Sep 5, 2018 - follow: {J(¯r(k)) < Jth, means that the system is in the nominal mode. J(¯r(k)) ⥠Jth means that a fault occurred at the instant k. (9). 10 / 21 ...
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Robust Fault Detection H∞ Filter for Markovian Jump Linear Systems with Partial Information on the Jump Parameter L. Carvalho, A. M. de Oliveira, and O. L. V. Costa Departamento de Engenharia de Telecomunica¸c˜ oes e Controle Escola Polit´ ecnica da Universidade de S˜ ao Paulo, Brazil
Florian´ opolis, Brazil, September 02-05, 2018
1 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Contents
1 Preliminaries
Introduction and motivation Basic Concepts 2 Fault Detection Problem 3 Main results 4 Numerical Example 5 Conclusion
2 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Introduction and motivation Basic Concepts
Motivation
I Fault Detection in semi-reliable networks (Networked Control Systems) with Partial Information
System
y
yˆ Filter Channel
Intrinsic limitations of the channel: I Packet dropouts; I Delays etc;
3 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Introduction and motivation Basic Concepts
Basic Concepts
ρ21 I Markov Chain
ρ11
1
ρ12
2 ρ22
I Markov Jump Linear Systems (MJLS)
x(k + 1) = Aθk x(k) + Bθk w(k) z(k) = Cθk x(k) + Dθk w(k)
I M. Zhong, H. Ye, P. Shi, and G. Wang. Fault detection for Markovian jump systems. IEE Proceedings-Control Theory and Applications, 2005. I Alim PC Gon¸calves, Andr´e R Fioravanti, and Jos´e C Geromel. Filtering of discrete-time Markov jump linear systems with uncertain transition probabilities. Intern. Journal of Robust and Nonlinear Control, 2011.
4 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Fault Detection
Consider the following MJLS representation x(k + 1) = Aθk x(k) + Bθk u(k) + Bdθk d(k) + Bf θk f (k) y(k) = Cθk x(k) + Ddθk d(k) + Df θk f (k) Ga : x(0) = x0 , The weighting system x (k + 1) = Awf xf (k) + Bwf f (k) f Wf : fˆ(k) = Cwf xf (k) + Dwf f (k) xf (0) = xf0
(1)
(2)
5 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Fault Detection
The Markovian filter that generates the residual signal η(k + 1) = Aηθˆk η(k) + Mηθˆk u(k) + Bηθˆk y(k) r(k) = Cηθˆk η(k) + Dηθˆk y(k) F: η(0) = η
(3)
0
The following matrices must be calculated
Aηθˆk , Mηθˆk , Bηθˆk , Cηθˆk , Dηθˆk
6 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Block scheme
7 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Residual signal generation
We define the extended system composed by all the previous dynamics: ( ˜θ w(k) x ¯(k + 1) = A˜θk x ¯(k) + B k ¯ Gaug : ˜θ x ˜ θ w(k) re (k) = C ¯(k) + D ¯ k
(4)
k
where re (k) = r(k) − fˆ(k), x ¯(k) = [x0 (k) η 0 (k) x0f (k)]0 , and 0 0 0 0 ˆ w(k) ¯ = [u (k) d (k) f (k)] and "
A˜θk θˆk ˜ ˆ C θk θk
˜ ˆ B θk θk ˜ Dθk θˆk
# =
Aθk Bηθˆ Cθk k 0 Dηθˆk Cθk
0 Aηθˆk 0 Cηθˆk
0 0 Awf −Cwf
Bθk Mηθˆk 0 0
Bdθk Bηθˆk Ddθk 0 Dηθˆk Ddθk
Bf θk Bηθˆk Df θk Bwf Dηθˆk Df θk − Dwf
(5)
8 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Residual signal evaluation
We define L as the evaluation time. Then: ( for k ≥ L, r¯(k)0 = [r(k)0 r(k − 1)0 . . . r(k − L)0 ] for k < L, r¯(k)0 = [r(k)0 r(k − 1)0 . . . r(0)0 ]
(6)
and, given the discrepancy between the intervals, the evaluation functions for each case are set as ( σ=k ) 21 X 0 for k − L ≥ 0, J(¯ r(k)) = r¯(σ) r¯(σ) , σ=k−L (7) (σ=k ) 12 X r(k)) = r¯(σ)0 r¯(σ) . for k − L < 0, J(¯ σ=0
9 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Residual signal evaluation
The threshold is defined as Jth =
sup
E(J(¯ r(k))).
(8)
d∈L2 , f =0
The occurrence of faults can be detected by analyzing the value of J(¯ r(k)) as follow: ( J(¯ r(k)) < Jth , means that the system is in the nominal mode (9) J(¯ r(k)) ≥ Jth means that a fault occurred at the instant k.
10 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Mode dependent H∞ fault detection filter Theorem There exists a filter in form of (3) such that kGaug k∞ < γ if there exist ˜ il , N ˜il , S˜il , W , and the matrices ∆l , Ol , Fl , Gl symmetric matrices Zi , Xi , M with compatible dimensions that satisfy the LMI constraint (10), (10) Zi Zi 0 0 0 0 Mil11 Mil21 Mil31 Nil11 Nil21 Nil31 ε (Z)A i i Rl Ai + ∆l Ci + Ol 0 Gl Ci + Fl
• Mil22 Mil32 Nil12 Nil22 Nil32 εi (Z)Ai Rl Ai + ∆l Ci 0 Gl Ci
• • Mil33 Nil13 Nil23 Nil33 0 0 εi (W )Awf −Cwf
• • • 11 Sil 21 Sil 31 Sil εi (Z)Bi Rl Bi + Hl 0 0
• Xi 0 0 0 0
• • Wi 0 0 0
• • • • 22 Sil 32 Sil εi (Z)Bdi Rl Bdi + ∆l Ddi 0 Gl Ddi
• • • γ2I 0 0
• • • • γ2I 0
• • • • • γ2I
• • • • • 33 Sil εi (Z)Bf i Rl Bf i + ∆l Df i εi (W )Bwf Gl Ddi − Dwf
>
11 Mil Mil21 31 Mil P l∈Ml ail N 11 il21 Nil Nil31
• • • • • • εi (Z) 0 0 0
• Mil22 Mil32 Nil12 Nil22 Nil32
• • Mil33 Nil13 Nil23 Nil33
• • • • • • • 0 Rl + Rl + εi (Z) − εi (X) 0 0
• • • 11 Sil 21 Sil 31 Sil
• • • • • • • • εi (W ) 0
• • • • 22 Sil 32 Sil • • • • • • • • • I
• • • • • 33 Sil
>0
If a feasible solution is found, then a suitable RFD filter is given by Aηl = Rl−1 Ol , Bηl = Rl−1 ∆l , Mηl = Rl−1 Hl , Cηl = Fl , Dηl = Gl for all i ∈ K. 11 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
System Values
Example extracted from Zhong et al. (2005). A1 Dd
= =
0.1 0 0 0.1 0 0 0 0 0.2 0.4
1 0 0.2 0
0 0.5 0 0.2 2 −1
, Df =
0.3
, A2 = −0.1 0 0
0 0.2 0 0
−1 0 −0.2 0
0 −0.5 0 −0.5
0.8
1
, Bf = 1 , C = , Bd = −2.4 2 1.6 0.8
0 1
1 0
0 1
1 0
,
−2
, Awf = 0.5, Bwf = 0.25, Cwf = 1, Dwf = 0.5.
12 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Norm behavior
Ω1 =
0.9 0.1
0.1 0.5 , Ω2 = 0.9 0.5
0.5 0.1 , Ω3 = 0.5 0.9
0.9 ρ1 Ψ= 0.1 1 − ρ2
1 − ρ1 ρ2
0.64 0.62 0.6 0.58 0.56 0.54 0.52 0.5 1 1
0.5
0.5 0
0
13 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Residual filter matrices For the temporal simulations the values of Ω and Ψ 0.8 0.2 0.9 0.1 Ω= ,Ψ = 0.7 0.3 0.7 0.3 By using the theorem, we get γ ≈ 0.5664:
0.23 0.66 0.46 0.71 −0.05 0.62 0.73 1.45 0.85 −0.53 0.26 , Aη2 = 0.20 , 0.45 0.27 0.95 0.86 −0.20 0.60 −0.44 −0.40 −1.53 −0.63 −1.51 0.45 −0.92 −1.26 −0.73 −1.31 −0.97 0 −0.34 , Bη2 = −0.89 −0.01, Mη1 = Mη2 = 0, Bη1 = −1.12 −1.04 −0.48 0 −1.09 −0.37 1.82 0.48 1.79 0.63 0 −0.15 0 −0.01 0 0 0 , Cη2 = −0.06 , Dη1 = 0.32 , Dη2 = 0.11 . Cη1 = −0.37 −0.02 −0.13 0.11 0.03 −0.38 −0.06 0.08
Aη1 = 0.59 0.28
0.80 1.15 1.08 −1.79
14 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Simulation data
I d(k) is assumed to be a white noise sequence E(d(k)) = 0 and E(d(k)2 ) = 0.7. I The evaluation time is taken as L = 300.
15 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Fault behavior
2
1.5
1
0.5
0
-0.5
0
50
100
150
200
250
300
instant k
16 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Evaluation function
4 w/o failure RFDF
J(r(k))
3
2
1
0 0
50
100
150
200
250
300
instant k
17 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Monte Carlo simulation
Average amount of time to detect the failure is k = 3.3930 ± 1.7840, for a Monte Carlo simulation of 5000 rounds. 2.5 w/o failure RFDF
J(r(k))
2 1.5 1 0.5 0
0
50
100
150
200
250
300
instant k
18 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Conclusion
The Robust Fault Detection problem associated with a Markov Jump Linear System in the discrete-time domain for the partial observation of the Markov chain is studied. An LMI formulation is proposed to design a filter satisfying an H∞ upper bound performance. A numerical example is presented to illustrate the method.
19 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
I We would like to thank to Coordena¸c˜ ao de Aperfei¸coamento de Pessoal de N´ıvel Superior (CAPES), S˜ ao Paulo Research Foundation (Funda¸c˜ ao de Amparo ` a Pesquisa do Estado de S˜ ao Paulo - FAPESP) and University of S˜ ao Paulo Foundation (FUSP) for the financial support of this research.
20 / 21
Preliminaries Fault Detection Problem Main results Numerical Example Conclusion
Thank you for your attention!
21 / 21