Ramsey numbers and an approximation algorithm for ... - Springer Link
Recommend Documents
[E]) time bounded approximation algorithm for the vertex cover whose worst case ratio is A
Jun 12, 2015 - Abstract For two given graphs G1 and G2, the Ramsey number R(G1, G2) is the least integer r such that for every graph G on r vertices, either G ...
(Email: Email: [email protected]) ... (Email: [email protected]) ... ratio α = val/opt where val and opt are the values of the approximation and the opti ...
Abstract. We present an approximation algorithm for the problem of finding a minimum-cost k-vertex connected spanning subgraph, assuming that the number of ...
Feb 14, 2018 - Abstract. Given a graph G and a positive integer k, the Gallai-Ramsey number is defined to be the minimum number of vertices n such that any ...
Sep 26, 2018 - at one end. We provide the 2-color Ramsey numbers for these two classes ... Given two graphs G and H, the general k-colored Gallai-. Ramsey ...
Apr 25, 2016 - CO] 25 Apr 2016 ..... It is also close to best possible, since an elementary argument ..... We now show that this is close to best possible. ..... cdN. 2ân . Relabeling W1 and W2 if necessary, we have found sets W1 and W2 ...
delete at most a edges from the graph such that the remaining edges which connect u to the rest of the graph have at most b colors. Then |U| ⤠2(bs + a). Proof.
May 28, 2014 - CO] 28 May 2014. On Some Zarankiewicz Numbers and. Bipartite Ramsey Numbers for. Quadrilateral. Janusz Dybizbanskiâ, Tomasz Dzidoâ .
In this paper we define new numbers called the Neo-Ramsay numbers. We show that these numbers are in fact equal to the Ramsay numbers. Neo-Ramsey ...
Brat'ev Alikhanyan 2, Yerevan, 375036 Armenia. Received November 8, 2006; in final form, March 1, 2007. AbstractâThe yields of products originating from ...
Oct 3, 2012 - We describe algorithms for constructing a toric variety from a fan and an ... is the volume form for the FubiniâStudy metric in Pn (cf. [3]) Ï0([ξ]) =.
similar refinement that is used in the interlaced GIF images [2]. .... http://www.daubnet.com/formats/GIF.html. 3. ... http://www.acm.org/tog/resources/RTNews/html.
May 9, 2007 - David R. Cheriton School of Computer Science. University ..... For each Steiner point p in an edge, if there is no Steiner point with height h(p) in.
Abstract. Consider a polyhedral surface consisting of n triangular faces where each face has an associated positive weight. The cost of travel through each face ...
Sep 20, 1996 - required to connect u to u0 by a polygonal path lying in P. A polygonal path which uses the minimum number of required line segments is ...
Apr 11, 2004 - (vertices at which the interior angle exceeds Ï). Our algorithm ... each other if the straight line segment joining them does not intersect the exterior of P. The visibility polygon V (p) is the .... vertex of P. But then the rays for
to the aligning program: this additional requirement constrains the alignment to have at ... whose number is only linear in the input size [Par98]. Moreover, in ...
first improvement over the trivial maximum weight matching based 2- ... that the total number of extracted bandpasses in the resultant matrix is maximized [3,2,8]. ... a row maps to a vertex, a column maps to an edge, and aij = 1 if and only if.
Jan 1, 2000 - son with a conventional approximation algorithm based on beam search DP, relative ... state transition sequence search problem on the follow-.
as far from it as possible. This goal is best achieved by considering the so-called Robinson property: a dissimilarity matrix dR on a finite set X is Robinsonian if its ...
Sep 11, 2008 - We will use the following form of Hoeffding's inequality [Hoe63]: ... nonzero singular values of A, we see by the Cauchy-Schwarz inequality that.
Mar 26, 2015 - Ramsey numbers for degree monotone paths. Yair Caro. Department of Mathematics. University of Haifa-Oranim. Israel. Raphael Yuster.
graph of at least N vertices whose edges are colored with two colors say, red .... 3 consecutive vertices in H1 with red blue color as otherwise K9 would have a ...
Ramsey numbers and an approximation algorithm for ... - Springer Link
Summary. We show two results. First we derive an upper bound for the special Ramsey numbers rk(q), where rk(q) is the largest number of nodes a.
Actx Informatica22, 115-123 (1985) C) Springer-Vedag1985
Ramsey Numbers and an Approximation Algorithm for the Vertex Cover Problem Burkhard Monien and Ewald Speckeumeyer Universitit Paderbora, Fachboreich17, TheoretischeInformatik,Posffach1621, D-4790 Paderborn,Federal Republicof Germany
Summary. We show two results. First we derive an upper bound for the special Ramsey numbers rk(q), where rk(q) is the largest number of nodes a graph without odd cycles of length bounded by 2 k + 1 and without an k k+x k + 2 independent set of size q + l can have. We prove rk(q) no for some sufficiently large no.
116
B. Monienand E. Speckenmeyer
Erd~s considered a function similar to rk(q), which differs from ours in the stronger requirement that the graphs under consideration are not allowed to contain any cycle of length k or less. Let us denote his function by r~(q). Then
1+1_~
it is shown in [4] q 2k~_~(q)0. There is no estimarion given for the constant c. In order to achieve the upper bound for our function r~(q) and to obtain a "good" constant (for q=O and 1 our solution of rk(q) is exact) we have to estimate a breadth first search approach very carefully. Note that our result yields the same upper bound for r~ as the one for ~ obtained in ['4]. This is remarkable since we prohibit only short cycles of odd length and allow short cycles of even length to occur. For a survey of other lower bounds for ~(G) see the paper of Griggs 19]. In the second part of this paper we use the above result in order to obtain an O(tVI.IE[) time bounded approximation algorithm for the vertex cover problem. The underlying idea of this algorithm consists of destroying first short cycles of odd length and using afterwards the lower bound for 0~(G) for graphs without short odd cycles. The algorithm also uses a technique described by Nemhauser and Trotter in 1"15"]. We will show that our algorithm always IMI _ . 1 computes a vertex cover M such that ~ - - ~ - ~ - ~ - ~ - ~ , for every graph G with at most (2k~-3)~(2k§ nodes. That means that the worst case ratio d of our algorithm is bounded by
,I__1.
-I-q
1
k+l
The VertexCover Problem
119
Now we have to prove (2).
k_~(q_qk-k I )k +kl
+ q _ _ _ . _I= q
~-1 k k+1 ~ q, where q is the smallest integer such that k