature of the asphalt layer increases the pavement deflection increases, but this is not the case with flexible pavement which has hydraulically bound base whereas the deflection decreases rather than increases with the higher temperature. This is because the increasing temperature makes the hydraulically bound layer expand which causing the cracks to close and lock together, and hence increasing the stiffness of the pavement (HD 29/08). The moisture content and freeze-thaw cycle have a considerable impact on the measured deflection (Huang, 2004). The effects of seasonal variation are varied and depend on the climate conditions of each area. For example, regions that experience freeze-thaw cycle the minimum measured deflection occurs during winter when the deep frost period occurs and the pavement is at its strongest, whereas pavement becomes weaker and measured deflection increased during the period of spring thaw, and pavement strength recovery starts in early summer as the excess water leaves the pavement structure, hence the measured deflection decreases. On the other hand, in regions with no-freeze zone the effect of seasonal variation on the 45
pavement stiffness follows a sinusoidal pattern where the asphalt layer is highly influenced by the temperature changes while the subgrade layer is influenced by the moisture content, therefore, in the hot and dry areas the maximum deflection could occur in the summer, otherwise the maximum deflection period taking place in the winter when the moisture content is at its peak. A seasonal predicted model was developed by (Hesham and Neville 1996) which shows the seasonal effect on the elastic modulus of the asphalt concrete (AC) layer E1 and the resilient modulus of the subgrade (MR) for a particular site in Texas (Figure 4.10 a and b).
Figure 4.10 Periodic models: (a) AC layer; (b) resilient modulus. Source (Hesham and Neville 1996).
46
4.4.3 The effect of pavement condition. The existence of surface distress has a significant impact on measured deflection. Sections with cracking and rutting will give higher deflection measurements than those with free surface defects as the cracking fatigue and rutting influence the bearing capacity of pavement structure. The water is able to get in through these cracks into foundation or between layers and hence increasing the moisture content of the sub-grade and supporting layers as well as pushing up the fine materials of the foundation which all lead to reducing the bearing capacity of the foundation. It is important in Pavement Management System PMS that deflection survey are carried out in conjunction with the overall assessment of the network condition and hence the appropriate rehabilitation actions are taken. Therefore, continuous deflection data can be used to detect fatigued sections. A correlation study between distresses and deflection was done by (Gutiérrez-Bolívar and Achútegui 2001) on a 6,000km length at a defined road showed that the maximum deflection occurred in pavement with sever distresses as shown in Figure 4.11.
Figure 4.11 Distribution of deflection with Fatigue Index. Source (Gutiérrez-Bolívar and Achútegui 2001). Deflections measured at locations near or over a culvert, sections where their drainage system is inefficient, in wheelpaths of flexible pavement can be much higher, and also pavement in cut or fill sections usually give substantially different deflections (Huang, 2004).Therefore, these conditions must be identified in conjunction with the carrying out of deflection testing.
47
Chapter 5 : Data collection, results and analysing. 5.1 Introduction. To understand and examine the relationship between the Deflectograph and the Curviameter measurements, three set of data were analysed and compared. The first set of data was collected using the elastic layered programs BISAR, eight different deflection measurements were calculated according to the load magnitude and tyre footprint of each machine. The second set of data were trials of Deflectograph and Curviameter carried out by Testconsult Ltd with the Department of Transport (DoT) and Transport Research Laboratory (TRL) in 1995. Finally, the third set of data were also trials of both machine conducted by EUROCONSULT NUEVAS TECNOLOGIAS and Amey Co. in 2011. For each set of data, a detailed examination and comparison are prepared in order to derive a reliable correlation formula. 5.2 BISAR data, methodology, result and analysing. A theoretical correlation and comparison between
the
Curviameter
and
Deflectograph deflection measurements are conducted by using the elastic layered programs BISAR3. A typical pavement section consists of 250 mm thickness of bituminous layer and 300mm of loose stone as well as the subgrade was assumed in this study as shown in Figure 5.1. Eight deflection measurements were calculated for each machine. At each calculated deflection, the load magnitude and tyre footprint characteristics of each device, layer thicknesses and the x, y load coordination were kept fixed. The only variables input were the magnitude of modulus of elasticity of each layer (see Table 5.1).
250 mm
300 mm
Bituminous layer E1
Loose stone layer E2 Subgrade E3
Figure 5.1: Typical pavement section.
48
Table 5.1 The input data of calculating deflections by using BISAR 3. No.
1
Curviameter No. of Vertical circular load (KN) loads 2 31.875
0.16
X coordinate m 0.00
Y coordinate m 0.185
Deflectograph No. of Vertical circular load (KN) loads 2 15.875
2
2
31.875
0.16
0.00
0.185
2
15.875
0.135
0.00
0.17
900
106
45
3
2
31.875
0.16
0.00
0.185
2
15.875
0.135
0.00
0.17
1110
221
85
4
2
31.875
0.16
0.00
0.185
2
15.875
0.135
0.00
0.17
2610
68
85
5
2
31.875
0.16
0.00
0.185
2
15.875
0.135
0.00
0.17
2120
650
86
6
2
31.875
0.16
0.00
0.185
2
15.875
0.135
0.00
0.17
1200
185
67
7
2
31.875
0.16
0.00
0.185
2
15.875
0.135
0.00
0.17
1395
240
75
8
2
31.875
0.16
0.00
0.185
2
15.875
0.135
0.00
0.17
2820
505
81
Radius m
49
Y coordinate m 0.17
E1 (Bituminous layer) 4710
E2 (Loose stone layer) 692
E3 (Subgrade)
0.135
X coordinate m 0.00
Radius m
98
It should be mentioned that the vertical loads of the two machines in Table 5.1 represents the quarter of the total axle load, where the total axle load of the Curviameter is assumed here 127.53 KN and Deflectograph 63.5 KN. The calculation deflection values for the two machines are plotted and the following linear correlation formula was derived:
Figure 5.2 shows that the coefficient of determination R-squared = 0.99 indicates that there is a strong correlation between the two devices. The slope of the line (1.97) is almost identical to the ratio of the applied load which in this case is 127.5/63.5 = 2. That is because BISAR is a linear stress effect software and its calculated deflections is proportional to the applied load.
Curviameter = 1.97 x Deflectograph - 0.11 R-squared = 0.99
100
90
Curviameter deflections 10-2 mm
80
70
60
50
40
30
20
10
0 0
5
10
15
20
25
30
35
40
45
50
Deflectograph deflections 10-2 mm
Figure 5.2: Curviameter and Deflectograph correlation using BISAR3.
50
As the BISAR does not take into account the duration of the load, the correlation must be corrected to comply with the load speeds for each machine. In the case of the Curviameter the deflection measurements are taken at speed 18 km/hr whereas the Deflectograph is 2.5 km/hr. Therefore, the calculated deflections with BISAR are corrected to consider the applied load speed of the two machines by using the Figure 4.9 as proposed by (Romero et al. 1994). According to this chart, the calculated deflections of the Curviameter will be decreased by 23% and the Deflectograph by 3% to derive a more reliable correlation formula. And again the simple linear correlation formula was found to be:
Curviameter = 1.56 x Deflectograph - 0.10 R-squared = 0.99
75 70 65
Curviameter deflections 10-2 mm
60 55 50 45 40 35 30 25 20 15 10 5 0 0
5
10
15
20
25
30
35
40
45
50
Deflectograph deflections 10-2 mm
Figure 5.3: Curviameter and Deflectograph correlation using BISAR3 after correction for speed.
51
5.3 Curviameter and Deflectograph trials correlations in 1995. Testconsult Ltd provided the Curviameter under contract to the TRL during the period of the 3rd to the 7th of April 1995. The main purpose of this trials was to correlate the Curviameter deflections with the Deflectograph deflections on different road construction types and at a range of temperatures. Many correlation trials between the Curviameter and Deflectograph were carried out at the TRL Small Road Section at Crowthorne, on the A4091 at Tamworth and on the M23 motorway. As the Curviameter has the ability to vary the applied load of the rear axle, the magnitude of load was set to a nominal 10 tonnes (100KN) in this work. The total axle load of the Deflectograph was 65.6 KN, the nearside wheel pair being 33.3 KN and the offside pair 32.4 KN. 5.3.1 Correlations trials at the TRL Small Roads Section (SRS). About 135 m road section was selected to carry out the study. This short pavement section consists of three different type of construction. The trials were carried out by running the Curviameter 8 runs and Deflectograph 4 runs on the same section. Each Deflectograph run was sandwiched between two Cirviameter runs in order to minimise the temperatures influences. 5.3.1.1 Small Roads Section data, methodology, result and analysing. The eight Curviameter runs data and the four Deflectograph runs are graphically plotted as shown in Figures 5.4 and 5.5. It can be seen from the two graphs that there is a strong similarity in the shape of both machines runs. In order to derive a more reliable correlation, the Curviameter data and Deflectograph data were temperature corrected to a reference temperature of 20°C. The Curviameter data were corrected for temperature by obtaining a theoretical pavement temperature adjustment factor for deflection (CT) suggested by (García and et al. 2011) as shown in Figure 5.6.
52
The Deflectograph data were temperature corrected according to Figure 5.7 which is a chart taken from TRRL LR833 report by (Kennedy and Lister 1978), it was arbitrarily assumed that the selected section has a 135-195mm of bituminous materials of which less than 75mm is dense bituminous materials. Interestingly, the two charts give more or less the same answer in terms of the amount of corrections that should be applied (for a range of temperature between 15°C to 20°C), despite the fact that the Kennedy and Lister report dates back to about 40 years ago whereas the second one is recently produced. The data of Curviameter and Deflectograph (corrected and uncorrected ) are appended in Appendices 1 to 4.
53
45
40
Run1 Run 2 Run 3
Curviameter deflections 10-2 mm
35
Run 4 Run 5 Run 6 Run 7 Run 8
30
25
20
15
10
5
0 0
10
20
30
40
50
60
70 Chainage m
80
90
Figure 5.4: Curviameter runs on small roads section.
54
100
110
120
130
140
30
Deflectograph deflections10-2 mm
Run 1 Run 2 Run 3 Run 4 20
10
0 0
10
20
30
40
50
60
70 Chainage m
80
90
Figure 5.5: Deflectograph runs on small roads section.
55
100
110
120
130
140
Figure 5.6: Theoretically calculated CT. Source (García and et al. 2011).
Figure 5.7: Relation between deflections and temperatures for pavements with 135-195mm of bituminous materials of which less than 75mm is dense bituminous materials. Source (Kennedy and Lister 1978). 56
After the temperature corrections are done, at each chainge the mean of the eight Curviameter runs and the mean of the four Deflectograph runs are calculated. These are also averaged over 25m intervals (see Appendix 5) and then plotted versus each other as shown in Figure 5.8. A linear correlation formula was obtained to be:
It can be seen that there is a strong relationship between the Curviameter and Deflectograph measurements on the Small Roads Section with coefficient of determination R-squared= 0.98.
Curviameter = 1.34 x Deflectograph - 4 R-sequared = 0.98 30
Curviameter deflections 10-2 mm
25
20
15
10
5
0 0
5
10
15
20
25
30
Deflectograph deflections 10-2 mm
Figure 5.8: Curviameter and Deflectograph correlation of Small Roads Section.
57
5.3.1.2 The repeatability of the Curviameter and Deflectograph at SRS. As the Curviameter and Deflectograph were performed with several runs on the same road section (right runs with the Curviameter and four runs with the Deflectograph), a statistical analysing was used to examine the repeatability of the both machines. The coefficient of variation was calculated at each chainage from the eight runs of the Curviameter and the four runs of the Deflectograph (see Appendices 2 and 4).
The results of both machines are presented in Figure 5.9.
Figure 5.9: Coefficient of variation of the Curviameter and Deflectograph at SRS. Following that a two graphs (Curviameter and Deflectograph) were plotted to show the means of the runs with the error amount of the standard deviation at each chainage as shown in Figures 5.10 and 5.11. It can be seen from the Figure 5.9 that both machines have an extremely small coefficient of variation at areas having a relatively higher deflection which in this case the first 90 m of the surveyed section as shown in Figures 5.10 and 5.11.
58
40
35
Curviameter deflections 10-2 mm
30
25
20
15
10
5
0
-5 0
5
10
15
20
25
30
35
40
45
50
55
60
65 70 75 Chainage m
80
85
90
95
100 105 110 115 120 125 130 135
Figure 5.10: The means of eight runs with the error amount of standard deviation of the Curviameter at SRS.
59
30
Deflectograph deflections 10-2 mm
25
20
15
10
5
0
-5 5
10
15
20
25
30
35
40
45
50
55
60
65
70 75 80 Chainage m
85
90
95
100 105 110 115 120 125 130 135 140
Figure 5.11: The means of four runs with the error amount of standard deviation of the Deflectograph at SRS.
60
A statistical t-test was also used to determine whether the deflection data of each run is within the same distribution which gives a strong indication for the repeatability of the measurements. The two sample or pooled t-test was performed with assumptions that the variances of the populations are unknown but are equal . The null hypothesis was (
) and then test this
assumption using a significance level of 0.10 (see Appendix 6). The all results of the Curviameter and Deflectograph proved the null hypothesis as all
were
more than 0.10, in other words the tested means of each two runs are statistically similar and both machines produce extremely repeatable deflection measurements as shown in Table 5.2. Table 5.2: Repeatability testing results using statistical t-test. Proved null hypothesis
Machine
(means
Comparison
likely
from
the
same distribution?)
Run1 Vs Run2
0.80
YES
Run3 Vs Run4
0.80
YES
Run5 Vs Run6
0.58
YES
Run7 Vs Run8
0.54
YES
Run1 Vs Run2
0.32
YES
Run2 Vs Run4
0.80
YES
Curviameter
Deflectograph
5.3.2 Correlations trials on the A4091 near Tamworth. In this study, approximately 1000m length of road section was selected. This section consists of a range of different pavement types. The survey was done by sending over the Curviameter for 11 runs and the Deflectograph for 6 runs on the same section (see Appendices 7 and 8) . The trials were also conducted in a similar way to those at Small Roads Section, so each Deflectograph run being sandwiched between two Curviameter runs in order to minimise the temperature effects. Unfortunately, the raw deflection data of the Deflectograph runs are not available, therefore, the analysis will be only on the Curviameter data.
61
5.3.2.1 Curviameter trials analysing on the A4091 near Tamworth. The 11 runs of the Curviameter were graphically plotted after being averaged over a 50m intervals as shown in Figure 5.13. It should be mentioned here and previously that the invalid readings by the Curviameter or the Deflectograph were treated by inserting the best estimate of deflection by either interpolated from previous/ subsequent runs or from the adjacent deflection deflection readings. This is the best manner to keep the correlation as reliable as possible, because deleting or ignoring them will inevitably affect the correlation. A statistical analysis was also carried out to examine the repeatability of the Curviameter on the A4091. The coefficient of variation was calculated at each chainage from the 11 runs of the Curviameter for every 50m intervals (Figure 5.12). The results of the coefficient of variation indicate that the Curviameter has an acceptable measurement error and can produce practically repeatable deflections. The means of the 11 runs of the Curviameter over 50m intervals were also plotted with error bars to show the error amount of the standard deviation at 50m intervals as shown in Figures 5.14.
Coefficient of Variation
0.6
0.4
0.2
0 0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
Chainage m
Figure 5.12: The Coefficient of Variation of the Curviameter on the A4091.
62
900
950
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Run 11
Curviameter deflection 10-2 mm
30
20
10
0 0
100
200
300
400
500
600
700
Chainage m
Figure 5.13: The 11 runs of the Curviameter at Tamwoth
63
800
900
1000
30
Curviameter deflections 10-2 mm
25
20
15
10
5
0 0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
Chainage m
Figure 5.14: The means of 11 runs averaged over 50m intervals with the error amount of standard deviation at Tamwoth.
64
5.3.3 Correlations trials on the M23 motorway. Correlations were conducted on a 4000 m section of the southbound of
M23.
Deflection data from two Curviameter runs and two Deflectograph runs were collected on this section (Appendix 9). As before the Curviameter and Deflctograph runs sandwiched each other, and to minimise the climatic effects, the Curviameter waited for the Deflectograph to catch up at each half kilometer marker before moving on. The comparison will be between the nearside Deflectograph measurements and Curviameter deflection readings, as the Curviameter was straddled in the hard shoulder and Lane 1 to make this comparison applicable. The deflection data of the two runs were averaged over a 50m intervals and plotted graphically. Figure 5.15 shows graphically the deflections profile for the two Curviameter runs averaged over a 50m chainages, the similarity and repeatability of the Curviameter are evident on this graph. The two Deflectograph runs are also plotted in the same way in Figure 5.16, the similarity is somewhat acceptable although there is variability in the output of the two runs betwee Ch. 400 to Ch. 600 and between Ch. 1500 to Ch. 1800. The means of the two machines over a 50m intervals were plotted in Figure 5.17 to show the similarity and correlation between the Curviameter and Deflectograph. Finally, the correlation formula was derived by drawing the means of the two runs which averaged over 50m intervals (see Appendix 10) for both machines on scatter graph as shown Figure 5.18. The linear correlation formula is:
The coefficient of determination R-squared was 0.67 which is not as strong as the correlation on the Small Road Section because of some large scatter points due to the variability of the both machines.
65
Curviameter Run1 Curviameter Run2
30
25
Deflections 10-2 mm
20
15
10
5
0 0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
Chainage m
Figure 5.15: Two Curviameter runs (50m averaged) on the M23.
66
3000
3200
3400
3600
3800
4000
Deflectograph Run1 Deflectograph Run 2 30
Deflections 10-2 mm
20
10
0 0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
Chainage m
Figure 5.16: Two Deflectograph runs (50m averaged) on the M23.
67
3200
3400
3600
3800
4000
Curviameter (means of two runs) Deflectograph (means of two runs) 30
25
Deflections 10-2 mm
20
15
10
5
0 0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
Chainage m
Figure 5.17: Means of the two Curviameter runs Vs means of the two Deflectograph runs (all averaged over 50m intervals).
68
4000
Curviameter = 0.95 x Deflectograph + 0.65 R-squared = 0.67 30
Curviameter 10-2 mm
25
20
15
10
5
0 0
5
10
15
20
25
30
Deflectograph deflections 10-2 mm
Figure 5.18: Curviameter and Deflectograph correlation of M23.
5.4 Correlations trials on the A38 in Birmingham. It was possible to get hold of data from the A38 Sutton Coldfield bypass for a Deflectograph and a Curviameter to show the broad comparability of the results and the correlation between the two machines (Appendices 11 and 12). The Deflectograph survey was carried out during the period between 16 and 18 of April 2011 by WDM Ltd for Amey Ltd, as part of their major highway maintenance PFI contract with the City of Birmingham. The deflection data of the A38 was part of a large WDM contract examining major roads in the Birmingham area. The Curviameter survey was conducted on the 1st and 2nd of April 2011 by Testconsult Ltd, in association with Euroconsult Spain as part of a trial to see it is possible to get the Curviameter accepted in England. Both set of the data were provided but the first problem was with locational referencing where the Deflectograph data related to 64Km while the Curviameter to 16.5km. The Curviameter data is in somewhat well referenced but the problem with Deflectograph data, we have to take out the16.5km 69
from 64km to be matched with the Curvaimeter data. The magnitude of static load was set to (130KN) in this work for the Curviameter and (65.6 KN) for the Deflectograph. Initially attempts were made by plotting the raw deflections against chainage to see if it was possible to identify whether there was any similarity in the overall shape of the graphs, which could assist in determining which Deflectograph data related to the Curviameter data. This was not successful. Due to pressure of work within Amey it was not possible for some time to get accurate locational referencing data relating to the Deflectograph. The interesting surveyed section by the two machines is shown in Figure 5.19. An initial attempt was made to demonstrate a correlation along both the north and southbound lanes of A38 between the Chester Road Roundabout and the Bassets Pole Roundabout was not successful with the results being set out in Figures 5.20 and 5.21.
Figure 5.19: Locational referencing diagram of the surveyed section by the two machines.
70
Curviameter and Deflectograph runs at the Norththbound of A38 Sutton Coldfield bypass. Note: the zero chainage is at the exit of the Chester Road Roundabout (A452) 85 80 75 70 Deflectograph run Curviameter run
65
Deflections 10-2 mm
60 55 50 45 40 35 30 25 20 15 10 5 0 0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
Chainage m
Figure 5.20: Curviameter and Deflectograph runs at the Northbound of A38 Sutton Coldfield bypass.
71
7000
7500
8000
Curviameter and Deflectograph runs at the Southbound of A38 Sutton Coldfield bypass. Note: the zero chainage is at the entry of the Chester Road Roundabout (A452) 105 100 95 90 85
Deflectograph run Curviameter run
80 75 Deflections 10-2 mm
70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
Chainage m
Figure 5.21: Curviameter and Deflectograph runs at the Southbound of A38 Sutton Coldfield bypass.
72
6500
7000
7500
8000
Curviameter and Deflectograph runs at the Norththbound of A38 Sutton Coldfield bypass. Note: the zero chainage is at the exit of the Chester Road Roundabout (A452) 85 80 75 70 Deflectograph run Curviameter run
65
Deflections 10-2 mm
60 55 50 45 40 35 30 25 20 15 10 5 0 0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
Chainage m Curviameter and Deflectograph runs at the Southbound of A38 Sutton Coldfield bypass. Note: the zero chainage is at the entry of the Chester Road Roundabout (A452) 105 100 95 90 85
Deflectograph run Curviameter run
80 75
Deflections 10-2 mm
70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
Chainage m
Figure 5.22: Curviameter and Deflectograph runs at the Southbound and Northbound of A38 Sutton Coldfield bypass. 73
7500
8000
It is immediately clear that the Curviameter measurements and Deflectograph measurements were not well correlated along the surveyed section for both northbound and southbound apart from some similarity in the overall shape between chainages 0.00 and 1500m of the southbound direction. There is substantial variation in the measured deflection of the two machines between chainages 2500 and 6500m for both northbound and southbound. Initially this was thought to be a machine problem but when it was apparent that this variation was clear in both northbound and southbound carriageways a further examination was made. It is not possible to carry out a visual survey due to time constrains and legalisation requirements but using the google earth facility has enabled us to get some pictures of chainages between 2500 and 6500m to see if there are any obvious problems on the surface. The pictures show that there are surface distress and apparent rutting in both carriageways (see Figures 5.22 and 5.23).
Figure 5.23: Google earth snap shows the surface distress on the Northbound of A38 Sutton Coldfield bypass.
74
Figure 5.24: Google earth snap shows the surface distress on the Southbound of A38 Sutton Coldfield bypass.
It can also be seen that part of the "problem" section is on embankment. A detailed investigation is clearly needed to consider why there is such a significant difference in the deflections measured by the two machines between chainages 2500 and 6500m. This is however outside the scope of the current investigation. Having removed the "problem" section from the investigation it was possible to demonstrate a correlation between the two machines between chianages 0.00 and 1500m of the southbound direction but this proved to be of low validity. The averaged results over a 100m intervals of the Curviameter and Deflectograph between chianages 0.00 abd 1500m of the southbound section were plotted on a scatter chart and derive a regression correlation formula as shown in Figure 5.24. The linear correlation formula is:
The coefficient of determination R-squared was 0.47.
75
35
Curviameter = 1.15 Deflectograph + 2.61 R-squared = 0.47
Curviameter deflections 10-2 mm
30
25
20
15
10
5
0 0
5
10
15
20
25
Deflectograph deflections 10-2 mm
Figure 5.25: Curviameter and Deflectograph correlation for the chainages between 0.00 and 1500 of the southbound of A38 Sutton Coldfield bypass. 5.5 Critical review and overall comparison of the correlation equations. Having many different correlation equations it is important to make a quantitative comparison between them. A statistical method called (A-statistic) is used to calculate the differences between the areas of a two compared series, the method was established by (Sánchez Sánchez et al. 2008). A graphic example (Figure 5.25) was drawn to show how to determine the A-statistic. The range of the deflection for calculation A-statistic were assumed to be between (0 and 30). The smaller the Astatistic between two equations the stronger similarity between them.
where: A is the calculated area, f(D) and g(D) are function of data series which in this case are the correlation equations that need to be compared. As the correlation trials at the TRL Small Road Section was conducted under controlled conditions, with both machines measuring at the same time, any possible problems due to difference in asphalt temperature and pavement condition were 76
removed. In these circumstances this must be considered to be the most reliable correlation equation available to this investigation. Therefore, all the correlation equations will be compared with the SRS correlation equation. The calculated area are then divided by 1000 and categorized into defined scale to weigh up the differences between the compared series (see Table 5.3).
Base equation (SRS): Curv. = 1.34 Defl. - 4 The compared series
40
35
Area between the two series.
Curviameter deflection 10-2 mm
30
25
20
15
10
5
0
-5 0
5
10
15
20
25
30
Deflectograph deflections 10-2 mm
Figure 5.26: A-statistic determination.
Table 5.3: Assumed category to evaluate the A-statistic. Category A B C D E
A-statistic A 0.05 0.05 A 0.10 0.10 A 0.25 0.25 A 0.40 A 0.40
Description The compared series are very similar The compared series are similar Few relation between series compared Hardly relation between series compared Completely different series compared
The A-statistic was calculated using the facility of Grapher software and the results being set out in Table 5.4. The A-statistic results have been computed to the base of SRS
correlation
equation
. 77
As expected, the nearest correlation equation to the base was the correlation equation of M23 motorway as the survey was carried out under controlled conditions and both machines were run side-by-side field tests in which all factors affecting the measured deflection were minimised. The all previous correlation equations are graphically presented in Figure 5.26. Table 5.4: Comparison between the SRS correlation formula and other equations based on A-statistic results. No.
Description
1
BISAR correlation prior speed correction BISAR correlation after speed correction Correlation at M23 Correlation at the southbound of A38 Sutton Coldfield bypass.
3 4
A-statistic
Category
0.40
E
0.216
C
0.091
B
0.112
C
Base equation (SRS): Curv. = 1.34 Defl. - 4 A38 Sutton Coldfield bypass: Curvia.=1.15x Deflect.+2.61 Correlation at M23: Curvia.=0.95x Deflect.+0.65 BISAR prior speed correction: Curvia.=1.97 x Deflect.-0.11 BISAR after speed correction: Curvia.=1.56 x Deflect.-0.10 60 55 50 45
Curviameter deflection 10-2 mm
2
Correlation formula
40 35 30 25 20 15 10 5 0 -5 0
5
10
15
20
25
Deflectograph deflections 10-2 mm
Figure 5.27: Correlation equations for all investigation.
78
30
Chapter 6: Conclusions and Recommendations. 6.1 Introduction. The primary findings of the study will be presented in this chapter. This will also include the main conclusions of the investigations and the validity of using the Curviameter on pavements in the UK. The primary focus of the work is to evaluate a validated correlation equation between the Curviameter and Deflecotgraph. It is thought that SRS trials are the most reliable raw survey data available and the correlation is considered the most validated correlation between the two devices as the testing was generated under controlled conditions and all factors from climate to pavement condition were minimised. On the other hand, the A38 Birmingham investigation has not been entirely successful due to factors outside the control of the writer. Finally, the main recommendations and assumptions that should be considered for future investigation in order to derive a more reliable correlation equation. 6.2 Conclusions. The main conclusions drawn from this study are: The Curviameter is a high precision non-destructive equipment for determining continuous deflection profile of pavement in a large roadway network with minimum interruption to the travelling public. The Curviameter and Deflectograph results were statistically similar when repeated on definite section, thus the repeatability of both devices is acceptable on a range of UK pavement types. The Curviameter produced much more repeatable deflections than the Deflectograph. This is because the geophone can be placed accurately on the same point run after run which is not the case with the Deflectograph. The deflection profile measured by the Curviameter and the Deflectograph are reasonably similar in the overall shape which indicate that there is a strong relationship between them. The Curviameter and Deflectograph deflection results were well correlated at the correlation trials in1995, with adjusted R2 values ranging from 0.67 to 0.98 when the trials based on side-by-side field tests.
79
The correlation at SRS trials proved a strong relationship between the two devices with coefficient of determination R-squared 0.98. Thus it proposed to be the most reliable equation. The correlation equation which derived by using the elastic layered programs BISAR3 based on the tyre footprint and axle load of each vehicle developed into more reliable one when the speed corrections were applied. The ratio between the static applied load of the two machines has a considerable effect on the theoretical and experimental correlation. The A38 Birmingham trials cannot be proved to be a validated correlation due to factors outside the control of the writer with some thought being listed below:
The Deflectograph runs on A38 were not continuous over the section considered having been made on different days, in different weather conditions and at different temperatures.
Taking into account there is a possibility that the calibration process of the two machines were not well conducted during the testing.
Just one run available for each machine, this is considered inadequate as both machines and specially Deflectograph produces significantly variable output at each run on the same section.
The changes in the pavement condition due to the seasonal variability as there is a gap between the two trials. However, the period between the two trials is not that long (about 16 days,) and the available information
of
the
temperatures
and
precipitation
amount
(http://tutiempo.net/en/Weather/United_Kingdom/GB.html) relating to Birmingham International Airport which is about 10 km south of the section of A38 has shown that there was not any heavy rains during this periods and there was not a significant differences in temperatures during this period. Thus not having a considerable effect unless there was problem with drainage system on this particular section during this period. (Tu Tiempo.net) Having removed all thoughts above and there were no drawbacks with machines, that means the Curviameter was able to detect deteriorated sections which were not detectable by the Deflectograph. The surface distress
80
that was shown by the Google earth snaps can provide evidence for this assumption. The bowl shapes obtained by the Curviameter are defined by 100 data points. This provides a complete deflection basin which is important for pavement analysing and backcalculation of modulus of elasticity.
6.2 Recommendations. The Curviameter seems to be a promise equipment to evaluate the structural condition of the pavement by determining continuous deflection profiles of pavements at a constant speed of 18km/hr. This speed can reduce the survey cost per kilometre and minimise the interference and delay to the public travelling. An investigation of this nature requires careful organisation and planning to remove as many variables as possible. In this case the opportunity was taken to run a Curviameter over a section of A38 for which Deflectograph measurements were available. For such comparison to be realistic and valid requires both sets of measurements to be made at the same time, which has not been the case here. In order to propose a global correlation equation, further trials need to be conducted at a range of different pavement types and a range of temperatures. The trials should be carried out in a side-by-side field tests. A detailed investigation should be carried out to consider why there is such a significant difference in the deflections measured by the two machines on chainages between 2500 and 6500m for both northbound and southbound of A38 Sutton Coldfield bypass. Visual survey is important to be carried out in conjunction with the correlation trials.
81
ACKNOWLEDGMENTS
I would like to express my gratitude to almighty God, who made all things possible. I owe my deepest gratitude to my supervisor Mr. Derek Pearson without his help and support this work would not have been possible. He was abundantly helpful and offered invaluable assistance, support and guidance. His knowledge and experience in this field encouraged me to do my best. I would like to acknowledge and extend my sincere thanks to Mr. Dick Stain from Testconsult Ltd. who was kind enough to let us have his report of 1995 trials in which the raw deflection data are included as well as he and his colleagues in Spain kept feeding us throughout the study with any information that were needed about the Curviameter. Special thanks also to all members in Amey co., particularly Mr. Ian Kerslake and Mr. David Cudworth. They kindly provided us with all information and raw data of Deflectograph trials in 2011. I am heartily grateful to Miss Alison Vernon for revising the English of the dissertation. Her work is highly acknowledged. My warm thanks are due to my friend Tarik Thaker, he has never hesitated to offer his help in advising and solving any computing problems during the study and encourage me to complete the dissertation. I owe my loving thanks to my wife Afrah and my little son Ahmed. She has kept encouraging and supporting me during the duration of my academic program. My loving thanks are due my mother, her supplication and moral encouragement made things easier. Many thanks are due to my brothers, my sister and her family for their loving support. Finally, my sincere thanks are due to the Ministry of Higher Education and Scientific Research / Republic of Iraq for awarding me a scholarship to study in the UK, their financial support is highly appreciated.
82
REFERENCES AASHTO. (1993). AASHTO guide for design of pavement structures. Washington, D.C. Abdallah, I., Yuan, D., and Nazarian, S. (2001). Integrating Seismic and Deflection Methods to Estimate Pavement Moduli. Transportation Research Record: Journal of the Transportation Research Board , No. 1755, TRB, National Research Council, Washington, D.C., 2001, pp. 43–50. Alexandros G. Kokkalis & Olympia K. Panagouli. (1998). Fractal Evaluation of Pavement Skid Resistance Variations[I] Surface Wetting. Elsevier Science Ltd , Vol. 9, No. 11, PP 1875-1890. American Society for Testing and Materials. (2000b). Skid resistance of pavements using a full scale tire. ASTM E274, Annual Book of ASTM Standards. Vol. 4.03. APTS Services. (n.d.). Retrieved August 14, 2011, from Advanced Pavement Testing Services: http://www.aptsfwd.com/services.html ASTM D4694. (2003). Standard Test Method for Deflections With a Falling Weight Type Impulseload Device. 2003 (ASTM:West Conshohocken). ASTM, Standard practice for computing international roughness index of roads from longitudinal profile measurements, ASTM Standards 04.03, Road and Paving Materials; Vehicle-Pavement Systems, E1926–98, 2005. Austroads Test Method AG:AM/T007, Pavement Deflection Measurement with a Deflectograph 2007. Bay, J.A. and Stokoe, II, K.H. (1998). Development of a Rolling Dynamic Deflectometer for Continuous Deflection Testing of Pavements. Center for Transportation Research, Bureau of Engineering Research, 1998 (The University of Texas: Austin, TX). Bowden, F.P. and Tabor, D. (1950). The friction and lubrication of solids. London: Oxford University Press. Carey, W. N., and P E. 'Rick. (1960). The Pavement Serviceability Performance Concept. Bulletin 250 ; Highway Research Board. Carneiro, F. B. (1966). Benkelman Beam - Auxiliary Instrument of the Maintenance Engineer. Transportation Research Record 129, TRB , Washington, D.C., pp. 28-59. Chang, D.W., Kang, Y.V., Roesset, J.M. and Stokoe, II, K.H. (1992). Effect of depth to bedrock on deflection basins obtained with dynaflect and FWD tests. Transp. Res. Rec. , 1355, 8–16. Cheng, H. D. and Miyojim M. (1998). Automatic pavement distress detection system. Journal of Information Sciences , 108 , 219~240. Collop AC and Cebon D. (1996). Stiffness reductions of flexible pavements due to cumulative fatigue damage. J Transp Eng ASCE , 1996;122:131–9.
83
Daba S. Gedafa, Mustaque Hossain, Richard Miller, and Thomas Van. (2010). Estimation of Remaining Service Life of Flexible Pavements from Surface Deflections. Journal of Transportation Engineering , Vol. 136, No. 4, p 342-352. De Souza Ricardo Oliveira , Silvrano Dantas Neto, Márcio Muniz de Farias. (2006). Statistical analysis between roughness indices and roughness Prediction model using neural networks. Papers From the 2003–2004 International Contest on Long-Term Pavement Performance Data Analysis , Sponsored by the Federal Highway Administration and the American Society of Civil Engineers, PUBLICATION NO. HRT-06-109, SEPTEMBER 2006 . Diefenderfer B. K. , Al-Qadi L. Imad ,and Diefenderfer D. Stacey . (2006). Model to Predict Pavement Temperature Profile: Development and Validation. Journal of Transportation Engineering , Vol. 132, No. 2, pp 162- 167. DMRB. (2008). Volumn 7, Section 3, Part 2, HD 29/08, Data for pavement assessment. Highways Agency, London 2008. Domínguez Fernando Sánchez and García José Antonio Ramos . (2008). 30,000 km. of Structural Road Surveys In One Year. Challenges of Large Road Network Auscultation And Management. 7th International Conference on Managing Pavement Assets. Elkins E. Gary , Waheed Uddin, and Hudson W.R. . (1987). Side-by-side field evaluation of deflection testing devices. 2nd North American Pavement Management Conference (1987), (pp. 3.273 - 3.284). Elseifi A. Mostafa , Ahmed Abdel-Khalek, Kevin Gaspard, Zhongjie Doc Zhang, and Said Ismail. (2011). Evaluation of the Rolling Wheel Deflectometer as a Structural Pavement Assessment Tool in Louisiana. ASCE Conf. Proc. 398, 60 (2011), DOI:10.1061/41167(398)60 . Galambos, V., et al. (1977). Pavement texture and available skid resistance. Washington, DC: Office of Research, Federal Highway Administration. García J. Antonio Ramos and Castro M. . (2011). Analysis of the temperature influence on flexible pavement deflection. Construction and Building Materials , 25 (2011) 3530–3539. Geem, C. V. (2010, June 10-11). Overview of interpretation techniques based on measurement of deflections and curvature radius obtained with the Curviameter. 6th European FWD User’s Group Meeting, Sterrebeek . Gillespie, T.D. and Sayers, M.W. (1983). Measuring Road Roughness and Its. ASTM Special Technical Publication 884. . Goktepe A. Burak , Emine Agar and Hilmi A. Lav. (2006). Advances in backcalculating the mechanical properties of flexible pavements. Advances in Engineering Software , 37 (2006) 421–431. Gorski, M. (1999). Residual service life of flexible pavements and its impact on planning and selecting priorities for the structural strengthening of road networks. Proc., XXIst World Road Congress. CD ROM, PIARC, Kuala Lumpur . Gramling, W. L. (1994). Current Practices In Determining Pavement Condition. NCHRP Synthesis of Highway Practice No. 203, Transportation Research Board, Washington, D.C. 84
Grote K., Hubbard S. , Harvey J. and Rubin Y. (2005). Evaluation of infiltration in layered pavements using surface GPR reflection techniques. Journal of Applied Geophysics , 57 (2005) 129– 153. Gutiérrez-Bolívar O. and Achútegui F. (2001). FATIGUE CRACKING AND DEFLECTION. 5th International Conference on Managing Pavements. Henry, J. (2000). Evaluation of pavement friction characteristics. a synthesis of highway practice. NCHRP Synthesis, 291, 7 . Henry, J. (1986). Tire wet pavement traction measurement: a state of the art review. Philadelphia: ASTM STP , 1164–1168. Hesham A. Ali And Neville A. Parker. (1996). Using Time Series to Incorporate Seasonal Variations in Pavement Design. Transportation Research Record , Vol. 1539 pp 33-43. Hoffman, M. S., and Thompson, M. R. (1982). Comparative Study of Selected Nondestructive Testing Devices. Transportation Research Record 852, TRB, Washington, D.C. , pp. 32-41. Huang, Y. H. (2004). Pavement Analysis and Design. Pearson Prentice Hall. Johnson, R. F., and Rish, J. W., III. (1996). Rolling Weight Deflectometer with Thermal and Vibrational Bending Compensation. presented at TRB annual meeting, January Washington, D.C. Kennedy, C K and Lister N W. (1978). prediction of pavement performance and the design of overlays. Department of the Environment Department of Transport, Taransport and Road Research Laboratory TRRL LR 833, Crowthorne, Berkshire. Kennedy, C. K. (1978). pavement deflection: operating procedures for the use in the United Kingdom. Department of the Environment Department of the Transport, TRRL Report LR 835, Crowthorne, (Transport and Road Research Laboratory). Kummer, H . W., and Meyer W. E. . (1967). Tentative Skid-Resistance Requirements for Main Rural Highways. NCHRP Report 37; Highway Research Board. Lekarp, F., Isacsson, U. and Dawson, A. (2000). State of the art. 1: resilient response of unbound aggregates. J. Transp. Eng , 126, 66–75. Lenngren, C. (1991). Relating deflection data to pavement strain. Transp. Res. Rec. , 1293, 103–111. Leu, M. C., and J. J. Henry. (1978). Prediction of Skid Resistance as a Function of Speed from Pavement Texture. Transportation Research Record 666, pp. 38-43 ; Transportation Research Board . Loizos A. and Plati C. (2008). An alternative approach to pavement roughness evaluation. International Journal of Pavement Engineering , 9 (1), 69–78. Loizos, A. and Plati, C. (2007). Accuracy of pavement thickness estimation using different ground penetrating radar analys is approach. NDT&E Int , 40, 147–157. Lytton, R. L. (1989). Backcalculation of Pavement Layer Properties. American Society for Testing and Materials , STP 1026, pp. 7-38.
85
Mamlouk, M. S. (1985). Use of dynamic analysis in predicting field multilayer pavement moduli. Transportation research record, 1043, TRB Washington DC: National Research Council , p. 113–119. May, R.W. and Von Quintus, H.L. (1994 ). The quest for a standard guide to NDT backcalculation. In STP 1198,Nondestructive Testing of Pavements and Backcalculation of Moduli, edited by H. Von Quintus, A.J. III. Bush and G.Y. Baladi. vol. 2, pp. 505–520, (ASTM: Philadelphia). McKay T. David , Kevin L. Rens, P.E.,Lowell F. Greimann, Fellow, and James H. Stecker. (1999). CONDITION INDEX ASSESSMENT FOR U.S. ARMY CORPS OF ENGINEERS CIVIL WORKS. JOURNAL OF INFRASTRUCTURE SYSTEMS , 5(2), 52-60. Meyer, W. E. (1991). "Pavement Texture Significance and Measurement," Standardization News,ASTM, February, pp. 28-31 . Ministerio De Fomento. Dirección General De Carreteras (2003): Rehabilitación de firmes. Instrucción de carreteras. Norma 6.3-IC.Madrid: Dirección General de Carreteras. Centro de publicaciones. Minkwan Kim and Joo Hyoung Lee. (2011). Study On Nonlinear Pavement Responses Of Low Volume Roadways Subject To Multiple Wheel Loads. Journal Of Civil Engineering And Management , Volume 17(1): 45–54. Moyer, R. (1942). Motor Vehicle Operating Costs, Road Roughness and Slipperiness of Various Bituminous and Portland Cement Concrete Surfaces. Highway Research Board, Proceedings of the Twenty-Second Annual Meeting, National Research Council, Washington, D.C., pp. 13-52 . NAPA . (1996). Education Foundation, Hot mix asphalt materials,mixture design, and construction. Lanham: Maryland. Pan Nang-Fei , Chien-Ho Ko, Ming-Der Yang, Kai-Chun Hsu. (2011). Pavement performance prediction through fuzzy regression. Expert Systems with Applications , 38 (2011) 10010–10017. Pearson, D. (2011). Deterioration and Maintenance of Pavements. Course notes, University of Leeds, Institute for Transport Studies. Roesset, J.M. and Shao, K.Y. (1985). Dynamic interpretation of dynaflect and FWD tests. Transp. Res. Rec. , 1022, 7-16. Romero R. , Aurelio Ruiz, Ramon Rodil, and Miguel Angel Lechuga. (1994). Variation of Deflection with the Measuring Equipment and with the Load Speed in a Test Track. Transportation Research Record , Issue 1448, p. 53-60. Saarenketo, R. and Scullion, T. (2000). Road evaluation with ground penetrating radar. J. Appl. Geophys , 43, 119–138. Sánchez Sánchez, ana M. and Fedriani Martel, Eugenio M. XVI Jornadas de ASEPUMA y IV Encuentro Internacional de profesores universitarios de matemáticas, Sevilla; September 2008 [in Spanish]. Scrivner, F. H., Swift, G., and Moore, W. M. (1966). A New Research Tool for Measuring Pavement Deflection. Transportation Research Record 129, TRB, Washington , D.C., pp. 1-11.
86
Siddharthan V. Raj , Krishnamenon N. , Mohey Al-mously and Peter E. Sebaaly. (2002). Validation of a Pavement Response Model Using Full-scale Field Tests. The International Journal of Pavement Engineering , Vol. 3 (2), pp. 85–93. Smith, R. E., and Lytton, R. L. (1986). Operating Characteristics and User Satisfaction of Commercially Availability NDT Equipment. Transportation Research Record 1007 , TRB, Washington, D.C., pp. 1-10. Society of Chemical Industry (SCI). (2011, August 17). Retrieved August 28, 2011, from Safety in depth from the pavement: http://www.soci.org/News/construction-pavements-11 Sun, L. (2001). Developing spectrum-based models for international roughness index and present serviceability index. Journal of Transportation Engineering , 127(6), 463–470. Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction, Springer, New York. Tu Tiempo.net. (n.d.). Retrieved August 25, 2011, from World Weather - Local Weather Forecast: http://tutiempo.net/en/Climate/Birmingham_Airport/04-2011/35340.htm Uzan, J. (1994). Advanced backcalculation techniques. In: Von Quintus HL, Bush AJ, Baladi GY, editors. NDT of pavements and backcalculation of moduli, 2. Special technical publication, STP 1198. Pennsylvania: ASTM Publication , p. 3–37. URS Corp. (2000). Pavement performance prediction models. Interim Rep. Prepared for Kansas Department of Transportation. Kansas Department of Transportation, Topeka, Kan. Wang Dong ; Jeffery R. Roesler, and Da-Zhi Guo. (2009). Analytical Approach to Predicting Temperature Fields in Multilayered Pavement Systems. Journal of Engineering Mechanics , Vol. 135, No. 4, pp 334–344. Witczak, M. W. (1978). Determination of flexible pavement life: Executive summary, Vol. I. FHWA Rep. No. FHWA/MD/R-79/1, FHWA,. U.S. Dept. of Transportation, Washington, D.C.
87
APPENDICES APPENDIX [1] The raw data (uncorrected) of Curviameter runs at SRS. Temp. Chainage
21°C at 40mm Run1
Run2
18°C at 40mm Run3
Run4
17°C at 40mm Run5
15°C at 40mm
Run6
Run7
Run8
21 16 17 21 20 20 21 27 25 24 20 31 26 29 26 31 25 6 1 5 5 3 7 0 4 5
15 17 20 22 13 16 21 24 22 20 23 25 28 24 30 32 28 35 10 8 6 5 6 7 0 3 6
24 16 20 19 19 19 21 23 28 30 27 31 31 34 27 30 32 33 4 8 1 9 5 1 6 3 7
-2
Deflections 10 mm 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5 97.5 102.5 107.5 112.5 117.5 122.5 127.5 132.5
20 22 20 19 22 13 19 24 37 20 26 24 27 36 27 32 33 36 12 4 4 4 0 10 0 2 7
20 21 17 22 20 18 20 28 39 26 24 22 23 32 25 30 35 33 11 6 3 4 0 9 0 6 7
23 22 15 19 19 23 23 19 33 25 21 23 29 33 27 27 38 29 8 3 2 4 1 16 1 6 6
18 21 20 18 16 25 21 17 30 26 23 27 30 32 29 30 33 33 4 5 5 5 2 10 3 6 6
88
27 20 17 17 22 17 19 17 26 26 26 24 28 25 30 30 31 32 6 2 3 5 5 7 4 2 8
APPENDIX [2] The temperature corrected data of Curviameter runs at SRS. Chainage
Run1
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Mean
STDEV
Deflections temperature corrected at a reference of 20°C 2.5
19.8
19.8
24.61
19.26
28.944
7.5
21.78
20.79
23.54
22.47
21.44
12.5
19.8
16.83
16.05
21.4
17.5
18.81
21.78
20.33
22.5
21.78
19.8
27.5
12.87
32.5
Coef. Of var. var.
16.245
25.992
19.33
4.49
0.23
22.512
18.411
17.328
21.03
2.14
0.10
18.224
17.152
21.66
21.66
19.10
2.33
0.12
19.26
18.224
18.224
23.826
20.577
20.13
1.94
0.10
20.33
17.12
23.584
22.512
14.079
20.577
19.97
3.07
0.15
17.82
24.61
26.75
18.224
21.44
17.328
20.577
19.95
4.39
0.22
18.81
19.8
24.61
22.47
20.368
21.44
22.743
22.743
21.62
1.89
0.09
37.5
23.76
27.72
20.33
18.19
18.224
22.512
25.992
24.909
22.70
3.55
0.16
42.5
36.63
38.61
35.31
32.1
27.872
28.944
23.826
30.324
31.70
4.95
0.16
47.5
19.8
25.74
26.75
27.82
27.872
26.8
21.66
32.49
26.12
3.92
0.15
52.5
25.74
23.76
22.47
24.61
27.872
25.728
24.909
29.241
25.54
2.17
0.09
57.5
23.76
21.78
24.61
28.89
25.728
21.44
27.075
33.573
25.86
4.01
0.15
62.5
26.73
22.77
31.03
32.1
30.016
33.232
30.324
33.573
29.97
3.62
0.12
67.5
35.64
31.68
35.31
34.24
26.8
27.872
25.992
36.822
31.79
4.35
0.14
72.5
26.73
24.75
28.89
31.03
32.16
31.088
32.49
29.241
29.55
2.71
0.09
77.5
31.68
29.7
28.89
32.1
32.16
27.872
34.656
32.49
31.19
2.21
0.07
82.5
32.67
34.65
40.66
35.31
33.232
33.232
30.324
34.656
34.34
2.99
0.09
87.5
35.64
32.67
31.03
35.31
34.304
26.8
37.905
35.739
33.67
3.47
0.10
92.5
11.88
10.89
8.56
4.28
6.432
6.432
10.83
4.332
7.95
3.02
0.38
97.5
3.96
5.94
3.21
5.35
2.144
1.072
8.664
8.664
4.88
2.82
0.58
102.5
3.96
2.97
2.14
5.35
3.216
5.36
6.498
1.083
3.82
1.82
0.48
107.5
3.96
3.96
4.28
5.35
5.36
5.36
5.415
9.747
5.43
1.86
0.34
112.5
0
0
1.07
2.14
5.36
3.216
6.498
5.415
2.96
2.57
0.87
117.5
9.9
8.91
17.12
10.7
7.504
7.504
7.581
1.083
8.79
4.45
0.51
122.5
0
0
1.07
3.21
4.288
0
0
6.498
1.88
2.50
1.33
127.5
1.98
5.94
6.42
6.42
2.144
4.288
3.249
3.249
4.21
1.85
0.44
132.5
6.93
6.93
6.42
6.42
8.576
5.36
6.498
7.581
6.84
0.94
0.14
18.33
18.37
19.62
19.62
18.90
17.31
18.69
20.38
132.12
121.48
135.80
131.14
122.36
127.44
112.02
146.25
11.49
11.02
11.65
11.45
11.06
11.29
10.58
12.09
Mean Variance STDEV
89
APPENDIX [3] The raw data of Deflectograph runs at SRS. Temp. @ 40mm
21°C
Ch.
Run1 7 11 14 18 21 25 28 32 36 39 43 46 50 54 57 61 64 68 72 75 79 83 86 90 93 97 101 104 108 111 115 119 122 126 129 133 137
18°C Run2 19 19 16 17 23 19 19 20 17 22 22 21 20 21 17 20 20 23 19 25 23 26 26 25 14 5 6 1 3 1 5 4 4 8 4 9 5
17°C Run3
14 17 18 17 18 17 20 17 17 20 18 24 18 21 20 18 23 22 26 23 23 22 27 27 28 8 5 5 7 7 5 7 7 7 6 10 5
17°C Run4
18 18 16 16 21 15 16 18 17 17 25 24 20 24 22 18 26 22 23 22 23 25 26 25 10 6 7 5 7 5 5 11 6 6 4 6 9
19 19 15 9 19 15 16 19 21 22 27 21 21 24 19 19 20 26 22 20 26 27 25 25 5 6 6 5 6 0 6 11 8 6 6 7 8
90
APPENDIX [4] The temperature corrected data of Deflectograph runs at SRS. Deflections temperature corrected at a reference of 20°C ch.
run1
run2
run3
run4
Mean
STDEV
Coe. Of Var.
7.00 11.00 14.00 18.00 21.00 25.00 28.00 32.00 36.00 39.00 43.00 46.00 50.00 54.00 57.00 61.00 64.00 68.00 72.00 75.00 79.00 83.00 86.00 90.00 93.00 97.00 101.00 104.00 108.00 111.00 115.00 119.00 122.00 126.00 129.00 133.00 137.00
18.81 18.81 15.84 16.83 22.77 18.81 18.81 19.80 16.83 21.78 21.78 20.79 19.80 20.79 16.83 19.80 19.80 22.77 18.81 24.75 22.77 25.74 25.74 24.75 13.86 4.95 5.94 0.99 2.97 0.99 4.95 3.96 3.96 7.92 3.96 8.91 4.95
14.91 18.11 19.17 18.11 19.17 18.11 21.30 18.11 18.11 21.30 19.17 25.56 19.17 22.37 21.30 19.17 24.50 23.43 27.69 24.50 24.50 23.43 28.76 28.76 29.82 8.52 5.33 5.33 7.46 7.46 5.33 7.46 7.46 7.46 6.39 10.65 5.33
19.30 19.30 17.15 17.15 22.51 16.08 17.15 19.30 18.22 18.22 26.80 25.73 21.44 25.73 23.58 19.30 27.87 23.58 24.66 23.58 24.66 26.80 27.87 26.80 10.72 6.43 7.50 5.36 7.50 5.36 5.36 11.79 6.43 6.43 4.29 6.43 9.65
20.56 20.56 16.23 9.74 20.56 16.23 17.31 20.56 22.72 23.80 29.21 22.72 22.72 25.97 20.56 20.56 21.64 28.13 23.80 21.64 28.13 29.21 27.05 27.05 5.41 6.49 6.49 5.41 6.49 0.00 6.49 11.90 8.66 6.49 6.49 7.57 8.66
18.39 19.19 17.10 15.46 21.25 17.31 18.64 19.44 18.97 21.28 24.24 23.70 20.78 23.71 20.57 19.71 23.45 24.48 23.74 23.62 25.01 26.30 27.35 26.84 14.95 6.60 6.32 4.27 6.11 3.45 5.53 8.78 6.63 7.07 5.28 8.39 7.14
2.44 1.03 1.49 3.85 1.70 1.36 1.92 1.03 2.58 2.31 4.58 2.38 1.61 2.55 2.81 0.63 3.52 2.46 3.69 1.41 2.25 2.40 1.28 1.64 10.51 1.47 0.92 2.19 2.14 3.54 0.67 3.82 2.00 0.73 1.35 1.81 2.36
0.13 0.05 0.09 0.25 0.08 0.08 0.10 0.05 0.14 0.11 0.19 0.10 0.08 0.11 0.14 0.03 0.15 0.10 0.16 0.06 0.09 0.09 0.05 0.06 0.70 0.22 0.15 0.51 0.35 1.03 0.12 0.44 0.30 0.10 0.25 0.22 0.33
Mean Variance
15.20 64.21
17.10 61.75
16.92 64.30
16.84 74.05
91
APPENDIX [5] The mean of eight runs of the Curviameter and the mean of four runs of Deflectograph averaged over 25m intervals.
The eight mean runs of the four mean runs of Deflectograph averaged over 25m intervals Ch.
Curv.
Defgh.
25.00 50.00 75.00 100.00 125.00 150.00
20.46 24.42 28.54 22.41 4.58 5.53
18.12 21.01 22.75 21.18 6.14 6.97
92
APPENDIX [6] The calculation of the t-test.
The Curviameter Runs at SRS Mean Variance
Run1 18.33 132.12
Run2 18.37 121.48
Run3 19.62 135.80
Run4 19.62 131.14
Run5 18.90 122.36
Run6 17.31 127.44
Run7 18.69 112.02
Run8 20.38 146.25
where:
after applying the above equations the P-value can be obtained from the table of t-statistic and then compared with significance level 0.10.
P-value (two tailed)
Run1 Vs Run2
Run3 Vs Run4
Run5 Vs Run6
Run6 Vs Run7
11.26
11.55
11.17
11.36
-0.013
0
0.517
-0.551
0.80
0.80
0.58
0.54
The Deflectograph runs at SRS
Mean Variance Sp t0 P-value (two tailed)
Run1
Run2
Run3
Run4
15.19 64.20
17.09 61.74
16.92 64.30
16.84 74.05
7.93 1.04 0.32
93
8.31 0.042 0.8
APPENDIX [7] The 11 runs of the Curviameter at Tamworth. ch. 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186 191 196 201 206 211 216 221 226 231 236 241 246 251 256 261 266 271 276 281 286 291 296 301 306 311 316 321 326 331 336 341 346 351 356
Run1 2 4 5 6 7 6 8 8 17 2 3 10 1 5 11 7 6 6 20 14 26 22 40 6 10 8 8 8 8 10 26 7 19 14 16 27 14 25 14 20 20 13 18 18 36 35 33 11 19 22 24 25 26 27 28 19 22 17 16 15 18 17 20 17 17 25 16 14 17 14 11 19
Run2 2 2 13 9 13 5 8 6 5 12 0 11 0 3 12 2 0 6 22 13 27 15 40 8 9 10 0 7 12 2 20 6 14 15 14 20 13 23 17 17 16 28 23 15 41 36 36 11 19 20 22 28 29 26 31 20 24 19 16 17 13 20 18 18 18 20 20 34 17 12 11 17
Run3 2 3 12 6 5 4 8 2 7 15 3 8 6 4 12 5 7 5 19 14 26 18 43 9 12 8 7 6 5 3 14 7 14 16 18 29 17 25 16 20 20 16 24 15 39 37 34 14 16 20 24 28 31 27 32 18 23 19 16 16 15 17 20 19 16 22 25 25 17 13 11 17
Run4 2 4 11 8 4 4 8 6 8 13 0 12 3 4 10 12 8 2 17 13 30 22 43 6 13 11 4 5 3 5 16 5 16 15 18 26 17 24 12 19 19 18 21 13 39 28 34 11 17 15 12 33 31 26 30 17 22 18 18 17 15 18 20 16 18 19 19 12 18 14 11 25
Run5 1 7 12 4 5 6 11 6 8 14 2 8 12 11 12 18 7 9 12 12 26 31 39 5 14 9 5 4 0 9 25 8 21 17 19 30 19 21 3 16 17 17 20 16 38 25 28 21 17 18 20 29 33 25 34 21 22 20 16 18 14 16 20 18 16 20 20 13 16 17 8 19
ch.
Run6
3.5 8.5 13.5 18.5 23.5 28.5 33.5 38.5 43.5 48.5 53.5 58.5 63.5 68.5 73.5 78.5 83.5 88.5 93.5 98.5 103.5 108.5 113.5 118.5 123.5 128.5 133.5 138.5 143.5 148.5 153.5 158.5 163.5 168.5 173.5 178.5 183.5 188.5 193.5 198.5 203.5 208.5 213.5 218.5 223.5 228.5 233.5 238.5 243.5 248.5 253.5 258.5 263.5 268.5 273.5 278.5 283.5 288.5 293.5 298.5 303.5 308.5 313.5 318.5 323.5 328.5 333.5 338.5 343.5 348.5 353.5 358.5
6 10 7 10 5 3 0 3 0 3 4 0 0 8 7 6 4 10 1 2 11 12 7 6 5 24 8 18 21 13 7 7 2 9 30 31 27 23 12 24 20 13 16 24 26 29 14 18 30 39 22 15 37 27 33 19 27 20 17 18 19 21 20 18 18 20 26 20 18 19 18 22
94
Run7 5 14 5 7 5 2 0 4 2 3 4 0 0 7 10 11 2 7 5 7 13 15 12 8 6 19 9 14 13 1 10 6 9 7 30 30 31 26 22 22 20 11 16 24 26 29 15 20 28 33 25 14 36 30 36 23 28 21 20 15 19 19 20 17 16 25 23 23 22 22 22 17
Run8 9 15 2 7 3 2 5 6 0 0 0 0 4 10 6 16 4 14 5 3 11 12 12 5 10 19 9 12 13 12 8 6 10 10 28 21 32 24 23 22 19 13 16 20 24 28 14 22 33 31 27 15 38 30 29 28 17 23 14 17 19 16 17 16 16 26 28 21 17 22 19 14
Run9 13 11 4 3 3 0 8 5 0 8 4 3 6 6 0 15 4 8 6 6 9 10 8 10 6 20 11 8 15 7 10 8 11 14 32 20 32 23 24 22 21 10 16 24 20 28 20 18 25 35 25 12 33 34 31 22 19 20 23 14 22 16 17 18 15 23 27 26 15 18 20 15
ch. 4.5 9.5 14.5 19.5 24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 64.5 69.5 74.5 79.5 84.5 89.5 94.5 99.5 104.5 109.5 114.5 119.5 124.5 129.5 134.5 139.5 144.5 149.5 154.5 159.5 164.5 169.5 174.5 179.5 184.5 189.5 194.5 199.5 204.5 209.5 214.5 219.5 224.5 229.5 234.5 239.5 244.5 249.5 254.5 259.5 264.5 269.5 274.5 279.5 284.5 289.5 294.5 299.5 304.5 309.5 314.5 319.5 324.5 329.5 334.5 339.5 344.5 349.5 354.5 359.5
Run10 10 10 5 9 8 9 4 8 0 13 5 4 11 11 10 6 1 7 7 7 16 25 12 7 5 1 4 18 17 9 4 12 16 5 27 21 31 18 18 25 23 20 18 18 13 22 8 13 33 32 28 32 35 42 35 18 22 24 13 21 11 22 18 14 20 25 26 22 22 18 21 20
Run11 9 11 4 9 8 1 4 7 2 6 6 2 4 0 6 6 4 12 5 7 25 22 14 7 5 1 3 25 7 9 4 12 9 10 27 21 31 18 15 28 18 20 18 18 18 22 22 11 33 35 32 37 32 42 26 14 22 20 15 16 17 22 13 14 18 24 26 23 21 18 21 18
ch. 361 366 371 376 381 386 391 396 401 406 411 416 421 426 431 436 441 446 451 456 461 466 471 476 481 486 491 496 501 506 511 516 521 526 531 536 541 546 551 556 561 566 571 576 581 586 591 596 601 606 611 616 621 626 631 636 641 646 651 656 661 666 671 676 681 686 691 696 701 706 711 716
Run1 12 22 19 21 14 13 18 9 7 9 8 11 13 11 13 8 10 15 13 12 14 16 8 5 19 0 1 10 9 14 22 7 5 6 8 5 12 12 12 11 10 10 13 12 9 7 5 1 7 15 8 8 9 8 14 13 21 17 21 11 23 26 34 18 29 22 27 26 27 18 28 27
Run2 20 23 20 21 13 16 15 10 4 6 8 9 13 11 12 9 11 16 13 11 15 18 5 5 17 1 0 11 12 15 24 10 6 5 7 5 14 13 12 11 9 10 11 13 7 11 5 5 8 10 10 9 10 14 15 10 15 18 27 11 25 27 36 17 26 22 28 29 23 19 31 25
Run3 19 22 23 14 13 14 13 6 5 5 6 9 13 11 12 8 13 15 14 12 16 20 6 8 21 1 1 12 10 13 22 10 5 6 7 5 13 13 11 11 10 9 14 13 7 9 5 8 10 9 7 11 13 11 15 12 13 18 21 12 22 27 37 20 30 20 28 30 25 20 30 29
Run4 22 22 25 20 15 15 16 8 7 7 7 7 12 11 10 8 11 14 11 11 14 4 4 13 18 2 0 10 12 12 19 9 6 5 5 8 12 11 8 12 10 10 16 14 7 8 7 9 10 9 8 8 9 11 14 12 16 19 18 12 25 31 34 19 31 20 29 35 24 19 30 28
Run5 21 21 23 15 14 14 19 6 9 9 7 10 12 11 13 10 13 16 11 11 15 20 7 11 16 4 2 11 13 13 21 11 5 7 6 7 11 10 14 11 10 9 14 14 9 8 6 7 10 8 10 6 9 14 14 12 17 19 18 11 24 26 38 17 30 23 6 29 25 18 32 30
ch. 363.5 368.5 373.5 378.5 383.5 388.5 393.5 398.5 403.5 408.5 413.5 418.5 423.5 428.5 433.5 438.5 443.5 448.5 453.5 458.5 463.5 468.5 473.5 478.5 483.5 488.5 493.5 498.5 503.5 508.5 513.5 518.5 523.5 528.5 533.5 538.5 543.5 548.5 553.5 558.5 563.5 568.5 573.5 578.5 583.5 588.5 593.5 598.5 603.5 608.5 613.5 618.5 623.5 628.5 633.5 638.5 643.5 648.5 653.5 658.5 663.5 668.5 673.5 678.5 683.5 688.5 693.5 698.5 703.5 708.5 713.5 718.5
Run6 28 22 21 14 13 17 9 12 9 9 7 13 17 15 15 13 16 15 11 20 20 20 9 9 1 5 2 5 13 17 7 6 4 7 6 7 10 10 10 7 9 10 13 11 7 6 11 11 11 9 9 11 19 9 17 20 14 16 16 21 31 48 27 31 33 29 24 22 31 29 23 26
95
Run7 31 22 24 12 13 24 14 13 12 7 11 17 18 17 14 13 13 14 11 18 20 15 11 10 2 3 1 2 13 13 9 6 2 9 8 7 10 9 11 8 10 9 14 10 8 7 11 10 11 10 10 12 15 11 18 18 14 11 17 20 31 46 27 29 29 28 23 26 30 31 26 22
Run8 24 26 26 16 16 24 11 13 12 6 8 13 15 14 20 13 18 14 13 13 16 15 10 11 4 0 1 10 5 10 12 5 5 10 10 10 11 11 9 8 10 9 14 12 5 9 10 10 9 7 12 11 9 16 15 14 14 16 15 24 32 50 29 26 26 25 26 25 25 26 33 20
Run9 31 23 26 13 14 23 9 11 13 8 9 11 13 16 18 13 15 17 16 15 12 13 9 12 0 3 2 13 12 7 12 5 8 8 9 13 10 13 10 9 9 11 15 15 8 9 12 6 16 8 11 12 8 15 12 11 14 17 16 22 34 53 32 29 29 27 27 24 26 24 34 18
ch. 364.5 369.5 374.5 379.5 384.5 389.5 394.5 399.5 404.5 409.5 414.5 419.5 424.5 429.5 434.5 439.5 444.5 449.5 454.5 459.5 464.5 469.5 474.5 479.5 484.5 489.5 494.5 499.5 504.5 509.5 514.5 519.5 524.5 529.5 534.5 539.5 544.5 549.5 554.5 559.5 564.5 569.5 574.5 579.5 584.5 589.5 594.5 599.5 604.5 609.5 614.5 619.5 624.5 629.5 634.5 639.5 644.5 649.5 654.5 659.5 664.5 669.5 674.5 679.5 684.5 689.5 694.5 699.5 704.5 709.5 714.5 719.5
Run10 24 22 20 15 12 24 9 18 12 9 10 16 17 19 9 16 10 15 16 19 17 9 12 11 1 7 2 10 15 10 9 9 4 10 13 12 3 11 12 9 13 10 15 11 6 10 11 10 13 6 8 10 15 12 16 15 17 21 13 28 35 42 25 28 27 31 29 24 29 37 33 24
Run11 32 22 21 15 13 29 8 18 13 11 10 16 17 19 9 16 10 15 16 19 17 9 12 11 1 7 2 10 15 10 9 9 4 10 13 12 3 11 12 9 13 10 15 11 6 6 6 8 12 5 10 13 16 14 15 15 16 17 12 27 35 48 25 31 32 25 29 29 23 32 31 19
ch. 721 726 731 736 741 746 751 756 761 766 771 776 781 786 791 796 801 806 811 816 821 826 831 836 841 846 851 856 861 866 871 876 881 886 891 896 901 906 911 916 921 926 931 936 941 946 951
Run1 18 20 17 11 24 14 21 20 25 17 23 40 20 18 22 19 31 19 15 12 12 17 6 31 23 12 10 13 12 15 10 8 4 2 10 6 8 2 4 0 8 12 2 10 5 8 25
Run2 22 23 18 14 21 18 21 20 24 12 31 39 25 17 24 29 33 15 9 12 10 17 15 29 17 10 10 13 12 18 5 14 8 4 12 8 7 2 7 7 3 12 3 9 4 7 26
Run3 22 22 19 15 25 15 19 21 24 18 24 42 22 16 21 23 35 12 3 10 11 16 15 23 20 6 12 11 19 17 8 7 8 1 10 3 10 4 6 8 8 26 0 11 5 11 13
Run4 19 23 17 13 29 17 18 21 31 13 25 40 22 25 22 24 31 13 10 13 9 15 15 28 22 12 12 5 9 16 4 8 8 6 10 6 11 9 8 7 7 13 3 12 7 9 5
Run5 22 24 19 16 26 16 22 24 22 11 25 38 22 20 25 26 33 15 13 15 8 14 16 30 14 11 11 14 9 14 5 15 6 3 10 7 12 4 8 8 6 13 4 10 9 9 12
ch. 723.5 728.5 733.5 738.5 743.5 748.5 753.5 758.5 763.5 768.5 773.5 778.5 783.5 788.5 793.5 798.5 803.5 808.5 813.5 818.5 823.5 828.5 833.5 838.5 843.5 848.5 853.5 858.5 863.5 868.5 873.5 878.5 883.5 888.5 893.5 898.5 903.5 908.5 913.5 918.5 923.5 928.5 933.5 938.5 943.5 948.5
Run6 20 20 20 23 28 21 21 28 22 28 21 19 19 23 25 22 25 17 14 13 9 13 15 11 13 12 14 16 19 10 14 5 3 9 14 9 10 9 6 12 5 5 9 9 7 23
96
Run7 19 22 18 27 29 19 21 29 22 25 22 24 17 26 26 16 29 15 12 14 16 11 11 9 14 10 20 15 12 11 14 5 7 8 7 3 12 8 2 8 4 9 6 10 6 15
Run8 16 24 24 21 28 17 24 26 21 22 25 22 16 25 26 17 30 7 13 10 9 14 5 18 14 16 16 15 21 11 13 5 4 14 11 6 10 8 7 10 5 16 4 7 12 23
Run9 24 20 22 7 28 13 29 20 29 15 38 21 17 27 23 16 20 10 18 7 16 14 7 11 10 23 20 16 18 15 17 7 9 9 8 8 12 7 9 16 6 20 7 5 15 23
ch. 724.5 729.5 734.5 739.5 744.5 749.5 754.5 759.5 764.5 769.5 774.5 779.5 784.5 789.5 794.5 799.5 804.5 809.5 814.5 819.5 824.5 829.5 834.5 839.5 844.5 849.5 854.5 859.5 864.5 869.5 874.5 879.5 884.5 889.5 894.5 899.5 904.5 909.5 914.5 919.5 924.5 929.5 934.5 939.5 944.5 949.5
Run10 22 21 19 23 22 22 28 29 24 26 40 20 30 25 24 27 22 17 18 14 9 17 11 13 8 13 14 14 12 10 17 0 1 5 6 4 7 11 7 11 8 5 3 8 12 17
Run11 24 19 21 19 22 25 23 29 21 32 30 20 21 22 37 25 15 12 6 14 16 16 13 11 14 12 7 15 13 12 11 6 1 8 6 9 10 5 2 8 1 5 9 5 0 17
APPENDIX [8] The Curviameter runs averaged over 50m intervals at Tamworth.
ch.
Run1
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Run11
Mean
STDEV
Coef. Of Var.
50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00 500.00 550.00 600.00 650.00 700.00 750.00 800.00 850.00 900.00 950.00
6.50 8.30 14.60 18.20 22.50 21.90 17.50 15.80 10.50 9.80 10.00 9.00 12.00 23.70 20.40 22.50 17.80 9.00 7.64
7.50 6.90 13.00 15.90 24.50 23.20 19.00 16.60 9.90 9.60 11.10 9.40 11.90 24.80 21.40 24.20 16.70 10.40 7.91
6.40 8.30 13.70 17.60 23.50 23.40 18.90 15.20 9.70 11.10 10.40 9.70 11.90 24.70 22.20 23.00 15.10 9.60 9.27
6.80 8.10 14.20 16.80 21.50 22.40 16.90 17.90 9.40 8.70 9.90 10.10 11.60 25.40 21.90 24.10 16.80 8.40 8.27
7.40 10.30 14.20 17.90 21.70 23.80 17.00 16.00 11.00 10.80 10.40 10.20 11.90 22.20 22.80 23.50 16.90 9.40 8.64
4.70 4.20 12.50 17.20 22.90 23.50 19.90 17.60 12.90 10.20 8.70 9.50 13.50 28.20 24.10 22.80 14.20 11.30 9.50
4.70 5.30 11.00 19.30 22.20 24.80 20.60 19.20 13.60 9.30 8.60 9.80 13.00 27.60 24.30 22.80 14.10 10.20 8.00
4.90 6.20 11.50 18.40 22.00 23.80 19.80 18.90 13.30 9.30 8.90 9.60 12.30 27.80 23.40 22.40 13.60 11.60 10.20
5.50 5.80 10.40 19.60 21.70 23.30 19.70 18.50 13.30 9.50 9.70 10.40 12.40 29.30 21.60 23.50 13.60 12.70 12.00
7.60 6.90 11.40 17.70 20.00 27.00 19.80 18.50 13.30 10.40 9.60 10.70 13.30 28.20 25.20 27.30 14.20 8.30 8.90
6.10 5.20 11.80 17.50 21.50 25.60 19.60 19.70 13.60 10.40 9.60 9.60 13.30 29.30 23.50 26.00 12.90 8.80 6.20
6.19 6.86 12.57 17.83 22.18 23.88 18.97 17.63 11.86 9.92 9.72 9.82 12.46 26.47 22.80 23.83 15.08 9.97 8.78
1.11 1.77 1.46 1.05 1.18 1.44 1.27 1.51 1.75 0.73 0.77 0.49 0.69 2.41 1.44 1.54 1.67 1.42 1.51
0.18 0.26 0.12 0.06 0.05 0.06 0.07 0.09 0.15 0.07 0.08 0.05 0.06 0.09 0.06 0.06 0.11 0.14 0.17
97
APPENDIX [9] The Curviameter and Deflectograph runs at M23. RUN1 Curviameter Ch. Defl. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Deflectograph Ch. Defl. 2 5 9 13 16 20 24 27 31 34 38 42 45 49 52 56 60 63 67 70 74 78 81 85 89 92 96 99 103 107 110 114 117 121 125 128 132 135 139 143 146 150 153 157 161 164 168 171 175 179 182 186 189 193 197 200 204 207 211 215 218 222 225 229 233 236 240 243 247 251 254 258
8 9 10 13 13 11 14 11 4 21 25 22 21 24 17 22 26 21 12 21 16 32 27 23 9 19 23 19 9 26 23 20 22 18 19 24 18 20 14 16 21 21 20 19 21 16 17 18 19 8 14 15 19 25 15 23 22 25 20 14 15 29 22 15 10 21 15 19 17 18 12 16
RUN2 Curviameter Ch. Defl.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500+0 500+5 500+10 500+15 500+20 500+25 500+30
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 21 2 7 3 16 15
Deflectograph Ch. Defl. 262 265 269 272 276 280 283 287 291 294 298 301 305 309 312 316 319 323 327 330 334 337 341 345 348 352 355 359 363 366 370 373 377 381 384 388 391 395 399 402 406 409 413 417 420 424 427 431 434 438 442 445 449 452 456 459 463 466 470 474 477 481 484 488 492 500+2 6 9 13 17 20 24
Curviameter Ch. Defl.
10 13 13 20 15 25 16 15 14 31 21 21 33 28 23 27 23 36 17 21 13 10 9 22 25 18 21 13 17 11 26 11 9 8 10 14 16 11 10 13 14 16 17 18 13 8 17 17 23 23 14 14 16 14 173 7 44 17 17 17 12 15 19 13 12 7 15 11 8 12 6 18
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355
98
15 20 29 38 17 42 40 39 10 19 28 23 39 17 20 23 14 26 28 35 21 19 19 15 34 21 17 13 26 17 8 9 3 13 23 19 16 15 15 17 16 14 18 23 14 28 19 16 27 28 22 15 13 14 12 8 17 29 23 30 36 11 21 30 31 33 35 21 15 18 17 16
Deflectograph Ch. Defl. 2 7 12 17 22 27 32 37 39 43 46 50 53 57 61 64 68 71 75 79 82 86 89 93 97 100 104 107 111 115 118 122 125 129 133 136 140 144 147 151 154 158 161 165 169 172 176 179 183 187 190 194 197 201 205 208 212 215 219 223 226 230 233 237 241 244 248 251 255 259 262 266
4 6 9 12 11 8 20 9 21 12 17 19 26 21 22 16 23 17 26 20 13 23 23 22 24 27 17 20 23 25 18 20 29 21 18 17 18 19 18 11 15 22 15 18 19 19 24 13 13 17 30 3 23 22 23 13 21 14 21 11 12 14 19 17 20 11 18 6 1 12 12 9
Curviameter Ch. Defl.
Deflectograph Ch. Defl.
360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480
14 12 14 15 14 13 13 11 7 15 14 15 16 25 34 26 11 16 22 16 8 11 16 20 24
269 273 277 280 284 287 291 295 298 302 305 309 313 316 320 323 327 331 334 338 342 345 349 352 356 360 363 367 370 374 378 381 385 388 392 395 399 403 406 410 413 417 421 424 428 431 435 439 442 446 449 453 457 460 464 467 471 475 478 482 485 489
18 14 18 17 15 15 24 19 16 37 21 22 24 23 32 30 21 17 17 20 19 17 9 18 13 22 16 13 17 11 12 9 18 8 11 12 15 14 15 14 20 12 5 12 20 19 17 17 16 3 21 5 17 12 17 10 16 3 15 11 10 5
500+0 500+5 500+10 500+15 500+20 500+25 500+30
16 15 10 12 14 16 13
500+2 5 9 12 16 20 23
12 10 12 20 13 9 6
RUN1 Curviameter Ch. Defl. 500+35 500+40 500+45 500+50 500+55 500+60 500+65 500+70 500+75 500+80 500+85 500+90 500+95 500+100 500+105 500+110 500+115 500+120 500+125 500+130 500+135 500+140 500+145 500+150 500+155 500+160 500+165 500+170 500+175 500+180 500+185 500+190 500+195 500+200 500+205 500+210 500+215 500+220 500+225 500+230 500+235 500+240 500+245 500+250 500+255 500+260 500+265 500+270 500+275 500+280 500+285 500+290 500+295 500+300 500+305 500+310 500+315 500+320 500+325 500+330 500+335 500+340 500+345 500+350 500+355 500+360 500+365 500+370 500+375 500+380 500+385 500+390
13 11 18 17 9 17 14 10 9 7 9 11 6 8 5 10 19 25 11 15 12 9 10 12 20 28 9 20 19 25 29 39 38 49 27 20 4 10 15 8 8 9 14 25 45 30 15 18 22 23 15 10 7 4 8 11 18 26 19 16 17 7 18 14 9 10 11 10 7 7 8 8
Deflectograph Ch. Defl. 500+ 28 31 35 38 42 46 49 53 56 60 64 67 71 74 78 82 85 89 93 96 100 103 107 111 114 118 122 125 129 132 136 140 143 147 150 154 158 161 165 168 172 176 179 183 186 190 194 197 201 204 208 212 215 219 222 226 229 233 237 240 244 247 251 255 258 262 265 269 273 276 280 283
10 10 8 10 7 5 8 6 12 6 11 7 14 7 20 13 9 16 6 8 8 13 1 0 8 9 10 7 6 11 15 12 12 14 12 14 10 10 43 12 0 29 24 14 24 23 22 24 18 25 35 17 12 19 5 10 9 10 16 4 11 16 13 35 25 15 27 126 12 6 16 13
RUN2 Curviameter Ch. Defl. 500+395 500+400 500+405 500+410 500+415 500+420 500+425 500+430 500+435 500+440 500+445 500+450 500+455 500+460 500+465 500+470 500+475 500+480 500+485
8 26 12 8 4 10 9 10 11 6 7 9 7 13 19 14 13 11 16
1000+0 1000+5 1000+10 1000+15 1000+20 1000+25 1000+30 1000+35 1000+40 1000+45 1000+50 1000+55 1000+60 1000+65
7 6 7 8 9 10 9 7 6 12 10 6 8 8
Deflectograph Ch. Defl. 287 291 294 298 301 305 309 312 316 319 323 327 330 334 338 341 345 349 352 356 359 363 367 370 374 378 381 385 389 392 396 399 403 407 410 414 418 421 425 429 432 436 439 443 447 450 454 458 461 465 468 472 476 479 483 487 490 494 1000+2 5 9 12 16 20 23 27 31 34 38 42 45 49
13 9 11 6 11 7 11 8 9 9 7 13 11 7 16 5 8 7 8 9 6 11 9 9 8 6 3 10 9 5 11 12 0 11 7 6 8 12 8 10 9 9 3 6 6 5 12 9 9 11 14 17 4 12 11 13 10 15 7 9 7 8 11 9 6 11 5 6 6 0 8 10
Curviameter Ch. Defl. 500+35 500+40 500+45 500+50 500+55 500+60 500+65 500+70 500+75 500+80 500+85 500+90 500+95 500+100 500+105 500+110 500+115 500+120 500+125 500+130 500+135 500+140 500+145 500+150 500+155 500+160 500+165 500+170 500+175 500+180 500+185 500+190 500+195 500+200 500+205 500+210 500+215 500+220 500+225 500+230 500+235 500+240 500+245 500+250 500+255 500+260 500+265 500+270 500+275 500+280 500+285 500+290 500+295 500+300 500+305 500+310 500+315 500+320 500+325 500+330 500+335 500+340 500+345 500+350 500+355 500+360 500+365 500+370 500+375 500+380 500+385 500+390
99
15 17 9 14 10 2 28 20 12 15 15 11 5 5 10 10 8 6 14 24 34 11 16 11 20 8 17 19 21 29 29 29 32 31 23 28 18 14 8 8 8 12 16 22 27 28 28 14 21 15 15 16 15 2 4 11 18 16 17 6 14 13 13 6 11 5 8 10 8 7 7 19
Deflectograph Ch. Defl. 500+27 30 34 38 41 45 49 52 56 59 63 67 70 74 77 81 85 88 92 95 99 103 106 110 113 117 121 124 128 131 135 139 142 146 149 153 157 160 164 167 171 174 178 182 185 189 192 196 200 203 207 211 214 218 222 225 229 233 236 240 243 247 251 254 258 262 265 269 273 276 280 284
3 10 11 9 8 9 9 10 1 8 1 6 6 8 12 15 12 13 7 0 0 0 7 4 0 17 6 14 13 6 22 19 10 11 12 13 13 8 26 14 5 22 14 13 24 25 17 27 22 26 25 26 18 1 16 8 6 6 8 7 13 13 14 16 10 19 26 19 8 15 9 12
Curviameter Ch. Defl. 500+395 500+400 500+405 500+410 500+415 500+420 500+425 500+430 500+435 500+440 500+445 500+450 500+455 500+460 500+465 500+470 500+475 500+480 500+485
13 17 11 8 8 9 8 4 3 12 6 9 12 7 11 10 10 9 21
1000+0 1000+5 1000+10 1000+15 1000+20 1000+25 1000+30 1000+35 1000+40 1000+45 1000+50 1000+55 1000+60 1000+65 1000+70
4 7 9 11 9 7 6 2 3 9 7 6 8 16 7
Deflectograph Ch. Defl. 287 291 295 298 302 306 309 313 317 320 324 327 331 335 338 342 346 349 353 357 360 364 368 371 375 379 382 386 390 393 397 400 404 408 411 415 419 422 426 430 433 437 441 444 448 452 455 459 463 466 470 473 477 481 484 488 492 1000+2 6 10 13 17 21 24 28 31 35 39 42 46 50 53
22 8 10 11 8 5 9 10 14 14 6 14 5 10 10 9 5 10 14 4 11 12 17 9 11 6 4 10 3 12 3 16 6 12 9 10 9 6 6 5 3 0 6 10 9 11 3 12 3 4 8 6 7 14 1 13 10 10 11 4 11 4 10 8 7 7 5 8 9 9 12 4
RUN1 Curviameter Ch. Defl. 1000+70 1000+75 1000+80 1000+85 1000+90 1000+95 1000+100 1000+105 1000+110 1000+115 1000+120 1000+125 1000+130 1000+135 1000+140 1000+145 1000+150 1000+155 1000+160 1000+165 1000+170 1000+175 1000+180 1000+185 1000+190 1000+195 1000+200 1000+205 1000+210 1000+215 1000+220 1000+225 1000+230 1000+235 1000+240 1000+245 1000+250 1000+255 1000+260 1000+265 1000+270 1000+275 1000+280 1000+285 1000+290 1000+295 1000+300 1000+305 1000+310 1000+315 1000+320 1000+325 1000+330 1000+335 1000+340 1000+345 1000+350 1000+355 1000+360 1000+365 1000+370 1000+375 1000+380 1000+385 1000+390 1000+395 1000+400 1000+405 1000+410 1000+415 1000+420 1000+425
13 9 10 5 6 16 12 10 14 9 8 13 10 5 8 8 8 18 28 4 2 9 7 6 15 5 8 9 5 15 13 11 15 12 9 8 6 9 6 9 7 12 13 7 13 14 12 6 21 7 13 5 7 12 10 8 14 10 16 6 8 6 5 24 13 9 9 5 13 13 12 10
Deflectograph Ch. Defl. 1000+52 56 60 63 67 71 74 78 81 85 89 92 96 99 103 107 110 114 118 121 125 128 132 136 139 143 146 150 154 157 161 165 168 172 175 179 183 186 190 193 197 201 204 208 211 215 219 222 226 229 233 237 240 244 247 251 255 258 262 266 269 273 276 280 284 287 291 294 298 302 305 309
9 7 10 9 6 8 6 10 6 12 10 10 12 10 9 9 6 7 9 9 7 0 10 8 0 0 10 5 9 10 6 8 12 9 1 10 9 8 3 18 3 0 5 8 6 9 15 9 9 0 6 22 10 9 5 0 7 5 7 0 10 7 6 4 8 5 7 7 7 12 12 10
RUN2 Curviameter Ch. Defl. 1000+430 1000+435 1000+440 1000+445 1000+450 1000+455 1000+460 1000+465 1000+470 1000+475 1000+480 1000+485
17 14 15 17 19 9 17 7 10 14 13 13
1500+0 1500+5 1500+10 1500+15 1500+20 1500+25 1500+30 1500+35 1500+40 1500+45 1500+50 1500+55 1500+60 1500+65 1500+70 1500+75 1500+80 1500+85 1500+90 1500+95
11 7 8 13 12 15 11 7 6 8 6 14 10 9 16 9 12 5 14 10
Deflectograph Ch. Defl. 312 316 320 323 327 331 334 338 341 345 348 352 356 359 363 366 370 374 377 381 384 388 392 395 399 402 406 410 413 417 420 424 428 431 435 438 442 446 449 453 456 460 464 467 471 474 478 482 485 489 492 496 1500+2 5 9 12 16 20 23 27 30 34 38 41 45 49 52 56 59 63 67 70
9 13 10 19 10 0 7 4 0 8 7 7 7 5 11 6 10 12 3 10 9 8 11 6 10 9 8 21 7 20 12 10 9 13 11 18 15 9 0 9 9 12 5 7 11 13 10 19 12 8 14 7 13 13 9 9 10 11 7 16 9 10 15 6 12 12 10 4 9 9 1 12
Curviameter Ch. Defl. 1000+75 1000+80 1000+85 1000+90 1000+95 1000+100 1000+105 1000+110 1000+115 1000+120 1000+125 1000+130 1000+135 1000+140 1000+145 1000+150 1000+155 1000+160 1000+165 1000+170 1000+175 1000+180 1000+185 1000+190 1000+195 1000+200 1000+205 1000+210 1000+215 1000+220 1000+225 1000+230 1000+235 1000+240 1000+245 1000+250 1000+255 1000+260 1000+265 1000+270 1000+275 1000+280 1000+285 1000+290 1000+295 1000+300 1000+305 1000+310 1000+315 1000+320 1000+325 1000+330 1000+335 1000+340 1000+345 1000+350 1000+355 1000+360 1000+365 1000+370 1000+375 1000+380 1000+385 1000+390 1000+395 1000+400 1000+405 1000+410 1000+415 1000+420 1000+425 1000+430
100
9 12 9 8 7 10 12 16 13 7 10 8 7 14 9 17 6 16 13 7 15 6 8 13 9 9 14 13 15 16 14 21 2 9 6 11 8 8 6 6 7 7 7 10 13 11 9 10 11 6 4 9 14 12 7 12 10 18 13 13 8 13 7 12 11 5 9 32 21 11 4 12
Deflectograph Ch. Defl. 1000+57 61 64 68 72 75 79 83 86 90 93 97 101 104 108 112 115 119 123 126 130 133 137 141 144 148 152 155 159 163 166 170 174 177 181 184 188 192 195 199 203 206 210 213 217 221 224 228 232 235 239 243 246 250 253 257 261 264 268 272 275 279 282 286 290 293 297 301 304 308 311 315
7 7 8 3 11 10 8 8 4 10 12 7 8 9 4 8 11 13 6 0 8 8 7 9 10 10 9 10 13 8 6 6 7 4 4 6 5 10 4 9 9 5 10 8 9 12 10 3 9 8 3 10 14 9 15 8 8 8 6 8 4 8 9 8 9 10 9 7 10 11 13 14
Curviameter Ch. Defl.
Deflectograph Ch. Defl.
1000+435 1000+440 1000+445 1000+450 1000+455 1000+460 1000+465 1000+470 1000+475 1000+480 1000+485
7 19 14 8 17 6 12 11 12 12 11
319 322 326 330 333 337 340 344 348 351 355 358 362 366 369 373 377 380 384 387 391 395 398 402 405 409 413 416 420 424 427 431 434 438 442 445 449 453 456 460 464 467 471 474 478 482 485 489 493 496 500
11 10 9 4 12 11 11 6 11 4 14 10 6 12 9 11 14 14 8 0 10 14 7 10 12 14 14 12 17 10 10 11 5 10 7 8 10 10 13 12 17 4 8 10 1 14 8 10 15 7 11
1500+0 1500+5 1500+10 1500+15 1500+20 1500+25 1500+30 1500+35 1500+40 1500+45 1500+50 1500+55 1500+60 1500+65 1500+70 1500+75 1500+80 1500+85 1500+90 1500+95
13 5 12 8 11 6 11 14 10 7 11 10 11 10 16 10 11 9 5 9
1500+2 6 10 13 17 21 24 28 31 35 39 42 46 50 53 57 60 64 68 71
8 12 8 10 11 7 13 13 4 7 9 11 10 7 8 15 11 12 11 11
RUN1 Curviameter Ch. Defl. 1500+100 1500+105 1500+110 1500+115 1500+120 1500+125 1500+130 1500+135 1500+140 1500+145 1500+150 1500+155 1500+160 1500+165 1500+170 1500+175 1500+180 1500+185 1500+190 1500+195 1500+200 1500+205 1500+210 1500+215 1500+220 1500+225 1500+230 1500+235 1500+240 1500+245 1500+250 1500+255 1500+260 1500+265 1500+270 1500+275 1500+280 1500+285 1500+290 1500+295 1500+300 1500+305 1500+310 1500+315 1500+320 1500+325 1500+330 1500+335 1500+340 1500+345 1500+350 1500+355 1500+360 1500+365 1500+370 1500+375 1500+380 1500+385 1500+390 1500+395 1500+400 1500+405 1500+410 1500+415 1500+420 1500+425 1500+430 1500+435 1500+440 1500+445 1500+450 1500+455
10 9 9 8 8 9 10 8 3 5 10 4 7 9 9 8 7 8 9 10 9 10 8 5 9 14 12 10 8 5 28 19 9 9 5 15 12 8 15 10 8 3 16 13 11 8 7 6 4 9 10 5 9 5 7 11 3 9 6 10 15 7 9 7 8 9 12 12 11 11 12 10
Deflectograph Ch. Defl. 1500+74 77 81 85 88 92 95 99 103 106 110 113 117 121 124 128 131 135 138 142 146 149 153 157 160 164 167 171 174 178 182 185 189 192 196 200 203 207 210 214 218 221 225 228 232 236 239 243 246 250 254 257 261 264 268 272 275 279 282 286 290 293 297 300 304 308 311 315 318 322 326 329
9 16 9 13 11 3 8 3 6 12 16 11 7 10 8 4 15 14 21 12 14 9 9 15 15 10 11 5 8 10 0 3 11 16 22 12 9 8 10 11 9 9 11 18 14 15 11 12 5 9 7 9 7 11 9 11 6 16 6 11 9 12 10 9 11 7 10 13 8 7 11 12
RUN2 Curviameter Ch. Defl. 1500+460 1500+465 1500+470 1500+475 1500+480 1500+485
9 12 5 13 9 7
2000+0 2000+5 2000+10 2000+15 2000+20 2000+25 2000+30 2000+35 2000+40 2000+45 2000+50 2000+55 2000+60 2000+65 2000+70 2000+75 2000+80 2000+85 2000+90 2000+95 2000+100 2000+105 2000+110 2000+115 2000+120 2000+125 2000+130
8 12 5 4 1 20 10 12 8 7 5 1 13 17 21 19 14 13 13 12 4 11 6 9 12 14 14
Deflectograph Ch. Defl. 333 336 340 344 347 351 354 358 362 365 369 372 376 380 383 387 390 394 398 401 405 408 412 415 419 423 426 430 433 437 441 444 448 451 455 459 462 466 469 473 476 480 484 487 491 2000+2 6 10 13 17 20 24 27 31 35 38 42 45 49 52 56 60 63 67 70 74 78 81 85 88 92 95
11 6 5 9 5 9 13 10 10 10 11 9 7 9 10 6 9 4 8 12 11 8 12 12 12 7 10 5 11 15 9 4 10 13 17 14 13 12 13 16 0 5 9 13 11 10 9 14 9 14 14 18 12 20 13 20 18 7 10 10 19 13 11 12 15 14 9 14 11 15 17 14
Curviameter Ch. Defl. 1500+100 1500+105 1500+110 1500+115 1500+120 1500+125 1500+130 1500+135 1500+140 1500+145 1500+150 1500+155 1500+160 1500+165 1500+170 1500+175 1500+180 1500+185 1500+190 1500+195 1500+200 1500+205 1500+210 1500+215 1500+220 1500+225 1500+230 1500+235 1500+240 1500+245 1500+250 1500+255 1500+260 1500+265 1500+270 1500+275 1500+280 1500+285 1500+290 1500+295 1500+300 1500+305 1500+310 1500+315 1500+320 1500+325 1500+330 1500+335 1500+340 1500+345 1500+350 1500+355 1500+360 1500+365 1500+370 1500+375 1500+380
101
10 9 9 7 4 12 10 7 11 12 14 3 11 10 13 8 3 13 19 14 12 9 8 9 12 14 14 13 7 9 9 8 16 11 9 12 10 9 7 9 10 13 10 7 20 10 5 11 10 9 20 7 10 11 12 5 4
Deflectograph Ch. Defl. 1500+75 79 82 86 89 93 97 100 104 108 111 115 118 122 126 129 133 137 140 144 147 151 155 158 162 166 169 173 177 180 184 187 191 195 198 202 206 209 213 216 220 224 227 231 235 238 242 245 249 253 256 260 263 267 271 274 278 282 285 289 292 296 300 303 307 311 314 318 321 325 329 332
10 7 8 8 10 14 3 9 12 7 4 14 9 9 10 6 9 22 15 9 6 4 16 12 10 12 12 3 13 11 3 11 20 27 115 7 11 12 8 8 0 8 16 10 9 6 13 9 9 11 10 5 8 10 13 10 7 9 8 5 1 5 9 8 7 10 9 15 8 14 12 8
Curviameter Ch. Defl.
2000+0 2000+5 2000+10 2000+15 2000+20 2000+25 2000+30 2000+35 2000+40 2000+45 2000+50 2000+55 2000+60 2000+65 2000+70 2000+75 2000+80 2000+85 2000+90 2000+95 2000+100 2000+105 2000+110 2000+115 2000+120 2000+125 2000+130
10 7 8 10 10 14 11 11 10 8 20 14 7 11 13 15 17 1 10 14 17 9 21 7 15 20 25
Deflectograph Ch. Defl. 336 340 343 347 350 354 358 361 365 369 372 376 379 383 387 390 394 398 401 405 408 412 416 419 423 426 430 434 437 441 445 448 452 455 459 463 466 470 473 477 481 484 488
3 7 15 8 11 18 9 11 6 12 8 13 8 10 11 10 10 10 12 8 15 12 10 12 8 10 10 6 8 14 15 9 7 13 7 14 11 6 15 8 0 13 11
2000+2 6 10 13 17 20 24 28 31 35 38 42 46 49 53 56 60 64 67 71 74 78 82 85 89 92 96
7 10 13 16 12 8 12 15 1 13 14 11 5 11 10 13 15 6 10 15 10 12 16 1 15 23 12
RUN1 Curviameter Ch. Defl. 2000+135 2000+140 2000+145 2000+150 2000+155 2000+160 2000+165 2000+170 2000+175 2000+180 2000+185 2000+190 2000+195 2000+200 2000+205 2000+210 2000+215 2000+220 2000+225 2000+230 2000+235 2000+240 2000+245 2000+250 2000+255 2000+260 2000+265 2000+270 2000+275 2000+280 2000+285 2000+290 2000+295 2000+300 2000+305 2000+310 2000+315 2000+320 2000+325 2000+330 2000+335 2000+340 2000+345 2000+350 2000+355 2000+360 2000+365 2000+370 2000+375 2000+380 2000+385 2000+390 2000+395 2000+400 2000+405 2000+410 2000+415 2000+420 2000+425 2000+430 2000+435 2000+440 2000+445 2000+450 2000+455 2000+460 2000+465 2000+470 2000+475 2000+480 2000+485
15 15 16 17 3 5 9 14 6 7 6 14 13 10 13 12 13 11 15 5 10 11 8 14 6 18 8 5 4 6 7 6 4 5 5 7 5 11 10 10 9 2 8 15 15 11 13 22 24 24 16 17 23 21 20 18 25 27 34 19 25 37 16 24 23 22 22 22 21 18 17
Deflectograph Ch. Defl. 2000+99 103 106 110 113 117 120 124 128 131 135 138 142 145 149 153 156 160 163 167 171 174 178 181 185 188 192 196 199 203 206 210 214 217 221 224 228 231 235 239 242 246 249 253 257 260 264 267 271 274 278 282 285 289 292 296 300 303 307 310 314 318 321 325 328 332 336 339 343 346 350 353
12 16 13 17 17 19 16 15 11 5 16 16 17 17 20 13 12 10 14 17 7 12 19 13 0 16 13 13 15 17 14 15 15 3 16 16 16 15 7 6 11 8 1 16 16 8 17 12 12 9 15 12 7 11 15 6 12 6 13 10 18 12 8 9 7 8 10 9 0 5 0 15
RUN2 Curviameter Ch. Defl.
2500+0 2500+5 2500+10 2500+15 2500+20 2500+25 2500+30 2500+35 2500+40 2500+45 2500+50 2500+55 2500+60 2500+65 2500+70 2500+75 2500+80 2500+85 2500+90 2500+95 2500+100 2500+105 2500+110 2500+115 2500+120 2500+125 2500+130 2500+135 2500+140 2500+145 2500+150 2500+155 2500+160 2500+165
13 15 16 17 18 19 17 15 14 15 15 19 14 13 19 16 15 14 16 16 14 19 20 14 9 6 15 14 6 26 20 20 19 14
Deflectograph Ch. Defl. 357 361 364 368 371 375 379 382 386 389 393 397 400 404 407 411 415 418 422 425 429 432 436 440 443 447 450 454 458 460 465 468 472 476 479 483 486 490 2500+2 5 9 12 16 20 23 27 30 34 37 41 45 48 52 55 59 63 66 70 73 77 81 84 88 91 95 99 102 106 109 113 117 120
7 15 14 18 14 24 31 26 23 31 29 16 28 28 30 30 31 27 23 24 25 23 29 27 27 30 14 20 23 25 26 21 24 25 22 18 16 13 22 19 12 14 17 20 20 22 17 18 19 17 8 13 16 18 18 21 17 13 18 20 12 18 11 19 16 18 17 16 10 15 11 18
Curviameter Ch. Defl. 2000+135 2000+140 2000+145 2000+150 2000+155 2000+160 2000+165 2000+170 2000+175 2000+180 2000+185 2000+190 2000+195 2000+200 2000+205 2000+210 2000+215 2000+220 2000+225 2000+230 2000+235 2000+240 2000+245 2000+250 2000+255 2000+260 2000+265 2000+270 2000+275 2000+280 2000+285 2000+290 2000+295 2000+300 2000+305 2000+310 2000+315 2000+320 2000+325 2000+330 2000+335 2000+340 2000+345 2000+350 2000+355 2000+360 2000+365 2000+370 2000+375 2000+380 2000+385 2000+390 2000+395 2000+400 2000+405 2000+410 2000+415 2000+420 2000+425 2000+430 2000+435 2000+440 2000+445 2000+450 2000+455 2000+460 2000+465 2000+470 2000+475 2000+480 2000+485
102
10 14 18 13 9 11 15 17 14 33 15 18 11 14 12 15 10 6 8 13 7 8 9 7 8 3 9 6 5 10 4 5 6 7 9 4 8 7 5 4 8 5 4 7 12 14 14 26 24 29 22 25 26 28 32 28 24 19 42 25 34 24 23 21 23 23 20 24 30 24 18
Deflectograph Ch. Defl. 2000+100 103 107 110 114 118 121 125 128 132 136 139 143 146 150 154 157 161 164 168 172 175 179 182 186 190 193 197 200 204 208 211 215 219 222 226 229 233 237 240 244 247 251 255 258 262 266 269 273 276 280 284 287 291 294 298 302 305 309 312 316 320 323 327 331 334 338 341 345 349 352 356
15 12 11 18 12 11 7 16 14 7 11 14 21 18 14 12 30 4 9 0 14 8 14 18 18 16 11 17 12 11 4 15 12 3 14 12 9 14 11 14 5 11 11 18 15 15 13 7 5 11 12 11 11 10 12 10 8 9 8 16 11 11 7 4 5 6 5 5 1 3 4 4
Curviameter Ch. Defl.
2500+0 2500+5 2500+10 2500+15 2500+20 2500+25 2500+30 2500+35 2500+40 2500+45 2500+50 2500+55 2500+60 2500+65 2500+70 2500+75 2500+80 2500+85 2500+90 2500+95 2500+100 2500+105 2500+110 2500+115 2500+120 2500+125 2500+130 2500+135 2500+140 2500+145 2500+150 2500+155 2500+160 2500+165
16 9 16 21 21 18 15 13 13 14 22 14 15 20 17 19 16 14 13 13 12 14 17 16 17 12 16 20 24 22 25 21 21 17
Deflectograph Ch. Defl. 360 363 367 370 374 378 381 385 388 392 396 399 403 406 410 414 417 421 425 428 432 435 439 443 446 450 453 457 461 464 468 471 475 479 482 486 490 493 2500+2 5 9 13 16 20 23 27 31 34 38 42 45 49 52 56 60 63 67 70 74 78 81 85 88 92 95 99 103 106 110 113 117 121
10 14 0 12 14 28 25 25 26 31 29 22 22 24 36 31 33 34 32 27 38 24 25 22 25 24 27 25 24 29 25 23 21 25 25 22 17 19 19 13 18 19 22 20 18 17 18 22 12 17 17 18 20 11 22 21 18 13 16 17 13 18 16 9 19 17 14 17 18 14 20 18
RUN1 Curviameter Ch. Defl. 2500+170 2500+175 2500+180 2500+185 2500+190 2500+195 2500+200 2500+205 2500+210 2500+215 2500+220 2500+225 2500+230 2500+235 2500+240 2500+245 2500+250 2500+255 2500+260 2500+265 2500+270 2500+275 2500+280 2500+285 2500+290 2500+295 2500+300 2500+305 2500+310 2500+315 2500+320 2500+325 2500+330 2500+335 2500+340 2500+345 2500+350 2500+355 2500+360 2500+365 2500+370 2500+375 2500+380 2500+385 2500+390 2500+395 2500+400 2500+405 2500+410 2500+415 2500+420 2500+425 2500+430 2500+435 2500+440 2500+445 2500+450 2500+455 2500+460 2500+465 2500+470 2500+475 2500+480 2500+485
14 13 13 18 18 19 20 16 14 15 18 14 16 17 17 24 17 18 18 20 21 18 15 12 16 16 19 19 16 18 18 16 20 19 12 17 16 19 15 10 19 17 14 9 1 9 10 14 15 21 20 15 18 18 22 17 13 14 13 11 8 5 7 6
Deflectograph Ch. Defl. 2500+124 127 131 135 138 142 145 149 153 156 160 163 167 171 174 178 181 185 189 192 196 199 203 207 210 214 217 221 225 228 232 236 239 243 246 250 254 257 261 264 268 272 275 279 282 286 290 293 297 301 304 308 311 315 319 322 326 329 333 337 340 344 348 351 355 358 362 366 369 373 377 380
14 15 15 10 9 9 22 24 15 23 19 20 21 18 19 17 12 12 17 17 22 6 19 19 15 15 15 15 15 9 20 16 15 21 18 25 31 22 19 18 17 23 25 21 20 17 20 20 18 16 19 18 13 19 13 19 13 18 19 17 20 18 5 17 18 20 18 18 17 17 19 18
RUN2 Curviameter Ch. Defl.
3000+0 3000+5 3000+10 3000+15 3000+20 3000+25 3000+30 3000+35 3000+40 3000+45 3000+50 3000+55 3000+60 3000+65 3000+70 3000+75 3000+80 3000+85 3000+90 3000+95 3000+100 3000+105 3000+110 3000+115 3000+120 3000+125 3000+130 3000+135 3000+140 3000+145 3000+150 3000+155 3000+160 3000+165 3000+170 3000+175 3000+180 3000+185 3000+190 3000+195
8 8 8 7 6 7 8 8 8 10 9 8 13 13 14 6 8 12 13 6 13 9 7 16 9 11 9 12 11 10 10 12 6 8 14 17 10 13 11 12
Deflectograph Ch. Defl. 2500+384 387 391 395 398 402 405 409 413 416 420 424 427 431 434 438 442 445 449 453 456 460 463 467 471 474 478 481 485 489 492 496 3000+2 5 9 12 16 20 23 27 31 34 38 41 45 49 52 56 59 63 67 70 74 78 81 85 88 92 96 99 103 106 110 114 117 121 124 128 132 135 139 142
17 18 19 14 9 12 8 14 15 12 9 19 16 13 21 18 19 18 13 7 11 16 13 17 16 15 16 15 9 8 9 12 12 12 7 12 5 12 7 6 7 8 6 10 11 11 8 13 11 12 12 14 10 14 8 7 7 10 14 6 9 10 9 7 10 15 11 11 13 12 13 12
Curviameter Ch. Defl. 2500+170 2500+175 2500+180 2500+185 2500+190 2500+195 2500+200 2500+205 2500+210 2500+215 2500+220 2500+225 2500+230 2500+235 2500+240 2500+245 2500+250 2500+255 2500+260 2500+265 2500+270 2500+275 2500+280 2500+285 2500+290 2500+295 2500+300 2500+305 2500+310 2500+315 2500+320 2500+325 2500+330 2500+335 2500+340 2500+345 2500+350 2500+355 2500+360 2500+365 2500+370 2500+375 2500+380 2500+385 2500+390 2500+395 2500+400 2500+405 2500+410 2500+415 2500+420 2500+425 2500+430 2500+435 2500+440 2500+445 2500+450 2500+455 2500+460 2500+465 2500+470 2500+475 2500+480 2500+485
103
21 19 18 17 16 19 15 16 14 20 18 16 21 19 16 24 18 25 22 23 24 19 15 13 23 19 15 13 17 19 14 20 17 16 15 16 18 21 14 18 9 15 4 17 14 16 10 14 15 21 20 21 20 20 23 26 11 13 15 12 12 12 9 8
Deflectograph Ch. Defl. 2500+124 128 131 135 139 142 146 149 153 156 160 164 167 171 174 178 181 185 189 192 196 199 203 207 210 214 217 221 225 228 232 235 239 243 246 250 253 257 261 264 268 271 275 279 282 286 289 293 297 300 304 307 311 315 318 322 326 329 333 336 340 344 347 351 354 358 362 365 369 372 376 380
18 19 13 16 21 22 21 22 24 23 25 22 24 14 22 16 17 16 19 17 13 13 11 13 14 13 14 13 15 18 19 19 20 15 14 30 19 15 19 20 22 24 24 20 21 12 23 22 21 15 18 21 20 21 25 21 5 17 22 14 15 17 10 21 16 16 17 12 19 22 8 18
Curviameter Ch. Defl.
3000+0 3000+5 3000+10 3000+15 3000+20 3000+25 3000+30 3000+35 3000+40 3000+45 3000+50 3000+55 3000+60 3000+65 3000+70 3000+75 3000+80 3000+85 3000+90 3000+95 3000+100 3000+105 3000+110 3000+115 3000+120 3000+125 3000+130 3000+135 3000+140 3000+145 3000+150 3000+155 3000+160 3000+165 3000+170 3000+175 3000+180 3000+185 3000+190 3000+195
8 8 6 7 10 10 8 7 11 9 9 10 12 11 10 11 12 13 7 9 10 10 10 16 12 14 12 11 11 10 12 12 11 13 8 7 11 9 10 10
Deflectograph Ch. Defl. 383 387 391 394 398 401 405 409 412 416 419 423 427 430 434 438 441 445 448 452 456 459 463 466 470 474 477 481 484 488 492 495 3000+2 5 9 13 16 20 23 27 31 34 38 41 45 49 52 56 60 63 67 70 74 78 81 85 88 92 96 99 103 106 110 114 117 121 125 128 132 135 139 143
17 17 18 13 6 15 17 16 16 17 7 25 16 24 22 15 22 20 22 18 14 15 16 13 13 17 14 13 5 9 13 12 12 13 10 5 0 7 10 11 12 11 5 12 13 12 14 3 14 8 15 17 13 10 12 12 15 13 0 5 11 13 7 12 15 14 9 5 11 12 14 14
RUN1 Curviameter Ch. Defl. 3000+200 3000+205 3000+210 3000+215 3000+220 3000+225 3000+230 3000+235 3000+240 3000+245 3000+250 3000+255 3000+260 3000+265 3000+270 3000+275 3000+280 3000+285 3000+290 3000+295 3000+300 3000+305 3000+310 3000+315 3000+320 3000+325 3000+330 3000+335 3000+340 3000+345 3000+350 3000+355 3000+360 3000+365 3000+370 3000+375 3000+380 3000+385 3000+390 3000+395 3000+400 3000+405 3000+410 3000+415 3000+420 3000+425 3000+430 3000+435 3000+440 3000+445 3000+450 3000+455 3000+460 3000+465 3000+470 3000+475 3000+480 3000+485
8 9 11 5 13 10 14 8 14 15 16 7 9 13 10 7 9 6 7 8 6 9 8 10 9 7 12 10 12 11 10 3 8 12 7 12 5 8 7 2 6 7 7 4 6 6 8 8 9 10 11 4 6 8 8 7 11 4
Deflectograph Ch. Defl. 3000+146 149 153 157 160 164 167 171 175 178 182 185 189 192 196 200 203 207 210 214 218 221 225 228 232 235 239 243 246 250 253 257 261 264 268 271 275 279 282 286 289 293 296 300 304 307 311 314 318 322 325 329 332 336 340 343 347 350 354 358 361 365 368 372 376 379 383 386 390 393 397 401
7 4 12 14 14 5 10 9 13 8 13 14 13 10 5 6 13 13 9 13 14 13 14 14 11 13 15 17 10 15 11 16 13 15 11 12 9 11 8 13 11 8 7 1 9 9 13 11 12 11 6 14 13 12 14 12 13 12 4 12 14 13 6 9 9 13 9 11 8 14 9 14
RUN2 Curviameter Ch. Defl.
3500+0 3500+5 3500+10 3500+15 3500+20 3500+25 3500+30 3500+35 3500+40 3500+45 3500+50 3500+55 3500+60 3500+65 3500+70 3500+75 3500+80 3500+85 3500+90 3500+95 3500+100 3500+105 3500+110 3500+115 3500+120 3500+125 3500+130 3500+135 3500+140 3500+145 3500+150 3500+155 3500+160 3500+165 3500+170 3500+175 3500+180 3500+185 3500+190 3500+195 3500+200 3500+205 3500+210
10 4 6 7 2 4 8 4 10 7 8 8 5 8 4 7 8 8 8 1 7 2 7 6 4 7 3 8 10 3 9 12 15 6 7 7 4 5 5 4 6 5 6
Deflectograph Ch. Defl. 404 408 411 415 419 422 426 429 433 437 440 444 447 451 455 458 462 465 469 472 476 480 483 487
4 11 9 11 14 8 13 12 11 14 13 10 14 7 9 7 11 11 0 13 7 10 12 13
3500+2 6 10 13 17 20 24 28 31 35 38 42 45 49 53 56 60 63 67 71 74 78 81 85 89 92 96 99 103 106 110 114 117 121 124 128 131 135 139 142 146 149 153
5 14 12 1 11 13 11 8 18 7 13 14 6 12 5 13 14 9 12 13 15 9 14 13 7 10 11 11 11 7 4 9 5 11 8 7 11 13 13 7 7 10 6
Curviameter Ch. Defl. 3000+200 3000+205 3000+210 3000+215 3000+220 3000+225 3000+230 3000+235 3000+240 3000+245 3000+250 3000+255 3000+260 3000+265 3000+270 3000+275 3000+280 3000+285 3000+290 3000+295 3000+300 3000+305 3000+310 3000+315 3000+320 3000+325 3000+330 3000+335 3000+340 3000+345 3000+350 3000+355 3000+360 3000+365 3000+370 3000+375 3000+380 3000+385 3000+390 3000+395 3000+400 3000+405 3000+410 3000+415 3000+420 3000+425 3000+430 3000+435 3000+440 3000+445 3000+450 3000+455 3000+460 3000+465 3000+470 3000+475 3000+480 3000+485
104
9 12 9 11 11 12 7 10 12 10 9 10 12 9 8 8 9 7 8 6 12 7 6 9 9 10 10 7 10 5 8 5 10 6 13 8 6 10 8 5 5 3 7 7 10 12 5 9 6 10 10 5 3 7 7 6 6 6
Deflectograph Ch. Defl. 3000+146 150 154 157 161 164 168 172 175 179 182 186 190 193 197 201 204 208 211 215 219 222 226 229 233 237 240 244 247 251 255 258 262 266 269 273 276 280 284 287 291 294 298 302 305 309 313 316 320 323 327 331 334 338 341 345 349 352 356 360 363 367 370 374 378 381 385 389 392 396 399 403
12 8 8 13 12 11 13 11 13 9 5 19 5 13 10 12 4 6 3 10 12 15 13 13 13 17 12 9 10 7 5 12 9 8 10 5 10 15 13 3 9 8 13 12 11 0 13 13 14 15 6 15 9 11 5 14 10 7 13 12 6 8 11 10 15 13 11 12 11 10 9 14
Curviameter Ch. Defl.
3500+0 3500+5 3500+10 3500+15 3500+20 3500+25 3500+30 3500+35 3500+40 3500+45 3500+50 3500+55 3500+60 3500+65 3500+70 3500+75 3500+80 3500+85 3500+90 3500+95 3500+100 3500+105 3500+110 3500+115 3500+120 3500+125 3500+130 3500+135 3500+140 3500+145 3500+150 3500+155 3500+160 3500+165 3500+170 3500+175 3500+180 3500+185 3500+190 3500+195 3500+200 3500+205 3500+210
5 8 11 3 12 8 3 8 7 2 7 8 5 5 10 7 13 7 9 10 7 4 5 7 9 8 1 10 3 8 4 12 5 8 8 4 3 8 7 6 6 5 4
Deflectograph Ch. Defl. 407 410 414 417 421 425 428 432 436 439 443 446 450 454 457 461 464 468 472 475 479 482 486
13 11 6 12 14 13 7 8 11 6 7 12 13 14 3 9 12 13 13 14 12 11 6
3500+2 5 9 13 16 20 23 27 31 34 38 41 45 49 52 56 59 63 67 70 74 78 81 85 88 92 96 99 103 106 110 114 117 121 125 128 132 135 139 143 146 150 153
14 12 10 10 14 9 7 14 15 15 8 13 9 11 6 12 12 12 4 9 8 7 13 10 8 6 9 12 7 12 13 8 5 12 11 10 9 14 10 10 11 7 11
RUN1 Curviameter Ch. Defl. 3500+215 3500+220 3500+225 3500+230 3500+235 3500+240 3500+245 3500+250 3500+255 3500+260 3500+265 3500+270 3500+275 3500+280 3500+285 3500+290 3500+295 3500+300 3500+305 3500+310 3500+315 3500+320 3500+325 3500+330 3500+335 3500+340 3500+345 3500+350 3500+355 3500+360 3500+365 3500+370 3500+375 3500+380 3500+385 3500+390 3500+395 3500+400 3500+405 3500+410 3500+415 3500+420 3500+425 3500+430 3500+435 3500+440 3500+445 3500+450 3500+455 3500+460 3500+465 3500+470 3500+475 3500+480 3500+485 3500+490
7 4 5 4 6 9 8 13 12 9 9 7 6 8 4 7 7 7 5 5 12 10 10 7 6 7 8 9 7 3 5 6 10 6 8 6 5 6 13 9 2 9 8 9 4 7 8 6 7 7 5 7 8 8 8 9
Deflectograph Ch. Defl. 3500+157 160 164 167 171 174 178 182 185 189 192 196 199 203 207 210 214 217 221 224 228 231 235 239 242 246 249 253 256 260 264 267 271 274 278 281 285 288 292 295 299 303 306 310 313 317 320 324 327 331 335 338 342 345 349 352 356 360 363 367 370 374 377 381 384 388 392 395 399 402 406 409
8 12 13 12 11 10 8 13 8 7 8 7 12 8 11 9 11 7 12 9 6 9 11 13 6 10 12 11 11 9 3 15 14 13 11 9 6 14 6 6 13 5 8 13 9 10 8 15 14 9 9 7 13 10 9 14 14 8 12 5 11 0 13 7 4 11 11 5 12 13 13 6
Curviameter Ch. Defl.
Deflectograph Ch. Defl. 3500+413 416 420 424 427 431 434 438 441 445 448 452 456 459 463 466 470 473 477 480 484 488 491 495 498
12 6 10 1 5 9 12 14 11 9 10 13 12 10 7 11 3 5 12 10 6 13 11 12 9
Curviameter Ch. Defl. 3500+215 3500+220 3500+225 3500+230 3500+235 3500+240 3500+245 3500+250 3500+255 3500+260 3500+265 3500+270 3500+275 3500+280 3500+285 3500+290 3500+295 3500+300 3500+305 3500+310 3500+315 3500+320 3500+325 3500+330 3500+335 3500+340 3500+345 3500+350 3500+355 3500+360 3500+365 3500+370 3500+375 3500+380 3500+385 3500+390 3500+395 3500+400 3500+405 3500+410 3500+415 3500+420 3500+425 3500+430 3500+435 3500+440 3500+445 3500+450 3500+455 3500+460 3500+465 3500+470 3500+475 3500+480 3500+485 3500+490
105
6 9 5 8 8 12 6 8 9 8 7 7 11 6 7 4 6 10 6 11 7 8 8 5 8 11 9 11 8 8 5 6 6 4 10 3 6 9 9 8 5 6 7 7 10 7 7 8 8 4 8 3 10 12 8 9
RUN2 Deflectograph Ch. Defl. 3500157 161 164 168 171 175 179 182 186 189 193 196 200 204 207 211 214 218 222 225 229 232 236 239 243 247 250 254 257 261 264 268 272 275 279 282 286 290 293 297 300 304 308 311 315 318 322 325 329 333 336 340 343 347 351 354 358 361 365 368 372 376 379 383 386 390 393 397 401 404 408 411
11 10 12 8 12 13 6 10 5 13 6 10 14 11 4 3 0 13 15 6 7 13 10 14 8 11 10 1 6 13 13 11 15 12 12 12 12 13 11 13 6 7 13 10 13 14 12 9 13 11 12 9 13 13 13 12 0 7 13 11 10 13 9 1 10 10 12 12 10 12 11 6
Curviameter Ch. Defl.
Deflectograph Ch. Defl. 415 419 422 426 429 433 436 440 444 447 451 454 458 462 465 469 472 476 479 483 487 490 494 497 501
10 8 7 8 10 8 11 9 9 9 11 10 12 10 10 7 6 9 6 9 13 7 11 10 7
APPENDIX [10] The Curviameter and Deflectograph runs averaged over 50m intervals at M23.
Ch. 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650
Run1 NA NA NA NA NA NA NA NA NA NA 12.64 10.00 12.80 27.60 14.00 18.90 15.40 10.40 8.60 13.29 8.27 9.30 9.30 10.20 10.30 10.20 10.30 10.60 13.50 11.86 9.45 10.90 8.09 8.00 10.90 11.00 8.70 8.00 9.80 9.29 8.36 12.70 12.90 8.70 11.20 6.90 8.20 18.60 24.50 20.71 15.82 15.60 14.90
Curviameter Run2 27.00 24.60 18.90 14.60 20.90 19.70 23.20 12.90 19.40 15.83 13.73 12.30 14.40 23.50 15.70 18.10 11.80 10.50 7.80 11.43 6.73 9.20 11.30 10.20 12.10 8.30 9.40 11.00 13.70 11.57 9.82 10.10 9.50 10.60 10.40 10.10 11.50 8.17
10.82 11.90 9.50 15.70 9.50 6.30 6.10 22.00 27.20 23.14 16.18 15.30 18.30
Mean 27.00 24.60 18.90 14.60 20.90 19.70 23.20 12.90 19.40 15.83 13.18 11.15 13.60 25.55 14.85 18.50 13.60 10.45 8.20 12.36 7.50 9.25 10.30 10.20 11.20 9.25 9.85 10.80 13.60 11.71 9.64 10.50 8.80 9.30 10.65 10.55 10.10 8.08 9.80 9.29 9.59 12.30 11.20 12.20 10.35 6.60 7.15 20.30 25.85 21.93 16.00 15.45 16.60
Run1 14.71 20.50 19.36 17.79 18.77 17.07 22.00 13.93 15.93 30.00 9.64 10.38 9.00 18.64 14.79 23.36 9.21 8.29 7.14 11.42 7.36 8.93 6.36 8.15 8.07 5.71 8.64 8.21 11.57 10.46 10.86 8.36 11.36 10.38 10.79 9.54 8.86 8.93 9.86 11.33 13.43 13.29 15.36 12.43 11.43 12.00 8.47 20.79 26.29 21.18 17.00 16.79 14.64
Deflectograph Run2 12.33 21.23 20.71 17.29 16.86 14.00 22.07 13.93 14.64 11.00 10.07 7.07 10.07 17.00 13.93 14.21 9.21 8.92 7.64 7.67 8.21 7.62 7.93 7.21 8.50 8.46 10.00 9.50 10.71 10.00 9.29 2.24 10.15 20.38 9.00 7.85 9.50 10.46 10.64 9.55 10.57 12.15 13.29 13.07 10.38 11.54 7.07 17.43 28.36 23.50 17.86 16.43 18.07
106
Mean 13.52 20.87 20.04 17.54 17.81 15.54 22.04 13.93 15.29 20.50 9.86 8.73 9.54 17.82 14.36 18.79 9.21 8.60 7.39 9.54 7.79 8.27 7.14 7.68 8.29 7.09 9.32 8.86 11.14 10.23 10.07 5.30 10.76 15.38 9.89 8.69 9.18 9.70 10.25 10.44 12.00 12.72 14.32 12.75 10.91 11.77 7.77 19.11 27.32 22.34 17.43 16.61 16.36
Curviameter
Deflectograph
Ch.
Run1
Run2
Mean
Run1
Run2
Mean
2700 2750 2800 2850 2900 2950 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450 3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000
16.80 16.80 17.30 17.10 12.30 17.30 9.14 7.91 10.60 10.40 11.10 11.50 8.20 9.80 7.00 7.60 6.86 6.36 6.40 5.90 11.10 11.50 8.20 9.80 6.20 7.50 7.38
18.40 18.20 19.80 16.50 13.80 19.10 11.57 8.45 10.50 11.80 10.00 10.30 8.90 8.10 7.60 7.90 5.71 6.73 8.10 5.90 6.70 7.10 8.90 8.40 6.50 7.40 7.75
17.60 17.50 18.55 16.80 13.05 18.20 10.36 8.18 10.55 11.10 10.55 10.90 8.55 8.95 7.30 7.75 6.29 6.55 7.25 5.90 8.90 9.30 8.55 9.10 6.35 7.45 7.56
17.00 16.93 20.85 16.21 17.07 14.79 12.62 9.00 10.43 10.21 10.77 12.67 11.15 10.80 10.08 11.29 9.09 10.36 11.14 8.79 9.64 9.57 10.07 9.93 9.07 9.36 9.57
18.93 16.29 19.79 17.38 15.71 18.14 13.23 9.50 10.79 11.46 10.71 10.64 9.07 10.57 10.57 10.31 10.70 12.00 9.14 9.93 11.00 10.64 9.07 11.07 9.50 9.14 9.20
17.96 16.61 20.32 16.80 16.39 16.46 12.92 9.25 10.61 10.84 10.74 11.65 10.11 10.69 10.32 10.80 9.90 11.18 10.14 9.36 10.32 10.11 9.57 10.50 9.29 9.25 9.39
107
APPENDIX [11] The Curviameter and Deflectograph raw data at the Northbound of A38. Ch.
Defl.
Ch.
0 #VALUE! 3 6 10 13 17 20 23 27 30 33 37 40 43 47 50 53 57 60 64 67 70 74 77 80 84 87 90 94 97 100 104 107 111 114 117 121 124 127 131 134 137 141 144 147 151 154 158 161 164 168 171 174 178 181 184 188 191 194 198 201 204 208 211 215 #VALUE! 218 221 225 228 231
11 #VALUE! 14 12 16 20 31 20 30 16 53 3 1 5 8 20 19 16 7 24 13 16 18 16 20 16 16 14 17 7 12 10 5 6 11 7 6 11 9 13 1 13 9 7 12 12 9 9 16 13 12 16 11 18 13 16 14 15 8 12 7 10 8 6 6 5 #VALUE! 5 6 6 6 7
235 238 241 245 248 251 255 258 262 265 267 270 274 277 280 284 287 291 294 297 301 304 307 311 314 318 321 324 328 331 334 338 341 344 348 351 354 358 361 365 368 371 375 378 381 385 388 391 395 398 401 405 408 411 415 418 422 425 428 432 435 438 442 445 448 452 455 459 462 465 469 472
Deflectograph Defl. Ch. 6 6 4 7 7 4 6 9 6 9 6 5 6 6 7 8 12 6 8 7 8 8 9 9 3 10 9 7 6 9 12 9 9 12 9 8 9 14 12 10 11 11 12 6 9 7 6 8 7 10 7 5 8 11 8 7 7 8 7 8 6 7 11 7 8 7 7 7 3 9 9 8
475 479 482 485 489 492 496 499 502 506 509 512 516 519 522 526 529 533 536 539 543 546 549 553 #VALUE! 556 559 563 566 569 573 576 580 583 586 590 593 596 600 603 606 610 613 616 620 623 626 630 633 636 640 643 647 650 653 657 660 663 667 670 673 677 680 #VALUE! 684 687 690 694 697 700 704 707
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
6 8 10 9 9 4 11 11 8 10 9 8 9 10 1 8 8 8 4 10 4 9 11 10 #VALUE! 8 6 4 11 9 10 9 10 4 5 9 11 10 9 9 10 10 11 7 11 13 10 7 8 9 10 6 8 7 8 8 6 9 6 12 8 13 9 #VALUE! 9 8 11 10 11 10 7 10
710 714 717 721 724 727 731 734 737 741 744 747 751 754 757 761 764 768 771 774 778 781 784 788 791 795 798 801 805 808 811 815 818 821 825 828 832 835 838 842 845 848 852 855 858 862 865 869 872 875 879 882 885 889 892 895 899 902 906 909 912 916 919 922 926 929 933 936 939 943 946 949
8 8 7 7 10 8 11 9 11 7 9 8 7 7 6 5 4 0 5 6 5 6 6 7 6 3 6 6 6 5 9 8 13 15 17 17 15 42 20 9 14 13 13 15 15 10 16 13 14 16 12 12 17 16 21 17 18 14 14 12 7 10 41 14 12 16 14 15 12 12 13 12
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355
13 11 11 12 10 13 15 10 17 17 19 22 12 20 15 11 14 13 13 13 12 10 14 12 13 11 13 13 14 21 11 14 19 13 16 8 12 12 15 12 15 19 22 28 26 28 23 22 16 18 24 18 18 17 12 18 13 18 14 15 16 16 14 20 15 16 20 18 18 14 16 19
360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715
108
Curviameter Defl. Ch. 20 11 14 12 15 14 18 28 18 16 18 18 19 18 11 17 11 17 16 14 14 13 17 14 12 4 12 9 14 12 14 14 13 14 21 15 15 7 13 12 14 12 13 12 15 13 15 11 14 12 11 11 8 12 14 11 18 12 15 11 11 10 16 15 12 14 13 12 12 12 11 12
720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075
Defl.
Ch.
Defl.
11 17 13 13 15 11 15 18 12 13 13 12 13 12 14 12 11 9 8 7 7 2 2 5 7 5 8 9 7 7 7 11 8 8 7 8 11 10 7 5 12 10 9 9 12 10 10 10 10 13 11 10 11 12 17 12 11 16 13 10 12 14 12 13 12 13 12 12 12 16 11 9
1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435
11 10 14 9 16 13 17 10 15 13 16 13 12 11 12 12 11 11 15 6 15 12 11 12 11 12 11 10 14 11 11 11 11 11 12 11 11 8 10 13 10 10 10 13 14 5 11 12 12 10 8 10 10 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 16 14 15 18
Ch.
Defl.
Ch.
953 956 960 963 966 970 973 977 980 983 987 990 993 997 1000 1004 1007 1010 1014 1017 1021 1024 1027 1031 1034 1038 1041 1044 1048 1051 1055 1058 1061 1065 1068 1072 1075 1078 1082 1085 1088 1092 1095 1099 1102 1105 1109 1112 1116 1119 1122 1126 1129 1133 1136 1139 1143 1146 1149 1153 1156 1159 1163 1166 1170 1173 1176 1180 1183 1186 1190 1193
13 11 11 7 10 12 15 9 11 5 12 11 11 11 10 11 9 9 14 15 13 13 13 8 16 12 11 12 11 9 10 10 10 10 8 8 11 9 10 5 10 9 8 7 10 9 1 16 11 9 2 5 8 8 9 9 13 13 11 12 16 12 8 8 8 8 6 1 6 9 7 8
1196 1200 1203 1207 1210 1213 1217 1220 1223 1227 1230 1233 1237 1240 1243 1247 1250 1253 1257 1260 1263 1267 1270 #VALUE! 1273 1277 1280 1283 1287 1290 1293 1297 1300 1303 1307 1310 1313 1317 1320 1323 1327 1330 1333 1337 1340 1343 1347 1350 1354 1357 1360 1364 1367 1370 1374 1377 1380 1384 1387 1390 1394 1397 1401 1404 1407 1411 1414 1417 1421 1424 1427 1431
Deflectograph Defl. Ch. 7 3 22 15 15 14 15 18 11 15 13 19 22 22 22 25 19 17 17 4 8 9 5 #VALUE! 2 4 8 12 11 14 15 20 16 15 12 11 8 13 19 10 10 9 9 8 11 12 8 15 11 14 13 13 11 17 12 13 9 21 10 12 12 15 49 19 16 15 13 14 18 17 8 17
1434 1438 1441 1444 1448 1451 1454 1458 #VALUE! 1461 1464 1468 1471 1475 1478 1481 1485 1488 1491 #VALUE! 1495 1498 1501 1505 1508 1511 1515 1518 1521 1525 1528 1532 1535 1538 1542 1545 1548 1552 1555 1558 1562 1565 1568 1572 1575 1578 1582 1585 1589 1592 1595 1599 1602 1605 1609 1612 1615 1619 1622 1625 1629 1632 1635 1639 1642 1645 1649 1652 1655 1659 1662 1665
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
14 10 15 11 13 14 10 12 #VALUE! 13 11 12 15 15 9 11 9 9 12 #VALUE! 9 10 9 10 10 7 11 12 11 10 9 10 10 9 11 12 7 15 13 14 11 4 11 10 12 8 16 5 9 11 9 11 12 4 11 11 11 6 12 7 22 16 12 17 13 10 13 11 13 12 10 13
1669 1672 1675 1679 1682 1685 1689 1692 1695 1699 1702 1705 1709 1712 1715 1719 1722 1725 1729 1732 1736 1739 1742 1746 1749 1752 1756 1759 1762 1766 1769 1772 1776 1779 1782 1786 1789 1793 1796 1799 1803 1806 1809 1813 1816 1819 1823 1826 1829 1833 1836 1840 1843 1846 1850 1853 1856 1860 1863 1866 1870 1873 1876 1880 1883 1886 1890 1893 1897 1900 1903 1907
15 12 12 11 15 13 14 17 16 11 11 13 15 11 10 12 13 10 4 15 13 16 15 14 17 12 11 2 2 2 0 1 2 4 6 1 4 3 7 11 10 12 12 12 10 13 15 12 13 12 13 15 17 20 15 19 18 15 13 5 15 15 21 13 14 17 14 15 15 19 15 14
1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795
20 13 13 14 12 19 15 17 16 16 18 13 20 17 21 29 20 22 20 24 19 18 20 23 27 13 19 20 15 17 31 24 12 15 12 10 6 12 14 12 15 13 14 12 11 10 7 11 19 12 12 12 12 12 15 11 9 9 14 11 13 13 14 12 11 11 11 11 12 12 11 11
1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155
109
Curviameter Defl. Ch. 16 12 13 10 14 14 12 21 14 14 16 14 14 13 16 13 12 8 11 12 12 14 9 11 30 11 12 12 11 15 10 11 9 14 11 8 12 15 11 10 10 9 12 14 15 12 11 13 10 11 8 10 10 11 10 7 11 12 12 17 13 18 14 14 10 17 15 17 13 10 18 11
2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515
Defl.
Ch.
Defl.
13 16 12 11 11 11 12 10 12 16 13 11 10 11 12 11 11 11 14 11 11 10 6 14 13 14 13 14 15 13 14 13 13 16 10 15 11 14 12 13 15 19 20 16 15 18 12 16 16 12 14 13 10 14 13 14 15 15 22 19 23 14 15 18 12 16 17 15 14 14 13 14
2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875
17 14 14 14 14 14 19 17 14 12 10 14 15 12 15 7 15 36 11 29 29 20 35 39 38 29 27 36 34 30 29 33 40 30 32 51 29 34 36 37 42 48 40 47 45 45 55 41 30 42 33 41 41 46 42 50 45 41 35 35 27 36 34 33 -11 -11 -11 -11 50 34 37 51
Ch.
Defl.
Ch.
1910 1913 1917 1920 1923 1927 1930 1933 1937 1940 1944 1947 1950 1954 1957 1960 1964 1967 1971 1974 1977 #VALUE! 1981 1984 1988 1991 1994 1998 2001 2005 2008 2011 2015 2018 2022 2025 2028 2032 2035 2039 2042 2045 2049 2052 2055 2059 2062 2066 2069 2072 2076 2079 2083 2086 2089 2093 2096 2099 2103 2106 2110 2113 #VALUE! 2116 2120 2123 #VALUE! 2127 2130 2133 2137 2140
16 8 16 16 14 15 12 19 15 19 17 20 15 14 27 13 18 17 16 9 14 #VALUE! 13 13 13 12 14 14 15 11 12 14 16 17 12 15 13 8 13 14 12 16 12 13 11 8 8 10 11 8 8 11 12 12 14 15 14 11 18 10 13 10 #VALUE! 9 14 8 #VALUE! 17 7 12 11 1
2143 2147 2150 2154 2157 2160 2164 2167 2170 2174 2177 2181 2184 2187 2191 2194 2197 2201 2204 2207 2211 2214 2218 2221 2224 2228 2231 2234 2238 2241 2244 2248 2251 2255 2258 2261 2265 2268 2271 2275 2278 2282 2285 2288 2292 2295 2298 2302 2305 2309 2312 2315 2319 2322 2325 2329 2332 2335 2339 2342 2346 2349 2352 2356 2359 2362 2366 2369 2373 2376 2379 2383
Deflectograph Defl. Ch. 5 12 6 13 11 13 13 12 15 16 16 14 21 19 17 21 19 11 28 19 13 26 23 15 15 14 9 7 8 12 18 15 18 18 17 16 16 12 10 13 12 12 15 18 9 18 8 9 12 11 12 7 12 11 12 9 12 9 13 11 14 10 10 10 12 14 17 8 13 11 9 13
2386 2389 2393 2396 2400 2403 2406 2410 2413 2416 2420 2423 2426 2430 2433 2437 2440 2443 2447 2450 2453 2457 2460 2464 2467 2470 2474 2477 2480 2484 2487 2491 2494 2497 2501 2504 2507 2511 2514 2517 2521 2524 2528 2531 2534 2538 2541 2544 2548 2551 2554 2558 2561 2565 2568 2571 2575 2578 2581 2585 2588 2592 2595 2598 2602 2605 2608 2612 2615 2619 2622 2625
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
15 12 12 13 16 14 14 17 16 18 15 14 16 18 14 16 4 17 16 17 13 15 12 16 17 17 13 12 13 13 12 14 12 14 11 15 17 16 17 17 15 16 17 12 10 10 14 13 13 11 13 12 12 18 14 11 10 11 13 9 8 11 13 11 11 10 8 12 11 12 13 11
2629 2632 #VALUE! 2635 2639 2642 2645 2649 2652 2656 2659 2662 2666 2669 2672 2676 2679 2683 2686 2689 2693 2696 2699 2703 2706 2709 2713 2716 2719 2723 2726 2730 2733 2736 2740 2743 2746 2750 2753 2756 2760 2763 2767 2770 2773 2777 2780 2783 2787 2790 2793 2797 2800 2804 2807 2810 2814 2817 2820 2824 2827 2831 2834 2837 2841 2844 2847 2851 2854 2857 2861 2864
12 16 #VALUE! 11 13 10 10 13 9 10 8 10 9 11 9 12 10 8 10 13 14 11 12 13 10 10 10 11 6 11 12 13 11 10 10 11 8 12 6 15 11 10 10 8 12 11 13 11 12 12 11 12 8 12 12 13 13 11 15 15 12 14 13 13 6 11 12 11 13 14 13 13
2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235
39 35 31 37 51 42 46 25 31 49 47 42 45 39 36 37 41 50 41 41 73 44 53 36 55 43 43 43 43 35 42 37 47 51 35 14 34 23 38 31 28 32 25 40 48 37 46 42 41 40 35 40 51 35 35 39 40 45 50 40 58 56 52 36 46 45 46 52 56 35 45 45
3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595
110
Curviameter Defl. Ch.
Defl.
Ch.
Defl.
46 49 50 57 58 44 59 59 55 56 61 55 45 33 40 35 32 37 25 22 39 28 28 21 25 37 17 27 24 14 32 38 42 34 33 22 37 34 40 46 33 21 34 34 23 43 26 18 26 22 21 20 23 31 28 35 21 32 21 28 26 44 83 35 68 87 48 111 101 56 55 95
96 120 104 101 77 77 106 55 43 72 89 73 64 68 70 77 69 69 75 90 109 63 71 72 81 59 55 52 37 46 26 54 69 58 54 61 55 37 49 63 45 51 56 59 58 44 41 40 38 47 65 44 41 53 44 39 46 45 51 48 65 58 74 85 97 61 -11 -11 -11 -11 -11 -11
3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315
-11 -11 39 46 45 40 41 40 50 42 30 38 34 41 68 44 56 35 37 34 20 36 31 32 28 27 35 31 31 31 33 34 32 32 32 31 30 35 35 34 37 28 36 38 43 44 37 54 45 70 55 46 37 30 47 38 35 29 25 41 37 24 29 25 35 51 28 30 20 25 27 20
3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955
Ch.
Defl.
Ch.
2868 2871 2874 2878 2881 2884 2888 2891 2894 2898 2901 2904 2908 2911 2915 2918 2921 2925 2928 2931 2935 2938 2941 2945 2948 2952 2955 2958 2962 2965 2968 2972 2975 2979 2982 2985 2989 2992 2995 2999 3002 3005 3009 3012 3016 3019 3022 3026 3029 3032 3036 3039 3042 3046 3049 3053 3056 3059 3063 3066 3069 3073 3076 3079 3083 3086 3090 3093 3096 3100 3103 3106
13 15 13 11 13 12 11 12 15 12 16 18 16 11 4 14 12 13 11 12 12 14 16 13 16 17 13 13 8 13 12 10 10 14 11 11 9 11 8 9 12 0 12 12 11 13 16 11 11 2 12 11 12 13 13 13 8 11 12 10 13 8 14 18 11 12 12 14 10 12 12 17
3110 3113 3116 3120 #VALUE! 3123 3127 3130 3133 3137 3140 3143 3147 3150 3154 3157 3160 3164 3167 3170 3174 3177 3180 3184 3187 3190 3194 3197 3201 3204 3207 3211 3214 3217 3221 3224 3227 3231 3234 3237 3241 3244 3248 3251 3254 3258 3261 3264 3268 3271 3274 3278 3281 3285 3288 3291 3295 3298 3301 3305 3308 3311 3315 3318 3321 3325 3328 3332 3335 3338 3342 3345
Deflectograph Defl. Ch. 13 14 14 12 #VALUE! 14 13 15 15 15 14 17 14 13 16 14 12 13 10 11 14 11 14 11 15 16 15 13 14 11 13 9 9 12 13 13 8 10 13 13 12 8 12 11 13 12 11 13 11 12 12 14 14 14 17 13 12 12 10 13 9 9 13 2 11 12 12 11 11 12 13 11
3348 3352 3355 3358 3362 3365 3368 3372 3375 3379 3382 3385 3389 3392 3395 3399 3402 3405 3409 3412 3415 3419 3422 3426 3429 3432 3436 3439 3442 3446 3449 3452 3456 3459 3462 3466 3469 3473 3476 3479 3483 3486 3489 3493 3496 3499 3503 3506 3509 3513 3516 3520 3523 3526 3530 3533 3536 3540 3543 3546 3550 3553 3556 3560 3563 3566 3570 3573 3577 3580 3583 3587
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
15 10 13 15 10 18 16 19 7 11 17 10 3 7 16 12 16 10 13 10 11 11 11 10 9 10 11 14 11 10 10 12 11 11 11 12 11 11 10 11 6 9 11 10 14 11 9 12 12 14 15 10 13 14 12 14 12 12 11 10 14 11 11 9 11 9 11 4 10 12 11 11
3590 3593 3597 3600 3603 3607 3610 3613 3617 3620 3623 3627 3630 3633 3637 3640 3643 3647 3650 3654 3657 3660 3664 3667 3670 3674 3677 3680 3684 3687 3690 3694 3697 3700 3704 3707 3711 3714 3717 3721 3724 3727 3731 3734 3737 3741 3744 3747 3751 3754 3757 3761 3764 3768 3771 3774 3778 3781 3784 3788 3791 3794 3798 3801 3804 3808 3811 3814 3818 3821 3825 3828
11 9 11 10 12 11 9 9 9 11 15 12 14 12 13 13 15 11 15 12 16 14 8 13 16 14 11 11 11 13 15 9 15 16 13 14 13 11 13 13 20 18 19 16 15 13 18 7 12 10 15 14 18 17 16 8 15 14 18 17 12 18 15 14 17 8 12 13 14 13 14 15
4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675
25 20 27 37 21 16 9 19 20 16 18 14 17 14 12 14 10 9 15 20 19 21 22 24 22 33 43 41 35 59 47 51 88 47 30 46 37 35 44 47 42 46 40 50 46 38 49 87 65 39 32 39 37 19 27 14 14 30 16 32 21 22 23 21 29 26 25 35 34 28 24 35
4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035
111
Curviameter Defl. Ch.
Defl.
Ch.
Defl.
25 32 20 26 35 30 25 28 32 28 28 28 21 34 19 21 20 24 14 17 19 21 26 66 64 51 78 51 67 67 46 26 21 55 20 24 24 25 22 36 12 25 33 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 54 45 56 56 67 50 62 52 53 38 45 52 47 68 59
69 101 79 80 84 102 81 68 60 40 49 39 13 17 29 12 14 23 58 26 19 28 14 35 44 31 44 39 62 75 74 40 30 23 18 39 41 34 35 34 38 39 54 42 30 38 52 61 40 47 27 40 38 27 34 39 48 23 35 24 39 35 34 51 78 86 76 32 52 26 35 39
5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755
33 33 28 30 28 26 25 21 16 21 17 9 14 13 8 23 26 17 25 28 26 22 21 21 22 20 9 21 22 30 33 25 25 24 22 23 29 22 14 15 24 21 29 33 23 41 36 29 32 27 23 28 32 17 2 21 24 30 28 11 24 35 25 27 24 24 25 37 14 18 24 21
5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395
Ch.
Defl.
Ch.
3831 3835 3838 3841 3845 3848 3851 3855 3858 3861 3865 3868 #VALUE! 3871 3875 3878 3881 3885 3888 3891 3895 3898 3902 3905 3908 3912 3915 3918 3922 3925 3928 3932 3935 3938 3942 3945 3948 3952 3955 3958 3962 3965 3969 3972 3975 3979 3982 3985 3989 3992 3995 3999 4002 4005 4009 4012 4015 4019 4022 4026 4029 4032 4036 4039 4042 4046 4049 4052 4056 4059 4062 4066
15 19 14 16 15 18 19 13 21 14 12 16 #VALUE! 15 4 4 14 14 17 18 14 13 18 17 14 4 11 14 18 15 14 13 11 15 13 13 12 9 13 13 11 11 13 15 13 9 9 12 13 12 14 14 11 15 12 13 13 11 14 10 13 12 12 13 13 19 13 14 12 13 10 10
4069 4072 4076 4079 4083 4086 4089 4093 4096 4099 4103 4106 4109 4113 4116 4119 4123 4126 4130 4133 4136 4140 4143 4146 4150 4153 4156 4160 4163 4166 4170 4173 4177 4180 4183 4187 4190 4193 4197 4200 4203 4207 4210 4213 4217 4220 4224 4227 4230 4234 4237 4240 4244 4247 4250 4254 4257 4260 4264 4267 4270 4274 4277 4281 4284 4287 4291 4294 4297 4301 4304 4307
Deflectograph Defl. Ch. 12 13 10 10 9 7 21 10 11 12 9 7 1 9 10 9 9 9 5 9 8 7 8 4 7 6 8 7 8 9 7 8 4 8 7 9 9 10 8 8 9 9 10 9 10 8 8 7 7 8 7 6 7 9 8 10 7 9 14 6 7 7 10 8 9 8 8 10 4 6 7 8
4311 4314 4318 4321 4324 4328 4331 4334 4338 4341 4344 4348 4351 4354 4358 4361 4365 4368 4371 4375 4378 4381 4385 4388 4391 4395 4398 4401 4405 4408 4412 4415 4418 4422 4425 4428 4432 4435 4438 4442 4445 4448 4452 4455 4459 4462 4465 4469 4472 4475 4479 4482 4485 4489 4492 4496 4499 4502 4506 4509 4512 4516 4519 4522 #VALUE! 4526 4529 4532 4536 4539 4543 4546
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
8 9 8 10 11 10 3 7 9 10 8 8 8 12 10 12 8 10 9 11 12 10 8 8 12 10 11 9 7 4 9 4 8 8 8 7 9 7 6 11 10 9 10 4 12 9 7 12 11 13 11 10 12 13 13 12 16 12 12 8 9 11 15 11 #VALUE! 13 12 11 13 13 11 15
4549 4553 4556 4559 4563 4566 4569 4573 4576 4580 4583 4586 4590 4593 4596 4600 4603 4606 4610 4613 4616 4620 4623 4627 4630 4633 4637 4640 4643 4647 4650 4653 4657 4660 4664 4667 4670 4674 4677 4680 4684 4687 4690 4694 4697 4701 4704 4707 4711 4714 4717 4721 4724 4727 4731 4734 4737 4741 4744 4748 4751 4754 4758 4761 4764 4768 4771 4775 4778 4781 4785 4788
14 5 20 17 15 15 10 10 13 12 12 3 9 9 9 11 12 4 15 14 10 12 13 9 11 9 10 11 11 9 12 13 9 2 12 12 15 13 13 14 11 11 13 7 13 15 15 14 12 9 10 11 10 13 16 14 12 13 16 14 12 8 17 4 15 14 18 18 19 14 14 15
5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115
30 22 22 27 21 25 24 22 11 12 16 14 18 15 17 16 22 16 24 29 25 26 27 38 28 35 25 27 39 18 37 26 20 25 25 29 16 29 26 32 26 23 32 34 29 49 50 46 43 58 43 55 34 37 16 17 15 23 26 25 22 23 20 21 25 27 40 27 29 34 30 26
6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475
112
Curviameter Defl. Ch. 58 46 20 26 28 30 23 25 30 23 18 24 35 26 39 39 26 28 27 19 24 23 25 19 19 18 22 23 19 30 28 25 22 26 26 21 21 18 20 23 22 23 25 27 26 25 25 25 28 25 25 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835
Defl.
Ch.
Defl.
22 22 22 14 31 20 21 19 20 17 15 16 15 16 11 9 13 13 13 15 14 11 17 17 15 20 15 15 20 12 11 11 9 11 6 6 7 7 7 9 3 7 8 12 5 10 15 10 11 10 12 13 11 10 15 17 12 11 11 11 10 9 13 18 13 14 11 5 9 9 3 8
6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195
7 8 11 9 12 6 8 8 7 10 8 1 7 8 6 10 7 11 14 12 11 11 7 9 9 9 8 10 10 10 11 15 13 8 11 8 10 7 11 11 9 14 9 10 15 12 14 11 10 12 10 9 13 10 16 10 12 10 11 11 13 11 11 10 11 12 10 13 7 8 5 9
Ch.
Defl.
Ch.
4791 4795 4798 4801 4805 4808 4812 4815 4818 4822 4825 4828 4832 4835 4838 4842 4845 4849 4852 4855 4859 4862 4865 4869 4872 4876 4879 4882 4886 4889 4892 4896 4899 4902 4906 4909 4913 4916 4919 4923 4926 4929 4933 4936 4940 4943 4946 4950 4953 4956 4960 4963 4966 4970 4973 4977 4980 4983 4987 4990 4993 4997 5000 5004 5007 5010 5014 5017 5020 5024 5027 5030
20 17 18 21 15 16 14 16 11 18 9 9 9 12 10 9 10 9 15 7 11 9 11 11 12 13 13 13 14 8 13 19 20 19 15 19 21 15 12 13 13 8 11 12 12 13 16 16 12 15 18 22 17 17 16 20 18 19 15 20 24 9 19 18 22 20 17 18 11 12 5 9
5034 5037 5041 5044 5047 5051 5054 5057 5061 5064 5067 5071 5074 5078 5081 5084 5088 5091 5094 5098 5101 5105 5108 5111 5115 5118 #VALUE! 5121 5125 5128 5131 5135 5138 5141 5145 5148 5152 5155 5158 5162 5165 5168 5172 5175 5178 5182 5185 5188 5192 5195 5199 5202 5205 5209 5212 5215 5219 5222 5225 5229 5232 5236 5239 5242 5246 5249 5252 5256 5259 5263 5266 5269
Deflectograph Defl. Ch. 13 23 20 21 18 11 15 15 12 15 14 5 20 17 18 17 20 17 10 19 19 17 25 24 24 9 #VALUE! 22 14 29 20 23 21 13 22 14 20 18 19 10 13 15 18 16 8 15 12 15 17 13 16 20 22 16 19 21 20 21 17 16 19 17 15 16 20 12 14 15 17 19 13 12
5273 5276 5279 5283 5286 5289 5293 5296 5300 5303 5306 5310 5313 5316 5320 5323 5327 5330 5333 5337 5340 5343 5347 5350 5354 5357 5360 5364 5367 5370 5374 5377 5380 5384 5387 5391 5394 5397 5401 5404 5407 5411 5414 5418 5421 5424 5428 5431 5434 5438 5441 5445 5448 5451 5455 5458 5461 5465 5468 5472 5475 5478 5482 5485 5488 5492 5495 5499 5502 5505 5509 5512
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
11 12 9 13 11 11 12 3 13 15 14 17 20 20 25 10 12 15 18 18 16 17 16 18 22 16 19 14 20 18 17 9 19 16 17 14 10 13 25 16 16 28 18 11 9 15 16 18 16 20 14 16 21 14 12 13 15 18 15 13 18 13 17 18 20 12 15 14 17 11 13 16
5515 5519 5522 5526 5529 5532 5536 5539 5542 5546 5549 5553 5556 5559 5563 5566 #NUM! 5573 5576 5580 5583 5586 5590 5593 5596 5600 5603 5607 5610 5613 5617 5620 5623 5627 5630 5634 5637 5640 5644 5647 5651 5654 5657 5661 5664 5667 5671 5674 5678 5681 5684 5688 5691 5694 5698 5701 5705 5708 5711 5715 5718 5722 5725 5728 5732 5735 5738 5742 5745 5749 5752 #VALUE!
16 15 15 18 15 19 17 15 9 14 15 13 17 14 14 13 -17 11 15 10 9 13 10 12 8 14 15 7 5 11 13 29 9 14 7 13 12 16 11 2 14 14 14 11 14 9 11 11 6 11 15 12 12 10 9 14 8 12 15 15 13 4 7 10 14 10 14 14 6 13 11 #VALUE!
7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555
5 5 5 4 5 5 9 10 10 20 14 22 22 12 17 19 15 16 15 17 18 17 19 18 20 21 19 22 20 17 18 17 16 17 18 17 13 10 13 7 13 12 15 13 16 14 15 15 16 23 19 16 16 14 15 12 13 13 9 12 12 10 12 7 11 7 9 10 12 12 17 9
7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660
113
Curviameter Defl. Ch. 9 14 13 13 14 14 14 15 10 11 7 12 11 15 11 14 16 12 16 14 17
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
5755 5759 5762 5765 5769 5772 5776 5779 5782 5786 5789 5792 5796 5799 5803 5806 5809 5813 5816 5819 5823 5826 5830 5833 5836 5840 5843 5846 5850 5853 5857 5860 5863 5867 5870 5873 5877 5880 5883 5887 5890 5894 5897 5900 5904 #NUM! 5910 5914 #NUM! 5921 5924 5927 5931 5934 #NUM! #NUM! #NUM! #NUM! 5951 5954 5958 #NUM! 5964 #NUM! #NUM! #NUM! #NUM! #NUM! 5985 #NUM! #NUM! #NUM!
14 13 12 15 13 13 8 5 16 4 17 10 14 12 17 18 11 19 14 15 13 5 15 15 17 18 15 15 15 18 21 19 21 12 10 23 21 20 17 15 13 14 19 13 12 -12 18 7 -5 13 12 16 11 23 -20 -17 -15 -14 15 9 9 -19 18 -18 -15 -18 -15 -20 12 -13 -11 -17
#NUM! #NUM! #NUM! 6008 #NUM! 6015 6018 #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! 6049 #NUM! #NUM! #NUM! #NUM! #NUM! 6069 #NUM! #NUM! #NUM! #NUM! #NUM! 6089 #NUM! #NUM! #NUM! #NUM! #NUM! #VALUE! 6109 #NUM! #NUM! #VALUE! 6192 #NUM! #NUM! 6202 #NUM! 6209 6212 #NUM! #NUM! #NUM! #NUM! #NUM! 6232 6236 #NUM! 6243 #NUM! 6249 6253 6256 6259 6263 6266 6269 6273 6276 6279 6283 #VALUE! 6286 6289 6293 6296 6299
Deflectograph Defl. Ch. -18 -23 -14 17 -22 21 6 -18 -23 -18 -17 -23 -15 -23 -22 16 -16 -27 -21 -13 -12 15 -20 -15 -27 -24 -21 20 -21 -15 -21 -25 -9 #VALUE! 18 -22 -18 #VALUE! 13 -17 -21 16 -2 2 3 -5 -10 -11 -15 -21 14 17 -18 12 -5 8 15 13 13 12 14 5 9 10 12 8 #VALUE! 11 13 17 13 12
6303 6306 6309 6313 6316 6320 6323 6326 6330 6333 6336 6340 6343 6346 6350 6353 6356 6360 6363 6366 6370 6373 6376 6380 6383 6386 6390 6393 6397 6400 6403 6407 6410 6413 6417 6420 6423 6427 6430 6433 6437 6440 6443 6447 6450 6453 6457 6460 6463 6467 6470 6473 6477 6480 6483 6487 6490 6494 6497 6500 6504 6507 6510 6514 6517 6520 6524 6527 6530 6534 6537 6540
Defl.
Ch.
Defl.
13 11 11 14 20 13 12 13 11 15 10 6 7 9 9 10 7 11 11 14 15 14 11 13 11 13 13 15 13 9 16 14 18 17 6 12 11 17 16 11 8 12 14 9 13 14 11 13 12 6 18 13 24 25 28 23 23 24 23 23 21 12 24 21 7 16 22 14 12 14 10 16
6544 6547 6550 6554 6557 6560 6564 6567 6571 6574 6577 6581 6584 6587 6591 6594 6597 6601 6604 6607 6611 6614 6617 6621 6624 6627 6631 6634 6637 6641 6644 6647 6651 6654 6657 6661 6664 6667 6671 6674 6677 6681 6684 6687 6691 6694 6697 6701 6704 6708 6711 6714 6718 6721 6724 6728 6731 6734 6738 6741 6745 6748 6751 6755 6758 6761 6765 6768 6771 6775 6778 6782
16 20 21 20 13 19 15 16 17 18 20 20 18 19 16 21 16 3 17 14 13 17 17 22 19 18 16 15 13 12 12 11 8 12 20 22 5 16 19 7 18 21 22 18 17 14 20 8 16 15 16 15 15 14 3 13 10 13 16 12 13 10 8 9 9 10 10 12 14 10 12 12
114
Ch.
Defl.
Ch.
Curviameter Defl. Ch.
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
6785 6788 6792 6795 6798 6802 6805 6808 6812 6815 6819 6822 6825 6829 6832 6835 6839 6842 6845 6849 6852 6856 6859 6862 6866 #VALUE! 6869 6872 6876 6879 6882 6886 6889 6893 6896 6899 6903 6906 6909 6913 6916 6919 6923 6926 6930 6933 6936 6940 6943 6946 6950 6953 6956 6960 6963 6966 6970 6973 6977 6980 6983 6987 6990 6993 6997 7000 7003 7007 7010 7013 7017 7020
14 12 9 12 12 13 14 8 4 8 8 10 10 9 9 12 11 11 8 11 9 12 11 11 10 #VALUE! 10 8 12 10 11 10 10 10 12 13 15 14 11 9 10 10 10 12 11 13 14 10 10 11 13 11 11 9 10 5 12 10 8 10 9 7 9 12 12 12 14 12 14 13 13 13
7024 7027 7030 7034 7037 7040 7044 7047 7050 7054 7057 7061 7064 7067 7071 7074 7077 7081 7084 7087 7091 7094 7097 7101 7104 7108 7111 7114 7118 7121 7124 7128 7131 7134 7138 7141 7144 7148 7151 7154 7158 7161 7165 7168 7171 7175 7178 7181 7185 7188 7191 7195 7198 7201 7205 7208 7211 7215 7218 7222 7225 7228 7232 7235 7238 7242 7245 7249 7252 7255 7259 7262
Deflectograph Defl. Ch. 3 14 13 13 13 14 15 14 15 14 15 11 11 11 12 7 9 10 6 4 7 8 10 8 14 9 5 10 10 11 12 12 6 10 10 11 11 11 8 9 9 12 6 8 9 10 11 10 11 4 9 9 10 9 12 12 11 11 10 9 12 10 9 7 14 11 11 13 10 10 10 12
7265 7269 7272 7275 7279 7282 7286 7289 7292 7296 7299 7302 7306 7309 7313 #VALUE! 7316 7319 7323 7326 7329 7333 7336 7340 7343 7346 7350 7353 7356 7360 7363 7367 7370 7373 7377 7380 7383 7387 7390 7393 7397 7400 7404 7407 7410 7414 7417 7420 7424 7427 7430 7434 7437 7441 7444 7447 7451 7454 7457 7461 7464 7467 7471 7474 7478 7481 7484 7488 7491 7494 7498 7501
Defl.
Ch.
Defl.
10 10 11 9 10 12 14 2 13 13 9 13 11 10 11 #VALUE! 7 12 7 12 11 10 10 8 12 11 9 10 11 10 10 13 5 9 10 10 11 11 11 4 9 12 9 6 11 8 10 13 11 7 11 10 8 6 12 11 6 13 9 11 11 13 13 11 12 11 9 9 11 11 9 11
7505 7508 7511 7515 7518 7521 7525 7528 7531 7535 7538 7542 7545 7548 7552 7555 7558 7562 7565 7568 7572 7575 7579 7582 7585 7589 7592 7595 7599 7602 7605 7609 7612 7615 7619 7622 7625 7629 7632 7636 7639 7642 7646 7649 7652 #VALUE! 7656
9 9 14 10 6 9 13 13 16 13 13 11 9 9 10 8 8 8 8 5 10 9 11 9 10 9 6 7 9 10 10 11 12 12 17 0 0 9 4 5 4 9 16 14 10 #VALUE! 20
115
Ch.
Defl.
Ch.
Curviameter Defl. Ch.
Defl.
Ch.
Defl.
APPENDIX [12] The Curviameter and Deflectograph raw data at the Southbound of A38. Ch.
Defl.
Ch.
0 #VALUE! 3 7 10 14 #VALUE! 17 20 24 27 30 34 37 40 44 47 51 54 57 61 64 67 71 74 77 81 84 88 91 94 98 101 104 108 111 115 118 121 125 128 132 135 138 142 145 149 152 155 159 162 165 169 172 176 179 182 186 189 193 196 199 203 206 209 213 216 220 223 226 230 233
5 #VALUE! 3 4 7 6 #VALUE! 1 9 12 9 12 12 6 11 13 14 16 16 9 10 10 11 12 12 12 5 10 8 9 10 10 11 10 6 10 9 15 11 15 10 10 9 11 8 10 8 9 8 11 10 10 12 12 11 11 11 10 11 11 12 5 16 14 10 10 13 13 10 6 10 6
237 240 243 247 250 254 257 260 264 267 270 274 277 281 284 287 291 294 298 301 304 308 311 315 318 321 325 328 332 335 338 342 345 348 352 355 359 362 365 369 372 376 379 382 386 389 393 396 399 403 406 409 413 416 420 423 426 430 433 437 440 443 447 450 453 457 460 464 467 470 474 477
Deflectograph Defl. Ch. 9 12 10 10 13 9 9 17 16 16 17 12 10 10 10 11 11 12 9 11 16 12 13 11 13 13 13 12 9 16 19 16 9 18 13 14 15 14 13 10 12 14 12 12 16 25 19 13 14 12 16 14 15 16 15 19 15 16 11 18 12 12 20 15 16 15 14 13 14 17 8 11
481 484 487 491 494 498 501 504 508 511 514 518 521 525 528 531 535 538 542 545 548 552 555 558 562 565 569 572 575 579 582 586 589 592 596 599 602 606 609 613 616 619 623 626 630 633 #VALUE! 636 640 643 646 650 653 657 660 663 667 670 673 677 680 684 687 690 694 697 701 704 707 711 714 717
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
13 12 12 11 12 6 11 11 9 11 14 11 10 7 9 11 9 9 14 8 12 13 12 14 10 13 11 9 10 11 15 10 11 13 12 4 11 10 12 11 10 9 9 11 12 18 #VALUE! 15 16 11 10 11 7 14 11 9 8 7 10 14 16 11 14 9 6 10 9 9 8 6 9 12
721 724 728 731 734 738 741 744 748 751 755 758 761 765 768 772 775 #NUM! 782 785 788 792 795 799 802 805 809 812 815 819 822 826 829 832 836 839 842 846 849 853 856 859 863 866 869 873 876 880 883 886 890 893 896 900 903 907 910 913 917 920 924 927 930 934 937 940 944 947 950 954 957 960
9 11 10 11 10 12 12 10 10 9 12 13 10 13 12 13 14 -47 12 10 13 8 12 13 13 17 14 12 10 10 6 9 15 11 10 12 14 14 11 15 10 10 6 6 10 12 16 21 20 21 16 3 15 17 16 6 8 13 15 15 9 10 16 10 14 10 13 9 15 10 14 12
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355
21 13 11 20 15 7 10 13 12 11 10 13 10 10 6 7 11 10 14 12 9 15 15 19 19 12 25 24 33 24 29 26 24 21 30 20 14 18 17 16 16 14 13 14 11 10 13 13 17 16 11 14 11 8 7 8 9 9 9 13 14 12 8 8 11 10 14 12 9 14 13 15
360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715
116
Curviameter Defl. Ch. 10 11 12 10 11 20 13 16 18 11 10 11 11 12 12 16 13 15 14 13 11 21 17 18 22 18 19 28 21 9 16 17 17 17 11 10 24 21 19 26 20 19 19 21 17 21 8 17 13 15 14 17 22 13 16 14 18 14 20 13 14 12 12 13 11 13 14 8 15 21 25 16
720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075
Defl.
Ch.
Defl.
15 18 23 20 23 19 15 20 17 21 22 15 16 16 15 10 11 10 12 11 12 13 12 18 19 9 17 13 14 14 13 16 16 14 15 12 11 16 22 23 18 21 16 23 22 19 19 16 18 22 21 20 21 26 30 29 30 38 31 24 33 30 30 25 26 27 41 30 33 20 15 17
1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435
27 31 29 37 25 34 28 26 27 26 27 17 21 24 19 37 31 31 37 27 25 36 23 41 38 30 33 32 34 24 24 32 44 43 30 27 24 21 17 16 28 28 30 29 30 23 36 39 39 41 35 38 38 38 38 37 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
Ch.
Defl.
Ch.
964 967 971 974 977 981 984 987 991 994 997 1001 1004 1007 1011 1014 1017 1021 1024 1027 1031 1034 1038 1041 1044 1048 1051 1054 1058 1061 1064 1068 1071 1074 1078 1081 1084 1088 1091 1095 1098 1101 #VALUE! 1105 1108 1111 1115 1118 1121 1125 1128 1131 1135 1138 1141 1145 1148 1151 1155 1158 1161 1165 1168 1171 1175 1178 1181 1185 1188 1192 1195 1198
12 10 12 15 15 13 7 16 14 12 16 11 14 17 22 18 16 17 15 17 20 14 22 22 20 20 15 14 15 12 13 19 15 14 20 18 18 6 19 15 22 8 #VALUE! 19 19 21 17 18 6 17 18 19 11 12 20 10 12 18 21 19 22 33 41 19 33 39 37 22 36 32 60 60
1202 1205 1208 1212 1215 1218 1222 1225 1228 1232 1235 1238 1242 1245 1248 1252 1255 1259 1262 1265 1269 1272 1275 1279 1282 1285 1289 1292 1295 1299 1302 1305 1309 1312 1316 1319 1322 1326 1329 1332 1336 1339 1342 1346 1349 1352 1356 1359 1362 1366 1369 1372 1376 1379 1383 1386 1389 1393 1396 1399 1403 1406 1410 1413 1416 1420 1423 1426 1430 1433 #NUM! 1440
Deflectograph Defl. Ch. 19 16 19 14 19 18 18 22 18 18 10 14 14 16 13 17 14 15 17 18 13 18 15 19 12 19 15 19 19 14 25 25 24 21 12 17 18 18 15 19 25 14 11 16 13 11 11 14 11 13 11 13 17 22 10 9 12 5 11 8 13 7 6 12 8 5 11 4 20 12 -2 6
1443 #NUM! #NUM! #NUM! 1457 #NUM! #NUM! #NUM! #VALUE! #NUM! #NUM! #NUM! #VALUE! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! 1590 #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! 1619 #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! 1649 #NUM! #NUM! #NUM! 1663 #NUM! #NUM! #NUM! 1676 1679 1683 1686 1689 1693 1696 #NUM! #NUM! 1706 1709 1712 1716 1719 #NUM! #NUM! 1729 1732 1736 1739 #VALUE! 1742 1746 1749 1752
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
14 -11 -6 -11 10 -21 -12 -22 #VALUE! -25 -18 -25 #VALUE! -23 -13 -19 -13 -18 -21 -12 -15 17 -21 -19 -18 -13 -14 -21 -20 -16 18 -11 -14 -19 -25 -16 -14 -20 -15 26 -15 -21 -21 26 -21 -20 -22 22 17 14 15 13 12 21 -29 -29 18 22 26 25 25 -28 -22 13 19 22 23 #VALUE! 21 18 15 12
1756 1759 1762 1766 1769 #NUM! 1776 1779 1782 1786 1789 1792 1796 1799 1803 1806 1809 1813 1816 1819 1823 1826 1829 1833 1836 1839 1843 1846 1849 1853 1856 1859 1863 1866 1869 1873 1876 1879 1883 1886 1890 1893 1896 1900 1903 1906 1910 1913 1916 1920 1923 1926 1930 1933 1936 1940 1943 1946 1950 1953 1957 1960 1963 1967 1970 1973 1977 1980 1983 1987 1990 1993
15 17 8 18 15 -17 13 16 16 13 10 12 16 15 15 17 18 13 13 12 11 13 13 11 12 13 13 10 15 5 12 14 13 4 14 11 7 14 9 13 11 10 13 11 12 5 7 12 7 13 11 5 16 12 13 12 11 11 8 10 12 14 16 11 12 11 12 11 13 10 12 9
1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795
-11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 2 2 4 5 11 4 4 1 6 5 2 5 3 4 6 4 3 4 3 4 6 3 3 3 3 4 3 3 1 5 4 3 7 4 1 5 4 5 5 4 9 8 4 5 5 5 5 7 3 6 6 3 4 3 5 4 3 3
1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155
117
Curviameter Defl. Ch. 3 4 3 4 5 2 3 3 3 4 5 6 4 8 5 3 5 7 5 8 4 7 4 5 5 9 5 5 6 3 1 6 4 4 3 5 5 6 4 2 3 4 1 4 3 5 6 4 4 4 5 5 6 6 2 7 4 9 2 6 4 4 2 6 4 4 4 4 9 5 4 6
2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515
Defl.
Ch.
Defl.
6 10 6 7 9 8 5 15 10 12 33 37 27 21 22 28 27 21 17 51 31 38 35 42 25 33 45 10 27 33 15 27 22 6 7 21 23 25 34 28 29 37 31 22 39 40 28 28 24 16 24 15 22 15 19 26 21 16 23 20 23 18 17 16 21 16 21 20 19 13 19 22
2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875
27 20 20 16 19 17 24 15 19 15 19 19 20 37 13 22 19 19 17 38 26 25 19 22 10 14 12 13 21 18 15 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 23 21 34 24 23 17 10 20 27 24 20 16 11 16 12 14 17 15 24 14 14 23 10 5 8 13 13 15 7 17 24
Ch.
Defl.
Ch.
1997 2000 2004 2007 2010 2014 2017 2020 2024 2027 2030 2034 2037 2040 2044 2047 2050 2054 2057 2061 2064 2067 2071 2074 2077 2081 2084 2087 2091 2094 2097 2101 2104 2108 2111 2114 2118 2121 2124 2128 2131 2134 2138 #VALUE! 2141 2144 2148 2151 2154 2158 2161 2165 2168 #NUM! 2175 2178 2181 2185 2188 2191 2195 2198 2202 2205 2208 2212 2215 2218 2222 2225 2228 2232
12 12 14 11 11 13 16 14 14 15 13 18 24 23 11 14 16 14 4 19 17 15 15 14 14 12 13 7 13 14 17 16 15 15 16 13 14 17 16 12 15 16 15 #VALUE! 16 15 19 16 17 17 23 16 20 -16 16 22 24 16 16 19 22 17 25 25 25 29 11 16 21 21 23 20
2235 2239 2242 2245 2249 2252 2255 2259 2262 2265 2269 2272 2275 2279 2282 2286 2289 2292 2296 2299 2302 2306 2309 2312 2316 2319 2323 2326 2329 2333 2336 2339 2343 2346 2349 2353 2356 2360 2363 2366 2370 2373 2376 2380 #NUM! 2386 2390 2393 2397 2400 2403 2407 2410 2413 2417 2420 2423 2427 2430 2434 2437 2440 2444 2447 2450 2454 2457 2460 2464 2467 2471 2474
Deflectograph Defl. Ch. 10 22 30 11 13 14 13 24 28 21 22 23 21 14 20 16 19 14 20 25 16 19 13 17 24 24 16 18 13 17 13 8 14 16 15 19 17 15 16 15 17 19 19 20 -37 20 18 18 20 19 22 16 19 15 18 18 18 23 7 18 18 14 19 19 15 24 25 19 19 21 19 25
2477 2481 2484 2487 2491 2494 2497 2501 2504 2507 2511 2514 2518 2521 2524 2528 2531 2534 2538 2541 2545 2548 2551 2555 2558 2561 2565 2568 2571 2575 2578 2582 2585 2588 2592 2595 2598 2602 2605 2608 2612 2615 2619 2622 2625 2629 2632 2635 2639 2642 2645 2649 2652 2656 2659 2662 2666 2669 2672 2676 2679 2682 2686 2689 2693 2696 2699 2703 2706 2709 2713 2716
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
19 20 12 15 16 17 15 12 17 18 23 24 21 24 20 22 23 16 16 14 21 20 15 18 16 10 12 14 13 12 15 15 13 12 13 13 11 13 11 11 11 11 13 16 9 14 12 13 2 13 11 13 11 6 13 12 11 13 6 12 13 16 10 14 15 10 11 13 15 14 17 12
2719 2723 2726 2730 2733 2736 2740 2743 2746 2750 2753 2756 2760 2763 2767 2770 2773 2777 2780 2783 2787 2790 2794 2797 2800 2804 2807 2810 2814 2817 2821 2824 2827 2831 2834 2837 2841 2844 2847 2851 2854 2858 2861 2864 2868 2871 2874 2878 2881 2885 2888 2891 2895 2898 2901 2905 2908 2912 2915 2918 2922 2925 2928 2932 2935 #VALUE! 2938 2942 2945 2949 2952 2955
13 10 10 12 16 16 17 17 19 6 11 10 10 3 14 13 13 11 14 16 17 16 17 25 12 16 11 14 13 14 12 17 17 18 14 10 15 14 10 18 18 18 13 15 12 7 14 14 12 13 12 11 11 16 16 13 16 16 14 13 9 12 11 16 14 #VALUE! 11 12 11 5 11 11
2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235
34 39 45 41 53 86 51 51 29 52 68 47 44 35 47 46 45 67 33 38 39 38 56 35 46 45 73 73 54 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 58 64 55 50 78 46 60 24 19 20 44 63 23 30 38 36 41 60 33 34 39 54 65 53 50 90 39 42 58 41 61 38 52
3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595
118
Curviameter Defl. Ch.
Defl.
Ch.
Defl.
112 76 41 30 27 72 39 64 67 65 54 85 62 90 60 59 51 57 59 84 99 64 65 75 60 97 61 63 101 79 54 61 90 95 107 94 118 120 105 80 95 81 96 92 63 87 134 103 83 115 118 127 108 123 120 126 129 104 104 75 16 21 22 18 16 17 16 15 17 16 14 14
18 17 16 20 16 17 15 19 13 14 15 16 14 15 18 18 22 19 14 14 21 16 16 21 20 36 20 18 101 61 75 54 73 55 42 51 50 48 49 61 51 43 48 45 46 42 42 44 40 49 31 59 42 57 66 50 57 52 55 53 64 52 34 55 54 49 47 42 56 53 35 33
3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315
37 42 50 38 30 42 46 41 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 94 92 96 100 105 81 56 89 68 63 62 54 56 43 47 34 37 41 44 41 36 58 39 37 45 35 58 40 47 40 38 47 23 26 35 34 35 42 35 30 31 33 56 32 26 27 24 28
3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955
Ch.
Defl.
Ch.
2959 2962 2965 2969 2972 2976 2979 2982 2986 2989 2992 2996 2999 3003 3006 3009 3013 3016 3019 3023 3026 3029 3033 3036 3040 3043 3046 3050 3053 3056 3060 3063 3067 3070 3073 3077 3080 3083 3087 3090 3093 3097 3100 3104 3107 3110 3114 3117 3120 3124 3127 3130 3134 3137 3141 3144 3147 3151 3154 3157 3161 3164 3168 3171 3174 3178 3181 3184 3188 3191 3194 3198
15 19 19 21 21 22 14 16 17 16 21 14 13 20 16 9 14 10 8 10 10 10 15 17 15 12 12 14 13 13 13 18 20 13 11 15 15 17 18 13 19 11 20 16 18 17 16 17 12 20 18 24 15 12 12 13 13 13 13 10 11 11 14 14 12 13 14 11 11 12 13 9
3201 3205 3208 3211 3215 3218 3221 3225 3228 3232 3235 3238 3242 3245 3248 3252 3255 3259 3262 3265 3269 3272 3275 3279 3282 3285 3289 3292 3296 #NUM! 3302 3306 3309 3312 3316 3319 3323 3326 3329 3333 3336 3339 3343 3346 3350 3353 3356 3360 3363 3366 3370 3373 3377 3380 3383 3387 3390 3393 3397 3400 3404 3407 3410 3414 3417 3420 3424 3427 3431 3434 3437 3441
Deflectograph Defl. Ch. 12 11 11 8 9 17 16 24 12 10 8 11 9 10 7 8 10 8 10 10 11 12 12 11 13 9 10 11 7 -258 9 10 11 9 11 8 9 9 9 10 13 11 7 11 17 12 11 14 14 3 9 8 9 8 10 12 8 9 9 11 12 12 14 13 5 9 10 9 13 9 10 12
3444 3447 3451 3454 3458 3461 3464 3468 3471 3474 3478 3481 3485 3488 3491 3495 3498 3501 3505 3508 3512 3515 3518 3522 3525 3528 3532 3535 3539 3542 3545 3549 3552 3555 3559 3562 3566 3569 3572 3576 3579 3582 3586 3589 3593 3596 3599 3603 3606 3609 3613 3616 3620 3623 3626 3630 3633 3636 3640 3643 3647 3650 3653 3657 3660 3663 3667 3670 3674 3677 3680 3684
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
10 11 9 11 10 7 10 4 7 8 7 7 7 8 8 8 9 8 9 11 10 10 10 9 10 12 13 8 8 7 12 11 16 11 11 11 14 11 11 13 11 11 10 19 10 8 12 10 13 13 7 13 12 15 13 13 14 15 13 14 13 12 13 13 13 16 19 19 15 13 17 26
3687 3691 3694 3697 3701 3704 3707 3711 3714 3718 3721 3724 3728 3731 3734 3738 3741 3745 3748 3751 3755 3758 3761 3765 3768 3772 3775 3778 3782 3785 3788 3792 3795 3799 3802 3805 3809 3812 3815 3819 3822 3826 3829 3832 3836 3839 3842 3846 3849 3853 #VALUE! 3856 3859 3863 3866 3869 3873 3876 3880 3883 3886 3890 3893 #NUM! 3900 3903 3907 3910 3913 3917 3920 3923
20 24 9 25 28 13 25 20 17 14 15 22 22 13 17 17 12 14 15 12 14 15 20 14 17 20 16 19 8 24 22 26 18 19 24 30 28 19 13 6 5 13 19 21 7 34 37 28 21 25 #VALUE! 36 34 33 30 20 15 15 18 17 31 19 20 -93 10 17 18 19 25 20 21 19
4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675
27 53 34 32 30 51 33 36 51 44 40 49 48 48 52 62 40 50 47 34 48 39 42 31 37 33 46 44 42 41 56 42 43 50 26 45 38 38 29 36 39 36 42 37 28 32 47 43 47 40 40 47 38 38 37 38 34 38 43 41 34 34 31 24 14 29 20 38 31 42 37 41
4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035
119
Curviameter Defl. Ch. 35 42 52 46 52 46 49 54 45 44 41 45 41 34 56 54 48 46 49 47 41 58 38 49 46 37 42 37 40 21 29 36 37 34 37 55 42 40 37 49 47 57 56 44 49 42 37 23 41 33 45 38 41 45 45 43 37 41 44 47 52 43 59 49 36 72 56 52 31 54 57 52
4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035
Defl.
Ch.
Defl.
35 42 52 46 52 46 49 54 45 44 41 45 41 34 56 54 48 46 49 47 41 58 38 49 46 37 42 37 40 21 29 36 37 34 37 55 42 40 37 49 47 57 56 44 49 42 37 23 41 33 45 38 41 45 45 43 37 41 44 47 52 43 59 49 36 72 56 52 31 54 57 52
5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395
58 60 77 62 51 56 51 44 42 47 43 53 57 38 61 58 55 54 47 43 55 52 40 44 33 37 40 35 21 41 32 31 33 34 23 31 52 39 55 70 51 54 60 58 59 57 58 57 60 60 59 56 47 55 44 56 50 73 49 42 60 25 27 43 23 35 35 44 39 30 38 38
Ch.
Defl.
Ch.
3927 3930 3934 3937 3940 3944 3947 3950 3954 3957 3961 3964 3967 3971 3974 3977 3981 3984 3988 3991 3994 3998 4001 4005 4008 4011 4015 4018 4021 4025 4028 4032 4035 4038 4042 4045 4048 4052 4055 4059 4062 4065 4069 4072 4075 4079 4082 4086 4089 4092 4096 4099 4103 4106 4109 4113 4116 4119 4123 4126 4130 4133 4136 4140 4143 4146 4150 4153 4157 4160 4163 4167
18 21 24 23 18 11 22 18 24 29 27 24 16 19 33 26 17 21 22 21 14 20 13 15 16 17 13 13 13 12 13 15 8 18 11 17 24 24 13 11 18 22 21 11 15 20 17 18 21 12 14 21 21 16 19 16 18 15 19 19 14 11 17 14 11 14 16 15 16 17 15 23
4170 4173 4177 4180 4184 4187 4190 4194 4197 4201 4204 4207 4211 4214 4217 4221 4224 4228 4231 4234 4238 4241 4244 4248 4251 4255 4258 4261 4265 4268 4271 4275 4278 4282 4285 4288 4292 4295 4299 4302 4305 4309 4312 4315 4319 4322 4326 4329 4332 4336 4339 4342 4346 4349 4353 4356 4359 4363 4366 4369 4373 4376 4380 4383 4386 4390 4393 4396 4400 4403 4407 4410
Deflectograph Defl. Ch. 19 23 18 16 15 11 17 16 23 19 19 17 19 19 14 19 20 13 19 24 24 25 26 21 18 19 13 19 20 21 20 16 16 16 15 19 20 18 15 13 23 30 21 14 15 15 16 18 15 25 23 16 17 18 18 18 22 26 27 26 28 24 21 18 25 24 28 22 23 19 16 22
4413 4417 4420 4423 4427 4430 4434 4437 4440 4444 4447 4450 4454 4457 4461 4464 4467 4471 4474 4477 4481 4484 4488 4491 4494 4498 4501 4504 4508 4511 4514 4518 4521 4525 4528 4531 4535 4538 4541 4545 4548 4551 4555 4558 4562 4565 4568 4572 4575 4578 4582 4585 4589 4592 4595 4599 4602 4605 4609 #VALUE! 4612 4615 4619 4622 4626 4629 4632 4636 4639 4642 4646 4649
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
25 24 19 20 26 17 15 14 15 13 15 20 19 10 16 16 15 15 18 16 17 16 15 17 20 15 11 11 14 13 17 13 13 13 15 16 16 14 15 15 16 13 17 14 14 7 15 15 18 17 13 13 15 16 17 16 17 21 17 #VALUE! 16 15 18 19 14 22 14 13 5 13 16 14
4652 4656 4659 4663 4666 4669 4673 4676 4679 4683 4686 4690 4693 4696 4700 4703 4706 4710 4713 4716 4720 4723 4727 4730 4733 4737 4740 4743 4747 4750 4753 4757 4760 4764 4767 4770 4774 4777 4780 4784 4787 4791 4794 4797 4801 4804 4807 4811 4814 4817 4821 4824 4828 4831 4834 4838 4841 4844 4848 4851 4854 4858 4861 4865 4868 4871 4875 4878 4881 4885 4888 4892
15 13 12 11 14 10 11 17 13 14 12 12 16 14 10 14 23 15 12 20 18 18 11 17 17 7 16 16 21 16 14 16 13 15 13 16 13 15 16 26 24 21 17 14 16 18 20 15 15 13 13 16 20 18 21 15 14 14 15 15 17 17 14 14 12 16 13 15 15 20 16 12
5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755
49 56 26 30 36 36 33 26 30 31 31 25 40 37 22 30 24 26 27 18 22 25 18 10 23 21 31 26 35 9 17 11 18 17 27 17 21 15 23 23 30 31 26 21 19 23 18 16 18 14 19 15 23 17 13 21 26 21 22 22 15 33 39 30 37 44 47 45 42 23 37 21
5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115
120
Curviameter Defl. Ch. 19 21 18 15 18 18 12 19 20 21 17 16 17 16 15 19 13 16 8 18 16 25 18 17 12 15 23 15 15 13 11 15 16 16 14 13 14 13 16 11 13 14 14 13 16 15 14 17 17 23 17 13 26 26 10 7 10 15 12 10 13 12 14 7 9 12 9 13 11 12 12 13
6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475
Defl.
Ch.
Defl.
13 15 14 13 14 16 10 12 14 13 11 12 15 12 12 12 10 13 13 12 13 12 9 12 11 11 11 10 13 12 15 14 14 12 14 13 13 11 16 14 15 14 13 13 17 13 13 13 8 11 12 12 12 12 15 11 10 11 13 15 16 14 14 14 14 13 11 18 16 20 13 15
6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835
15 14 13 14 16 13 18 21 15 10 14 14 6 13 19 17 12 11 11 12 11 9 13 10 14 13 11 9 10 9 9 17 12 16 13 15 14 9 11 11 11 12 8 8 16 17 13 14 13 13 13 3 11 10 10 12 9 6 13 12 28 22 13 7 13 11 11 12 10 10 13 11
Ch.
Defl.
Ch.
4895 4898 4902 4905 4908 4912 4915 4918 4922 4925 4928 4932 4935 4939 4942 4945 4949 4952 4955 4959 4962 4966 4969 4972 4976 4979 4982 4986 4989 4992 4996 4999 5003 5006 5009 5013 5016 5019 5023 5026 5029 5033 5036 5040 5043 5046 5050 5053 5056 5060 5063 5066 5070 5073 5077 5080 5083 5087 5090 5093 5097 5100 5103 5107 5110 5114 5117 5120 5124 5127 5130 5134
12 14 9 17 16 17 15 14 19 25 21 15 17 14 16 21 16 13 18 18 19 17 18 20 13 16 11 15 12 15 16 15 11 9 15 17 13 18 13 15 9 11 8 11 14 12 10 11 16 14 11 12 13 12 12 13 14 16 16 18 20 16 15 14 16 18 18 10 14 12 16 10
5137 5140 5144 5147 5150 5154 5157 5161 5164 5167 5171 5174 5177 5181 5184 5187 5191 5194 5198 5201 5204 5208 5211 5214 5218 5221 5224 5228 5231 5235 5238 5241 5245 5248 5251 5255 5258 5262 5265 5268 5272 5275 5278 5282 5285 5288 5292 5295 5299 5302 5305 5309 5312 5315 5319 5322 5325 5329 5332 5336 5339 5342 5346 5349 5352 5356 5359 5363 5366 5369 5373 5376
Deflectograph Defl. Ch. 11 14 13 20 14 13 11 14 12 14 19 14 14 14 13 11 12 13 13 13 11 13 10 14 12 11 12 13 14 13 11 12 11 14 14 10 10 10 11 13 13 16 14 12 15 19 18 13 12 13 11 13 15 10 9 11 10 11 8 7 12 12 11 5 10 8 12 15 15 14 11 10
5379 5383 5386 5389 5393 5396 5400 #VALUE! 5403 5406 5410 5413 5416 5420 5423 5426 5430 5433 5437 5440 5443 5447 5450 5453 5457 5460 5464 5467 5470 5474 5477 5480 5484 5487 5490 5494 5497 5501 5504 5507 5511 5514 5517 5521 5524 5527 5531 5534 5537 5541 5544 5547 5551 5554 #VALUE! 5557 5561 5564 #VALUE! 5567 5571 5574 5577 5581 5584 5587 5591 5594 5598 5601 5604 5608
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
8 11 12 15 13 11 11 #VALUE! 10 10 10 10 13 11 15 11 14 11 11 6 11 10 7 8 18 15 17 11 9 8 13 12 12 19 24 15 15 13 12 8 12 14 16 5 14 11 13 23 16 20 21 28 8 13 #VALUE! 8 12 12 #VALUE! 11 19 12 14 11 12 11 14 12 13 12 6 6
5611 5614 5618 5621 5624 5628 5631 5634 5638 5641 5644 5648 5651 5654 5658 5661 5664 5668 5671 5674 5678 5681 5684 5688 5691 5694 5698 5701 5704 5708 5711 5714 5718 5721 5724 5728 5731 5734 5738 5741 5744 5748 5751 5754 5758 5761 5764 5768 5771 5775 5778 5781 5785 5788 5791 5795 5798 5801 5805 5808 5811 5815 5818 5821 5825 5828 5831 5835 5838 5842 5845 5848
15 12 14 15 13 20 15 19 16 14 7 17 16 17 15 15 15 12 17 20 20 14 18 20 14 19 22 7 12 16 19 17 7 15 15 13 17 18 12 19 22 21 20 20 20 19 19 7 17 18 17 19 18 15 14 17 10 20 17 14 17 16 14 10 11 16 10 3 0 2 3 2
6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195
9 7 9 9 9 8 8 8 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 22 30 25 22 16 18 17 16 13 11 12 14 18 15 14 17 14 14 15 10 11 11 9 10 10 10 11 10 10 11 11 8 12 13 17 11 11 4 8 12 14 19 11 5 14 12 15 13 8 29
7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555
121
Curviameter Defl. Ch. 15 19 14 12 19 14 15 22 18 15 14 13 16 16 12 11 14 14 19 17 13 11 11 10 9 7 9 9 7 9 13 11 14 12 13 13 11 18 13 12 25 12 12 13 9 22 25 15 13 13 11 9 11 11 13 13 10 9 12 11 13 7 9 7 4 9 11 9 9 11 5 11
7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915
Defl.
Ch.
Defl.
10 10 7 13 10 10 14 10 11 9 12 9 9 11 11 16 14 11 9 8 8 8 7 11 6 2 8 9 16 11 13 4 10 12 4 10 13 12 11 16 5 10 13 12 11 12 18 13 12 14 12 12 17 13 20 11 10 13 4 9 11 10 10 9 11 11 15 12 12 14 4 15
7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095
15 5 10 9 10 12 14 6 8 12 10 11 14 10 9 10 3 9 14 9 12 10 10 10 11 9 13 9 10 10 2 9 11 15 9 9
Ch.
Defl.
Ch.
5852 5855 5858 5862 5865 5868 5872 5875 5878 5882 5885 5888 5892 5895 5899 5902 5905 5909 5912 5915 5919 5922 5925 5929 5932 5935 5939 5942 5946 #VALUE! 5949 5952 5956 5959 5962 5966 5969 5972 5976 5979 5982 5986 5989 5992 5996 5999 6002 6006 6009 6012 6016 6019 6022 #NUM! 6029 6032 6036 6039 6042 6046 6049 6052 6056 6059 #VALUE! 6108 6111 #VALUE! 6115 6118 6121 6125
2 3 2 3 5 8 11 7 7 11 10 12 11 11 12 17 9 12 11 11 10 8 8 8 10 9 10 9 8 #VALUE! 8 7 6 5 6 8 9 10 10 9 11 13 12 15 15 17 17 15 6 13 9 7 7 -13 7 4 10 10 9 9 10 10 10 7 #VALUE! 11 10 #VALUE! 7 7 8 6
6128 6132 6135 6138 6142 6145 6148 6152 6155 6159 6162 #VALUE! 6165 6169 6172 6175 6179 6182 6186 6189 6192 6196 6199 6202 6206 6209 6213 6216 6219 6223 6226 6229 6233 6236 6240 6243 6246 6250 6253 6256 6260 6263 6266 6270 6273 6277 6280 6283 6287 6290 6293 6297 #VALUE! 6300 6303 6307 6310 6313 6317 6320 6323 6327 6330 6333 6337 6340 6343 6347 6350 6353 6357 6360
Deflectograph Defl. Ch. 8 7 8 19 7 7 6 6 6 7 3 #VALUE! 9 7 8 8 8 7 7 7 9 7 7 8 9 17 8 11 11 11 11 9 9 11 12 8 8 14 14 11 13 12 6 12 13 15 14 18 9 12 7 16 #VALUE! 14 13 17 16 15 10 19 14 9 16 17 18 14 19 17 18 4 13 6
6363 6367 6370 6373 6377 6380 6383 6387 6390 6393 6397 6400 6403 6407 6410 6413 6417 6420 6423 6427 6430 6433 6437 6440 6443 6447 6450 6453 6457 6460 #NUM! 6467 6470 6473 6477 6480 6483 6487 6490 6493 6497 6500 6504 6507 6510 6514 6517 6520 6524 6527 6530 6534 6537 6540 6544 6547 6550 6554 6557 6560 6564 6567 6571 6574 6577 6581 6584 6587 6591 6594 6597 6601
Defl.
Ch.
Defl.
7 12 11 11 10 13 13 6 6 9 15 14 18 9 16 12 7 14 16 19 13 12 13 10 17 13 7 13 12 13 -38 9 8 11 10 12 10 15 17 14 13 13 8 13 15 17 16 17 17 16 18 18 19 21 27 23 22 25 23 23 24 22 20 19 18 16 17 9 17 16 18 14
6604 6607 6611 6614 6618 6621 6624 6628 6631 6634 6638 6641 6644 6648 6651 6654 6658 6661 6664 6668 6671 #VALUE! 6674 6678 6681 6684 6688 6691 6694 6698 6701 6705 6708 6711 6715 6718 6721 6725 6728 6731 6735 6738 6741 6745 6748 6751 6755 6758 6761 6765 6768 6772 6775 6778 6782 6785 6788 6792 6795 6798 6802 6805 6808 6812 6815 6818 6822 6825 6828 6832 6835 6838
19 19 16 12 8 11 13 14 8 10 10 11 16 9 10 12 5 6 8 9 9 #VALUE! 10 10 11 9 10 12 10 12 12 11 8 3 9 7 4 11 14 11 10 12 8 10 8 12 10 10 8 11 8 10 6 9 11 13 11 16 15 18 13 12 13 10 12 12 6 12 11 14 15 14
122
Ch.
Defl.
Ch.
Curviameter Defl. Ch.
Defl.
Ch.
Defl.
Ch.
Defl.
Ch.
6842 6845 6849 6852 6855 6859 6862 6865 6869 6872 6875 6879 6882 6885 6889 6892 6895 6899 6902 6905 6909 6912 6916 6919 6922 6926 6929 6932 6936 6939 6942 6946 6949 6952 6956 6959 6962 6966 6969 6972 6976 6979 6982 6986 6989 6993 6996 6999 7003 7006 7009 7013 7016 7019 7023 7026 7029 7033 7036 7039 7043 7046 7049 7053 7056 7059 7063 7066 7069 7073 7076 7080
13 11 10 12 12 13 12 13 8 13 15 15 16 14 15 9 21 19 13 14 13 13 14 12 14 12 13 12 12 16 12 16 16 14 14 21 26 23 13 14 23 26 23 7 13 15 14 6 14 16 14 17 11 14 15 16 18 15 17 12 12 16 13 14 12 14 9 10 12 11 12 12
7083 7086 7090 7093 7096 7100 7103 7106 7110 7113 7116 7120 7123 7126 7130 7133 7136 7140 7143 7146 7150 7153 7157 7160 7163 7167 #VALUE! 7170 7173 7177 7180 7183 7187 7190 7193 7197 7200 7203 7207 7210 7213 7217 7220 7223 7227 7230 7234 7237 7240 7244 #VALUE! 7247 7250 7254 7257 7260 7264 7267 7270 7274 7277 7280 7284 7287 7291 7294 7297 7301 7304 7307 7311 7314
Deflectograph Defl. Ch. 11 11 13 12 12 10 12 7 4 14 18 17 15 12 11 10 13 14 14 17 11 21 14 14 18 18 #VALUE! 13 15 22 21 11 14 6 10 14 6 9 18 13 11 10 11 11 7 9 9 9 13 10 #VALUE! 13 20 10 10 12 9 10 9 6 9 11 10 15 13 12 11 11 14 12 14 16
7317 7321 7324 7327 7331 7334 7337 7341 7344 7347 7351 7354 7357 7361 7364 7367 7371 7374 7377 7381 7384 7388 7391 7394 7398 7401 7404 7408 7411 7414 7418 7421 7424 7428 7431 7434 7438 7441 7444 7448 7451 7454 7458 7461 7464 7468 7471 7474 7478 7481 7484 7488 7491 7494 7498 7501 7504 7508 7511 7515 7518 7521 7525 7528 7531 7535 7538 7541 7545 7548 7551 7555
Defl.
Ch.
Defl.
18 21 18 20 17 16 21 14 15 19 20 17 20 16 13 18 7 8 17 11 13 16 17 20 9 18 20 16 20 20 25 19 16 18 20 24 22 14 17 18 14 8 23 28 13 17 19 19 13 9 17 12 12 17 22 23 35 24 25 18 28 13 11 24 21 21 21 20 11 15 15 3
7558 7561 7565 7568 7571 7575 7578 7581 7585 7588 7591 7595 7598 7601 7605 7608 7611 7615 7618 7621 7625 7628 7631 7635 7638 7641 7645 7648 7651 7655 7658 7661 7665 #VALUE! 7668 7671 7675 7678 7681 7685 7688 7691 7695 7698 7701 7705 7708 7711 7715 7718 7722 7725 7728 7732 7735 7738 7742 7745 7748 7752 7755 7758 7762 7765 7768 7772 7775 7778 7782 7785 7788 7792
12 16 22 19 23 22 20 25 33 41 20 21 21 23 31 32 30 19 24 25 20 14 33 23 19 16 29 19 29 39 36 28 18 #VALUE! 14 16 21 17 12 14 19 21 17 21 25 19 24 43 18 32 31 37 21 21 12 22 22 17 12 13 11 8 10 5 6 23 19 32 17 21 23 20
123
Ch.
Defl.
Ch.
Curviameter Defl. Ch.
Defl.
Ch.
Defl.
APPENDIX [13] The Curviameter and Deflectograph data averaged over 100m intervals at the Northbound and Southbound of A38.
Ch. 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100
Northbound Curviameter Deflectograph 13.95 16.25 13.40 10.73 19.25 6.67 16.80 8.98 14.20 7.78 13.45 8.08 12.50 9.14 13.00 6.87 7.15 14.48 10.55 12.58 12.35 10.39 12.40 8.44 11.20 14.32 9.75 12.19 15.82 14.01 20.55 10.24 12.05 12.41 11.95 8.58 13.25 14.31 12.30 15.12 11.40 12.35 13.25 12.72 12.05 14.78 14.55 11.81 15.25 14.38 13.90 12.94 31.85 11.04 42.00 10.64 37.88 12.85 43.65 11.91 36.60 11.70 43.20 13.68 50.90 11.94 29.80 11.81 29.50 10.71 55.05 11.28 80.40 12.55 55.35 14.68 48.75 14.22 56.91 12.55 37.14 12.21 36.05 7.58 36.60 8.11 19.05 9.29 35.45 9.48 40.50 11.68 26.95 11.15 28.25 14.11 37.94 12.51 55.25 15.85 61.35 15.64
Southbound Curviameter Deflectograph 11.62 9.48 20.50 10.24 11.80 11.42 11.80 11.42 11.95 13.91 15.52 13.81 17.50 10.81 14.30 10.01 18.10 10.77 13.55 12.55 20.65 12.33 28.70 16.40 28.10 24.54 29.20 16.42 18.00 15.05 10.00 10.01 4.17 10.37 3.70 18.42 4.85 17.06 4.50 11.05 4.65 11.05 4.50 14.25 6.10 16.95 28.25 19.89 26.10 17.09 19.65 18.13 19.75 16.45 19.20 11.55 19.87 13.71 19.60 13.72 54.00 14.65 59.60 14.05 41.60 13.95 57.65 10.94 70.05 10.04 100.15 9.28 54.55 10.91 16.50 14.91 44.40 17.62 48.60 21.68 45.00 20.95 95.50 15.88 55.47 16.71 38.05 18.79 39.75 20.99 41.80 17.43 38.53 14.42 34.90 14.28 46.81 16.36 41.15 15.52 42.70 16.28
Ch. 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900
124
Northbound Curviameter Deflectograph 35.70 17.42 38.50 15.05 33.00 16.72 21.70 15.95 22.20 13.67 25.55 11.60 23.90 11.65 23.45 15.78 30.75 13.60 29.15 15.85 30.30 2.51 23.25 12.06 24.07 11.77 22.20 15.99 15.35 16.45 10.05 15.42 12.10 11.84 8.05 10.24 10.05 10.64 10.70 11.21 10.25 9.39 13.00 10.68 16.60 9.88 14.50 10.15 11.60 9.71 15.05 9.57
Southbound Curviameter Deflectograph 52.70 13.35 43.70 13.88 51.30 12.81 42.65 11.14 31.65 12.29 20.45 13.56 20.75 15.01 27.65 16.45 16.85 8.91 14.15 10.04 13.75 11.01 12.80 7.56 12.20 11.61 13.00 12.92 14.15 12.44 13.25 18.28 11.47 11.04 12.75 10.65 9.88 12.85 19.00 15.22 12.30 13.14 12.35 13.45 15.45 11.12 11.25 15.85 13.43 17.85 9.26 20.78 9.45 22.72 11.30 19.88