Surface Fitting and Multiresolution Methods

5 downloads 0 Views 150KB Size Report
La Tolérance d'Usinage chez Citroën dans les Années (19)60. P. de Faget de Casteljau . . . . . . . . . . . . . . . . . . . . . 69. Avoiding Local Minima for Deformable ...
Surface Fitting and Multiresolution Methods edited by Alain Le M´ ehaut´ e, Christophe Rabut, and Larry. L. Schumaker

Vanderbilt University Press, 1997

CONTENTS Fast Evaluation of Cardinal Radial Basis Interpolants G. Allasia and P. Giolito . . . . . . .

.

.

.

.

.

.

.

.

.

.

1

Scaled Pivoting and Error Bounds for Totally Positive Linear Systems P. Alonso, M. Gasca, and J.M. Pe˜ na . . . . . . . . .

.

.

.

.

.

.

.

.

.

9

Reproducing Kernels of Vector-Valued Functions Spaces L. Amodei . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

17

Multivariate Mean Value Interpolation A. Augel . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

27

The Error in Polynomial Tensor-Product, and in Chung-Yao Interpolation C. de Boor . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

35

A Study of Biorthogonal Sinusoidal Wavelets C.K. Chui and X. Shi . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

51

Quasi-Interpolant Spline Functions in the Hilbert Space D L (R) C. Conti . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

67

An Application of Multiwavelet Analysis to Signal Compression M. Cotronei and L. Puccio . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

75

Biorthogonal Box Spline Wavelet Bases S. Dahlke, K. Gr¨ ochenig, and V. Latour .

.

.

.

.

.

.

.

.

.

.

.

83

Wavelets in Numerical Analysis and their Quantitative Properties W. Dahmen, A. Kunoth, and K. Urban . . . . . . .

.

.

.

.

.

.

.

.

.

.

93

Solving Partial Differential Equations by Collocation with Radial Basis Functions G.E. Fasshauer . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

131

Thinning, Inserting, and Swapping Scattered Data M.S. Floater and A. Iske . . . . . .

−m 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

139

Constructing Pairs of Refinable Bivariate Spline Functions T.N.T. Goodman . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

145

Interpolating and Approximating Scattered 3D Data with Hierarchical Tensor Product B-Splines G. Greiner and K. Hormann . . . . . . . . . . . . . . . . . . . .

163

Wavelet Decomposition for Toeplitz Matrices C. Guerrini and L.B. Montefusco . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

173

Interpolation by New Families of B-Splines on Uniform Meshes of the Plane X. Guillet . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

183

Topics in Scattered Data Interpolation and Non-Uniform Sampling K. Jetter and J. St¨ ockler . . . . . . . . . . .

.

.

.

.

.

.

.

191

1

.

.

.

.

.

.

.

.

.

Adaptative and Linearly Independent Multilevel B-Splines R. Kraft . . . . . . . . . . . . . .

.

.

.

.

.

.

209

Smooth Interpolation by a Convexity Preserving Nonlinear Subdivision Algorithm F. Kuijt and R. van Damme . . . . . . . . . . . . . . .

.

.

.

.

.

219

Open Problems of Approximation G.G. Lorentz . . . . .

.

.

.

.

.

.

225

Nonexistence of Compactly Supported Box Splines Prewavelets in Sobolev Spaces R.A. Lorentz and P. Oswald . . . . . . . . . . . . . . .

.

.

.

.

.

235

Sobolev Norm Convergence of Stationary Subdivision Schemes C. Micchelli and T. Sauer . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

245

Discrete Orthogonal Transforms and M-Band Wavelets for Image Compression L.B. Montefusco and D. Lazzaro . . . . . . . . . . . . .

.

.

.

.

.

.

261

Optimal Partitions in Bivariate Segment Approximation G. N¨ urnberger . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

271

Approximating by Ridge Functions A. Pinkus . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

279

On Stability of Scaling Vectors G. Plonka . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

293

On a Spline Multiresolution Analysis with Homogeneous Boundary Conditions E. Quak . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

301

On the Efficiency of Interpolation by Radial Basis Functions R. Schaback . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

309

Functional Data Fitting and Fairing with Triangular B-Splines H.-P. Seidel . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

319

Nonlinear Approximation with Walsh Atoms L.F. Villemoes . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

329

Sobolev-Type Error Estimates for Interpolation by Radial Basis Functions H. Wendland . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

337

Unified IFS-Based Model to Generate Smooth or Fractal Forms C.E. Zair and E. Tosan . . . . . . . . . . .

.

.

.

.

.

.

.

345

.

.

2

.

.

.

.

.

.

.

Curves Surfaces with Applications in CAGD edited by Alain Le M´ ehaut´ e, Christophe Rabut, and Larry. L. Schumaker

Vanderbilt University Press, 1997

CONTENTS Parallelization Strategies for the B-Spline Curve Interpolation Problem M. D’Apuzzo and L. Maddalena . . . . . . . . . . .

.

.

.

.

.

.

.

.

1

Connection-Matrix Splines by Divided Differences R.H. Bartels and J.C. Beatty . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

9

Massic-Vector-Based Conics Modelling J.P. B´ecar and J.C. Fiorot . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

17

Globally G Free Form Surfaces Using Kirchhoff-Love Plate Energy Methods M. Bercovier, O. Volpin, and T. Matskewich . . . . . . . . .

.

.

.

.

.

.

25

A New Approach to Tchebycheffian B-Splines D. Bister and H. Prautzsch . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

35

Flaw Removal on Surfaces J. Bousquet and M. Daniel .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

43

On some Polynomial Curves Derived from Trigonometric Kernels J. Cao, H.H. Gonska, and D.P. Kacs´ o . . . . . . .

.

.

.

.

.

.

.

.

.

.

53

Spline Curves in Polar and Cartesian Coordinates G. Casciola and S. Morigi . . . . . .

.

.

.

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

61

La Tol´erance d’Usinage chez Citro¨en dans les Ann´ees (19)60 P. de Faget de Casteljau . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

69

Avoiding Local Minima for Deformable Curves in Image Analysis L.D. Cohen . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

77

Variable Degree Polynomial Splines P. Costantini . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

85

Approximation of Monotone Functions: A Counter Example R.A. DeVore, D. Leviatan, and I.A. Shevchuk . . .

.

.

.

.

.

.

.

.

.

.

.

.

95

Uniform Point Distribution on a Circle J.-C. Fiorot and I. Cattiaux-Huillard

.

.

.

.

.

.

.

.

.

.

.

.

103

BR-Form of an Entire Rational Curve with Preassigned Point J.-C. Fiorot and P. Jeannin . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

111

Optimal Convexity Preserving Bases M. Garc´ıa-Esnaola and J.M. Pe˜ na

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

119

Rational Interpolation on the Unit Circle Th. Gensane . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

127

Designing Nonlinear Models for Flexible Curves S. Girard, B. Chalmond, and J.M. Dinten .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

135

1

SK-Spline Interpolation on the Torus Using Number Theoretic Knots S. Gomes, A.K. Kushpel, J. Levesley, and D.L. Ragozin . . .

.

.

.

.

.

.

.

.

.

143

Shape Preserving Interpolation by G2 Curves in Three Dimensions T.N.T. Goodman and B.H. Ong . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

151

Fairing Bicubic B-Spline Surfaces Using Simulated Annealing S. Hahmann and S. Konz . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

159

Positivity and Convexity Criteria for Bernstein-B´ezier Polynomials over Simplices T.X. He . . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

169

Fitting Uncertain Data with NURBS W. Heidrich, R. Bartels, and G. Labahn

.

.

.

.

.

.

.

.

.

.

.

.

.

177

Interpolation and Approximation with Developable Surfaces J. Hoschek and M. Schneider . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

185

Sectional Curvature-Preserving Interpolation of Contour Lines B. J¨ uttler . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

203

Analysis of Curvature Related Surface Shape Properties J. Kaasa and G. Westgaard . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

211

On an Almost-Convex-Hull Property D.P. Kacs´ o and H.-J. Wenz .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

217

Developable Surfaces with Creases Y.L. Kergosien . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

223

Universal Parametrizations of some Rational Surfaces R. Krasauskas . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

231

Curves and Surfaces for Computer Graphics: Theoretical Results Y. Kuzmin and M. Daniel . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

239

Generalized Tension B-Splines B.I. Krasov and P. Sattayatham

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

247

Shape Effects with Polynomial Chebyshev Splines P.J. Laurent, M.L. Mazure, and G. Morin .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

255

Interpolation with Triangulations and Curvature Minimization M. L´eger . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

263

On Convexity and Subharmonicity of some Functions on Triangles J. Lorente-Pardo, P. Sablonni`ere, and M.C. Serrano-P´erez .

.

.

.

.

.

.

.

.

.

.

271

Marching Methods in Surface-Surface Intersection E. Malgras . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

279

Algorithms for Blossoms S. Mann . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

287

Generalized Parameter Representations of Tori, Dupin Cyclides and Supercyclides C. M¨ aurer . . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

295

Korovkin Type Results for Shape Preserving Operators F.-J. Mu˜ noz-Delgado and D. C´ ardenas-Morales .

.

.

.

.

.

.

.

.

.

.

.

.

.

303

Stable Progressive Smoothing A. Nigro . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

311

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

.

Riemannian Quadratics L. Noakes . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

319

Approximation of Offset Curves and Surfaces by Discrete Smoothing Dm -Splines M. Pasadas, J.J. Torrens, and M.C. L´ opez de Silanes . . . . . . . .

.

.

.

.

.

329

Algorithm for Computing the Product of two B-Splines L. Piegl and W. Tiller . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

337

Smoothing Spatial Cubic B-Splines under Shape Constraints K.G. Pigounatis and P.D. Kaklis . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

345

Some Error Estimates for Periodic Interpolation on Full and Sparse Grids G. P¨ oplau and F. Sprengel . . . . . . . . . . . . . .

.

.

.

.

.

.

.

355

Curved Surfaces Reconstruction Based on Parallels W. Puech, J.-M. Chassery and I. Pitas . . .

.

.

.

.

.

.

.

363

.

.

.

.

.

.

.

Zonal Kernels, Approximations and Positive Definiteness on Spheres and Compact Homogeneous Spaces D.L. Ragozin and J. Levesley . . . . . . . . . . . . . . . . . . . . 371 Interpolation by Pieces of Euler’s Elastica K.-D. Reinsch . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

379

A Knot Insertion Algorithm for Weighted Cubic Splines Mladen Rogina . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

387

Rational Speed Pseudo-Quadratic B-Splines M.A. Sabin . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

395

A Parametrization Technique for the Control Point Form Method A. Sestini and R. Morandi . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

403

Planar Shape Enhancement and Exaggeration A. Steiner, R. Kimmel, and A.M. Bruckstein

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

411

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

419

A Sequence of B´ezier Curves Generated by Successive Pedal-Point Constructions K. Ueda . . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

427

From Degenerate Patches to Triangular and Trimmed Patches M. Vigo, N. Pla, and P. Brunet . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

435

Spline Orbifolds J. Wallner and H. Pottmann

.

.

.

.

.

.

.

.

.

.

.

445

Numerically Stable Conversion between the B´ezier and B-Spline Forms of a Curve J.R. Winkler . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

465

G2 continuous G-Splines: an Interpolation Property R. Zeifang . . . . . . . . . . . .

.

.

.

.

.

473

On Geometric Continuity of Isophotes H. Theisel . . . . . . . .

.

.

.

.

.

.

.

.

.

3

.

.

.

.

.

.

.

.

.

.

.

.

Suggest Documents