In the present article, we study the dependency of this effect on two properties of the eye saccade: amplitude and direction. As saccade direction in the test stage.
Sensorimotor adaptation in color: transfer properties with respect to direction and amplitude of the eye saccade. Aline Bompas
Laboratoire de Psychologie Expérimentale, CNRS, Université Paris 5, France
J. Kevin O’Regan
Laboratoire de Psychologie de la Perception, CNRS, Université Paris 5, France
Previous work (Bompas & O’Regan, 2006a, 2006b) revealed that color perception is subject to sensorimotor adaptation, i.e. to a perceptual adaptation whose effects depend on actions. In these experiments we had shown that the introduction of new sensorimotor contingencies between eye movements and color changes resulted in a consistent perceptual bias affecting color comparison judgements made across an eye saccade. In the present article, we study the dependency of this effect on two properties of the eye saccade: amplitude and direction. As saccade direction in the test stage increasingly deviates from the horizontal rightwards saccade performed during adaptation, the perceptual shift decreases. The effect is still present for pi/8 but disappears for larger differences (pi/4 to pi/2). On the other hand, the perceptual bias proves very robust to changes in the amplitude of the saccade performed during the test stage: the effect is still measurable for saccades four times smaller or twice larger than during adaptation, and no clear dependency of the amplitude of the effect on the amplitude of the eye saccade was obtained. This difference in transfer properties could indicate that the effect involves the initiation stage of the eye saccade, which would confirm that the perceptual effect results from the up-dating of a prediction function linking eye saccades and color changes. Keywords: color, eye movements, sensorimotor, adaptation
Introduction
,
-
#
. %
&
' ($
! )* *
)* *
" # $ ,
+
' ($ +
%
)* * . #0 1
+
+
, +
#%
-
&
+ +
+
,
#0
. ,
. #
# ,
,
+ . (
,
,
, #0
#'
,
,
, ,
+
,
-
. 1
+
, #0
# / , ,
,#/
+ #'
,
+
, ,
+ , # ! )* *
, + +
)* * +
+
% +
&
#
, 2$
' ($ +
+ +
, #
+
, $ 2
,
+ + ,
, +
, + +
#%
#0, .
#
, ,
,
, ,
, 1
+ /
-
General procedure
# . ,
, +
,
-
#0
. * ,
, ,
) 6#
#0 , $ 0 1 ( , , 7* #2 . , ,
,
' ($
3 ,
4.
,
0 ,
,
#
4.
Stimuli
1
)* *
+
+
,
,
3
,
#
#/ .
(
7 7
4.
3 %
+
1
+ ,
,
,
# /
.
; , #'
+
+
. , ,
4
,
+ + B*# " 4 7
B * #7 = C ; .B * #)"
$; + D
#
.
5)
+
)
,
-
#
+ * #)
* # * #9
#)
#
)#
G2 G1 Y R1 R2
Methods Observers 0 . 9 1 1 . ,
1
1 # : . 1 4. ) )) 4. 7 7 6 4. 4. 4. 4. 7 ,# /
, 4. 7 ) 7
,
.
Figure 1. Chromaticity coordinates of stimuli in adaptation and test stages (CIE 1931).
Test stage
1
0
. ,
4. 6# 0 )# 0 , 6# 0 , 7 ,
#
A C ,
+
$ ) $ ,
C )# 0 .
$
C
+
#$ )
+ ,
A .B * #7 $ ), 4 7 , A + , #
,
C )
B*# 6
)
+ 2$
,# $ $ 2
A *E $# :
C AC #/
*E
#0 ,
A$ ,
C )
-
;
6**
,
#
LR same
Procedure Adaptation stage
RL different
0 + +
+
*
#0
,
5
5
, 5
same
. 5
,
700
#
different
0
110 0 time (ms)
40 0
80 0
Figure 3. The time sequence of adaptation trials in Experiments 3 and 4. Left/red and right/green patches are presented successively, either in the left-right order (LR) or the right-left order (RL). Left: left-right trial with two round patches. Right: right-left trial with a round patch on the right and an oval patch on the left.
. , ,
120 0
F
(# 0
, #0
,
+
,
1 ,
+ Figure 2. The time sequence of adaptation trials in Experiments 1. A red patch appears in the center, followed by a green patch on the right. Left: trial with two round patches. Right: trial with a round patch on the right and an oval patch on the left.
(
. .
time (ms)
1
# 0
1
#
Test stage
0 1
, ,
$ C *E G E
$ )C ) G *E
#0 + C )$ ) C $ + *E $C
AA E
#0 ,
1
(
7
, . 4.
#0
1 ,
-
,
. -
3 H" I
+ ,
I #0
, + ,
J
; H*
* #9
.
-
#
JJ
KK
7
7
#4
, #
H* #) #
)I ,
#/ ,
+ I )6
# I# 4. # *
#)
*
4.
,
" )6 7 * 7
,
"
,
+
,
+
. # # H* #
* #9
;
*# ,
. 6
1
#
,
#0 H* I
) ,
7 ,
#0
-
,
.
7* # 0 4.
#0
K 7
7
+
,
,
#0 3
#)
#) # D ,
H* I
) H )
7
-
. 5)
,
4.
,
.
56 7 5" ) 7 6 "I ,
#
,
.
4.
+ 5" H*
#0 7 #
7 * #9
+
# ,
.
7
#
,
,
,
"
#% ,
"
4.
9
,
,
# 0
#
)# (0.2
(0) (0.5
-pi/8 (
:4# 0 , >:4 -
>:4 +
1
#0
, #0 >:4 3 ,
Experiment 2
#
:
Experiment 1 0
. +
+
? B
,
>:4
# +
#0 +
? B9
K*#
,
% B )# E
D
B )7
3 #
& ' ($ , J * #* * # 0
,
+ ,
+ 4.
7 #/
# /
+ ;
D
6
J * #* * K*# = * J* **
7
6
#0 ,
,
+ ; 3
# # " J * #* * *
B9)
+ %
*
&
-
. +
2$
$ 2
+
# 5
PSE-Shift (%RG)
individuals
mean
, 6
,
0
individuals -5 0,25
B )#6 E + )* * #0
' ($
"
) 4. #
#0 .
5
,
O + J * #* * * # L
B
D
B
PSE-Shift (%RG)
B #6 E D * ) 7
>:4
# 0
H* I , )* *
,
0,5
0,75
1
1,25
mean 1,5
1,75
Size
Figure 7. Experiment 2: individual and mean PSE-shifts for each of the 5 amplitudes with error bars indicating one standard deviation on either side of the mean calculated across the 7 subjects. The five amplitudes are expressed as the ratio of test-amplitude on adaptation-amplitude. (1) indicates a 24 deg rightward eye saccade, as in adaptation.
Experiment 3
0
$
-5 -1
0
1
2
3
4
5
Orientation
6
7
8
9
#0 , 4. 7 2$ ; B )#6 E D B" B * #* ) J * #* * * = $ 2 ; >:4 , D B 9 J * #* * #) 2$ ; B 7 #* E D
7 # >:4 , * #9 D B )7 J * #* * = $ 2 ; B )#* E 2$ ; B 7 #" E D B 7 B )#" E D B )7 J * #* * # 7 2$ ; B )#9 E = $ 2; B #6 E D B J * #* ) B 7 #6 E D B )7 J * #* * = $ 2 ; B) J * #* * # 0
$ 2 , # 4. 7 * #9 6 #7 E B " J * #* ) # / 4. #) #7 E D B 7 J * #*
D
, difference in PSE-Shift (LR-RL)
>:4 2$
# E 7 6# E
,
#
LR RL
PSE-Shift (%RG)
5
mean-LR mean-RL
0
-5 0,5
0,75
1
1,25
1,5
Size
*
*
0,00 0,75
1
1
1,25
Figure 9. Experiment 4: individual and mean PSE-shifts for the 5 tested amplitudes plus the 0 condition, with error bars indicating one standard deviation on either side of the mean calculated across the 4 subjects. (1) indicates a 24 deg rightward eye saccade, like in adaptation.(0) indicates the “no eye saccade” condition.
Conclusion
5
PSE-Shift (%RG)
10,00
Specificity of the sensorimotor adaptation on direction and amplitude.
0
4. 3
,
+ 5" # 0
-5 0,5
0,75
1
1,25
1,5
#' Size
Figure 8. Experiment 3: individual and mean PSE-shifts for 2 amplitudes with error bars indicating one standard deviation on either side of the mean calculated across the 10 subjects. Upper: Experiment 3a compared amplitudes 0.75 and 1. Lower: Experiment 3b involved amplitudes 1 and 1.25.
. 4.
, %
& ' ($
6# /
,
)* * +
+
# 0
,
, #
. ,
Experiment 4 0
+ H* #)
+ *#
+
>:4 )I
#
#
H* I
2 "
#: +
+
3
#0 >:4 B " #6 E # / # / , , , K*# 7 B9
2$
+ D
7 B) $ 2 ,
, B * #* " # / #
) ,
$ 2; 7
/ ? ' @ / # ' +
D
,
9= ,
+
2$
B * #* ) # 0 D 7 B # ,
# :
< "9= D # 7 # #
# & + ' 9 #! , +
6= / ,
+ # #
+ "9= :
" =
:4
Robustness on delays or negative transfer? '
" +
,
+ + + , ,
,
#!
,
, #0
0
, +
3 #0 , P
. +
+
N N
# #
+ U
7
% %
# 4+ 7 #
:
9"#
;5 5 1 + # ; *# 9 5 #)# # < #! # 9 #0 * 677 67 #
) 5 5 )5 5
#
9 " 7 )7 9 " # 1 )
0
L #% #
"
# :
+
7 # 9 #0 0 ; * 6 7 9 6 6 )# , T# C C #& @ + T#V # ' ($ & / #2 + : # 4 + 5? ! # #/ # % 4#A # &
+
#
& 9 7 @
< #C #
.
,
+ +
T#2 #
6
.#
7
# !
" ;
)* * # / 0
C #: #
" # #
9 :
/ # D -
#
"9 # :
3
#
%
6 # 0
9 # > #
0# & ;>
#
# %Q
:
)* " 9 )* " # / # & ' ($ T# V # )* * # / # & ' ($ T#V # )* *
7 )# T# # /
#
>
References /
/ #T#
** ) 7 7* # "# ; ) 79 799 # # 0
$
, #D
+
+
+ . # :
+