Physics-based Simulation Models for EBSD

3 downloads 3482 Views 10MB Size Report
„Introduction to Conventional Transmission Electron Microscopy“ github.com/marcdegraef/CTEMsoft. Theory: Rossouw C J, Miller P R, Josefsson T W and Allen ...
Physics-based Simulation Models for EBSD: Advances and Challenges 14th EMAS Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS 2015, May 3 – 7, Portoroz, Slovenia

Aimo Winkelmann Bruker Nano, Berlin [email protected]

Maarten Vos

Gert Nolze

Research School of Physics and Engineering Australian National University Canberra, Australia

Federal Institute for Materials Research and Testing Berlin, Germany

Francesc Salvat-Pujol Wolfgang Werner Vienna University of Technology Vienna, Austria

Outline

• Introduction • Simulation of EBSD patterns • Application: Orientation Mapping using Pattern Matching • Electron Scattering Experiments: Electron Spectroscopic Diffraction

EBSD

EBSD

Kikuchi Pattern intensity on Diffraction Sphere fixed to crystal

EBSD as a cartographic problem

Towards Quantitative Models

dynamical electron diffraction chemical resolution Al

contrast reversal

excess-deficiency band profile

O

background formation

6

Using the reciprocity principle

EBSD

ECP

outgoing waves diffraction of incoming plane waves (→ TEM)

D

Simple model of backscatter diffraction A. Winkelmann “Dynamical Simulation of Electron Backscatter Diffraction Patterns” in “Electron Backscatter Diffraction in Materials Science” 2nd ed., 2009 7 www.springer.com/materials/book/978-0-387-88135-5

Bloch wave model of electron diffraction Wave function is sum of Bloch waves ( j)  (N ) ( j)    (r )   c j exp(ik r ) C g exp(igr ) j

g

Fourier expansion of crystal potential  (N )  V ( r )   Vg exp(igr ) g

ECP/EBSD Simulation program Experiment 6HSiC 15kV

   K   2    (r )  e V (r )  (r )   (r ) 2m 2m 2

Schrödinger Equation

2

2 0

Eigenvalue problem (Matrix) + boundary conditions Wave function of diffracted electrons

( j) cj,C ,k ( j) g

See: M. De Graef „Introduction to Conventional Transmission Electron Microscopy“ github.com/marcdegraef/CTEMsoft

Backscattering proportional to probability density of electrons near atomic cores

I ECP

     Z  Bij (t ) C C exp(  M ) exp[i(h  g )rn ] 2 n

n

i g

i, j

j* h

g ,h

Simulation Theory:

Rossouw C J, Miller P R, Josefsson T W and Allen L J Phil. Mag. A 70, 985 (1994)

Bloch Wave Visualization: bit.ly/1IgmEuk

8

RuO2

experiment © J.R. Michael, Sandia

RuO2 20kV

dynamical simulation 9

EBSD + Electron Channeling Patterns

www.bruker.com 10

Gallium Phosphide: Zincblende Structure

11

Applications film growth of non-centrosymmetric semiconductors: - antiphase domains

- polarity inversion

12

Point-group sensitivity of Kikuchi patterns ●

conventional EBSD is limited to Laue group-resolved analysis, kinematical intensities: Ihkl = I-h-k-l



(„Friedel's rule“)

Kikuchi patterns are sensitive to the point group of a crystal K. Marthinsen and R. Høier, Acta Cryst. A 44, 700 (1988) K. Z. Baba-Kishi and D. J. Dingley, Scanning 11, 305 (1989)



Space group discrimination (chirality of quartz): A. Winkelmann and G. Nolze, Ultramicroscopy 149, 58 (2015)

13

Gallium Phosphide: Kinematic EBSD

90°

14

Gallium Phosphide: Kinematic EBSD

90°

15

Gallium Phosphide: Dynamical Theory

90°

16

Gallium Phosphide: Dynamical Theory

90°

17

Gallium Phosphide: Sample

18

Quantitative Kikuchi Pattern Matching

experiment: 20kV, 5nA, 160x120px, 15ms

cross-correlation coefficient

normalized difference

19

GaP Orientation Mapping: Point Group Resolved

30°

!

120°

20

Orientation Mapping of Polar Materials



Kikuchi patterns are sensitive to the point group of a crystal



conventional, kinematic EBSD is limited to Laue group-resolved analysis



Dynamical diffraction: Friedel's rule is not valid for Kikuchi patterns



Point-group resolved EBSD orientation mapping possible via matching of experimental to simulated Kikuchi patterns: A. Winkelmann, G. Nolze, Appl. Phys. Lett. 106, 072101 (2015)



Orientation determination by EBSD Pattern Library: Y. Chen, S.U. Park, D. Wei, G. Newstadt, M. Jackson, J.P. Simmons, M. De Graef, A.O. Hero, arxiv.org/abs/1502.07436 21

electron scattering

Recoil effects: Photoemission, Electron Scattering, Neutron Scattering M. Vos, M. R. Went, Y. Kayanuma, S. Tanaka, Y. Takata, and J. Mayers Phys.Rev. B 78, 024301 (2008)

Energy dependent measurements of Kikuchi band profiles High energy electrostatic electron energy analyzer, Australian National University, Canberra DE

Suggest Documents