CT Basics. From Single-Slice to Cone-Beam Spiral CT. • Technology. – Basic
parameters. – Detector concepts, tube technology. – Scan trajectories, scan
modes.
Siemens 2⋅2⋅32=128-slice dual source cone-beam spiral CT (2005)
Basics of Clinical X-Ray Computed Tomography
EMI parallel beam scanner (1972)
y
Marc Kachelrieß x
z
Institute of Medical Physics University of Erlangen-Nürnberg Germany
1536 views per rotation in 0.33 s 2⋅32×(672+352) 2-byte channels per view 600 MB/s data transfer rate 180 views per rotation in 300 s
www.imp.uni-erlangen.de
GE LightSpeed
5 GB data size typical
2×160 positions per view
Toshiba Aquilion
What does CT Measure? • Polychromatic Radon transform p( L ) = − ln dE w( E ) e Siemens Somatom Definition
µ (r , E )
− dL µ ( r , E )
with normalized detected spectrum: 1 = dE w( E )
Philips Brilliance
• Widely used monochromatic approximation: p ( L ) ≈ dL µ ( r , Eeff )
with the effective energy being around 70 keV Dual Source
CT-Performance (Best-of Values)
CT Basics From Single-Slice to Cone-Beam Spiral CT
Trot
• Technology
1972 300 s×42
– Basic parameters – Detector concepts, tube technology – Scan trajectories, scan modes – – – –
Spiral CT
• Algorithms 2D filtered backprojection Spiral z-interpolation ASSR and EPBP (cone-beam recon.) Phase-correlated CT (e.g. cardiac CT)
• Image quality and dose – – – –
Spatial resolution (PSF, SSP, MTF) Relation of noise, dose and resolution Dose values (CTDI, patient dose) Dose reduction techniques
collimation
typ. 30 cm scan1
slices/s
2×13 mm
---
0.007/42
1980
2s
2 mm
20 mm, 30 s
0.5
1990
1s
1 mm
10 mm, 30 s
13
1995
0.75 s
1 mm
8 mm, 30 s
1.33
1998
0.5 s
4×1 mm
4×1 mm, 30 s
124
2002
0.4 s
16×0.75 mm 16×0.75 mm, 12 s
604
2004
0.33 s
64×0.5 mm
2404
2010
0.2 s
512×0.5 mm 512×0.5 mm, 0.2 s
1 2 3 4
64×0.5 mm, 3 s
2500
assuming a breath-hold limit of 30 s factor 4 converts from head FOM to full body FOM assuming p = 1, otherwise Seff is increased assuming p = 1.5 since IQ is independent of pitch for MSCT
Seite 1
1
Fan-Beam Geometry (transaxial / in-plane / x-y-plane)
p.a. →
x-ray tube
y
180°
Acquisition lateral →
x
Reconstruction field of measurement (FOM) and object Object, Image detector (typ. 1000 channels) y
a.p. → Sinogram, Rawdata x
(illustration without quarter detector offset)
Data Completeness
y
y
x
x
In the order of 1000 projections with 1000 channels are acquired per detector slice and rotation.
y
Each object point must be viewed by an angular interval of 180°or more. Otherwise image reconstruction is not possible.
y
x
x
(illustration without quarter detector offset)
Basic Parameters
Demands on the Mechanical Design
(best-of values typical for modern scanners) • • • • • • • • • • •
In-plane resolution: 0.4 … 0.7 mm Nominal slice thickness: S = 0.5 … 1.5 mm Effective slice thickness: Seff = 0.5 … 10 mm Tube (max. values): 100 kW, 140 kV, 800 mA Effective tube current: mAseff = 10 mAs … 1000 mAs Rotation time: Trot = 0.33 … 0.5 s Simultaneously acquired slices: M = 4 … 64 Table increment per rotation: d = 2 … 50 mm Pitch value: p = 0.3 … 1.5 Scan speed: up to 16 cm/s Temporal resolution: 50 … 250 ms
• Continuous data acquisition in spiral scanning mode • Able to withstand very fast rotation – Centrifugal force at 550 mm with 0.5 s: F = 9 g – with 0.4 s: F = 14 g – with 0.3 s: F = 25 g
• • • • •
Mechanical accuracy better than 0.1 mm Compact and robust design Short installation times Long service intervals Low cost
Seite 2
2
Tube Technology
Demands on X-Ray Sources
conventional tube
high performance tube
(rotating anode, helical wire emitter)
(rotating cathode, anode + envelope, flat emitter)
cooling oil
cooling oil
cathode
cathode anode
Photo courtesy of GE
∂z ∂RF
• Available as multi-row arrays • Very fast sampling (typ. 300 µs) • Favourable temporal characteristics (decay time < 10 µs) • High absorption efficiency • High geometrical efficiency • High count rate (up to 108 cps*) • Adequate dynamic range (at least 20 bit)
2∂z
cooling oil
2∂RF B
2∂RF
anode
C
Photo courtesy of Siemens
Demands on CT Detector Technology
C cathode
B
C
C
anode
tan φ =
cathode
anode
High instantaneous power levels (typ. 50-100 kW) Increasing with rotation speed High continuous power levels (typ. >5 kW) High cooling rates (typ. >1 MHU/minute) High tube current variation (low inertia) Compact and robust design
anode
• • • • • •
* in the order of 105 counts per reading and 103 readings per second Straton Tube
Multirow Detectors for Multi-Slice CT 2006
z
Adaptive Array Technology
40 mm GE 64 / 0.37 s / 3.8°
64 × 0.625 mm
40 mm
β
Philips 64 / 0.4 s / 3.8°
64 × 0.625 mm
19 mm
16 channels (of 103) shown
Siemens 2⋅64 / 0.33 s / 1.9°
2⋅2⋅32 × 0.6 mm 24 × 1.2 mm
32 mm 64 × 0.5 mm
Toshiba M = 64 / 0.4 s / 3.2° z Data courtesy of Siemens Medical Solutions, Forchheim, Germany
Number of simultaneously acquired slices M / Rotation time trot / Cone-angle Γ
Seite 3
3
Scan Trajectories
Rows vs. Slices z
z
z
FOM
z
4 Rows 4 Slices
6 Rows 4 Slices
1 Rows 4 Slices
4 Rows 8 Slices
M = 1⋅ 4
M = 1⋅ 4
M = 4 ⋅1
M = 2⋅4
p=
d ≤ 1.5 M ⋅S
Spiral
p=
d ≤ 0.9 M ⋅S
Sequence
p=
1 N rot
Circle
CT Basics From Single-Slice to Cone-Beam Spiral CT
• Technology – Basic parameters – Detector concepts, tube technology – Scan trajectories, scan modes
• Algorithms – – – –
2D filtered backprojection Spiral z-interpolation ASSR and EPBP (cone-beam recon) Phase-correlated CT (e.g. cardiac CT)
• Image quality and dose – – – –
Animation by Udo Buhl, Aachen
Spatial resolution (PSF, SSP, MTF) Relation of noise, dose and resolution Dose values (CTDI, patient dose) Dose reduction techniques
Emission vs. Transmission Emission tomography • Infinitely many sources • No source trajectory • Detector trajectory may be an issue • 3D reconstruction relatively simple
2D: In-Plane Geometry
Transmission tomography • A single source • Source trajectory is the major issue • Detector trajectory is an important issue • 3D reconstruction extremely difficult
• • • •
Decouples from longitudinal geometry Useful for many imaging tasks Easy to understand 2D reconstruction – Rebinning = resampling, resorting – Filtered backprojection
Seite 4
4
Fan-beam geometry
Parallel-beam geometry
transaxial rebinning
(β ,α )
(ξ ,ϑ )
Fan-beam geometry
Parallel-beam geometry
In-Plane Parallel Beam Geometry β RF
y
α
y
ϑ
x
ξ
(β ,α )
y
ϑ
x
ξ
x
Measurement: p(ϑ , ξ ) = Rf (ϑ , ξ ) = dx dy f ( x, y ) δ (x cos ϑ + y sin ϑ − ξ )
(ξ ,ϑ )
FBP (Filtered Backprojection)
2D Backprojection (Discrete Version of the Transpose Radon Transform)
Measurement: 1D FT:
p(ϑ , ξ ) = dx dy f ( x, y ) δ (x cos ϑ + y sin ϑ − ξ )
dξ p (ϑ , ξ ) e
− 2π iξu
Central slice theorem: π
Inversion:
= dx dy f ( x, y ) e
P2 (ϑ , u ) = F (u cos ϑ , u sin ϑ ) ∞
f ( x, y ) = dϑ du u P2 (ϑ , u ) e 0
− 2π iu ( x cosϑ + y sin ϑ )
2π iu ( x cos ϑ + y sin ϑ ) p(ϑ , ξ )
−∞
π
= dϑ p(ϑ , ξ ) ∗ k (ξ ) 0
ξ = x cos ϑ + y sin ϑ
Add ray value to each pixel in the “vicinity“ of the ray.
Seite 5
5
Spiral CT Scanning Principle Filtered Backprojection (FBP)
Scan trajectory
Start of spiral scan
1. Filter projection data with the reconstruction kernel. 2. Backproject the filtered data into the image:
Direction of continuous patient transport
Reconstruction kernels balance between spatial resolution and image noise.
1996:
1998:
2002:
1× 5 mm, 0.75 s
4× 1 mm, 0.5 s
16× 0.75 mm, 0.42 s
0
z
0
t
2004:
2⋅⋅32×0.6 mm, 0.33 s Kalender et al., Radiology 173(P):414 (1989) and 176:181-183 (1990)
Spiral z-Interpolation for Single-Slice CT M=1
without z-interpolation
with z-interpolation
d p= ≤2 M ⋅S
z
z = zR Spiral z-interpolation is typically a linear interpolation between points adjacent to the reconstruction position to obtain circular scan data.
Spiral z-Filtering for Multi-Slice CT M=2, …, 6 d p=
M ⋅S
CT Angiography: Axillo-femoral bypass
≤ 1.5
M=4 z
120 cm in 40 s 0.5 s per rotation 4× ×2.5 mm collimation pitch 1.5
z = zR Spiral z-filtering is collecting data points weighted with a triangular or trapezoidal distance weight to obtain circular scan data.
Seite 6
6
The Cone-Beam Problem
Animation by Siemens
1×5 mm 0.75 s
4×1 mm 16×0.75 mm 2⋅⋅32×0.6 mm 0.5 s 0.375 s 0.375 s
256×0.5 mm