Tables of the Appell Hypergeometric Functions F2 Jonathan Murley and Nasser Saad∗
arXiv:0809.5203v3 [math-ph] 28 Oct 2008
Department of Mathematics and Statistics, University of Prince Edward Island Charlottetown, Prince Edward Island C1A 4P3, Canada Abstract: The generalized hypergeometric function q Fp is a power series in which the ratio of successive terms is a rational function of the summation index. The Gaussian hypergeometric functions 2 F1 and 3 F2 are most common special cases of the generalized hypergeometric function q Fp . The Appell hypergeometric functions Fq , q = 1, 2, 3, 4 are product of two hypergeometric functions 2 F1 that appear in many areas of mathematical physics. Here, we are interested in the Appell hypergeometric function F2 which is known to have a double integral representation. As demonstrated by Opps, Saad, and Srivastava (J. Math. Anal. Appl. 302 (2005) 180-195), the double integral representation of F2 can be reduced to a single integral that can be easily evaluated for certain values of the parameters in terms of 2 F1 and 3 F2 . Using many of the reduction formulas of 2 F1 and 3 F2 and the representation of F2 in terms of a single integral, we have begun to tabulate new reduction formulas for F2 .
PACS: Primary 33C65, 33C05, 33D15, 33D60; Secondary 33B15, 33C20, 33D90. keywords: Multiple hypergeometric functions, Appell series, Generalized hypergeometric function, Gauss hypergeometric function, Clausen hypergeometric function, Reduction and transformation formulas, Radiation field, Hubbell integral. I.
INTRODUCTION
Appell hypergeometric functions FD , D = 1, 2, 3, 4 play an important role in mathematical physics ([1]-[3], [5], [6][7], [31], [32]). In particular, the Appell hypergeometric series F2 arises frequently in various physical and chemical applications ([4], [8] to [26], [28] to [35] ). The exact solution of number of problems in quantum mechanics has been given [24] in terms of Appell’s function F2 . It is defined by [[31], p. 211, Equation (8.1.4)]: ∞ X ∞ X (σ)m+n (α1 )m (α2 )n xm y n F2 (σ, α1 , α2 ; β1 , β2 ; x, y) = , (β1 )m (β2 )n m! n! m=0 n=0
(1)
− for |x| + |y| < 1; βj ∈ C\Z− 0 ; Z0 := {0, −1, −2, . . .}, and (λ)k denotes the Pochhammer symbol defined, in terms of Gamma functions, by Γ(λ + k) 1 if (k = 0; λ ∈ C\{0}) = (λ)k := λ(λ + 1)(λ + 2) . . . (λ + k − 1) if (k ∈ N; λ ∈ C) Γ(λ)
where N being the set of positive integers. Further, it also has the following double integral representation [[31], p. 214, Equation (8.2.3)]: Z 1Z 1 Γ(β1 )Γ(β2 ) F2 (σ, α1 , α2 ; β1 , β2 ; x, y) = uα1 −1 τ α2 −1 Γ(α1 )Γ(α2 )Γ(β1 − α1 )Γ(β2 − α2 ) 0 0 ×(1 − u)β1 −α1 −1 (1 − τ )β2 −α2 −1 (1 − xu − yτ )−σ du dτ
(2)
where R (βj ) > R (αj ) > 0, j = 1, 2 and |x|+|y| < 1. Recently, Opps et al. [26] used the Euler’s integral representation of the Gauss hypergeometric function [[31], p. 20, Equation (1.6.6)] Z 1 a, b Γ(c) τ b−1 (1 − τ )c−b−1 (1 − zτ )−a dτ (3) z = 2 F1 Γ(b)Γ(c − b) 0 c to reduce the double integral representation (2) into a single integral in term of 2 F1 , Z 1 α1 −1 σ, α2 y Γ(β1 ) u (1 − u)β1 −α1 −1 du F F2 (σ; α1 , α2 ; β1 , β2 ; x, y) = 2 1 β2 1 − xu Γ(α1 )Γ(β1 − α1 ) 0 (1 − xu)σ
∗ Electronic
address:
[email protected]; Electronic address:
[email protected]
(4)
2 for R (β1 ) > R (α1 ) > 0, and |x| + |y| < 1. Using some properties of 2 F1 , they prove the following theorem [[26], Theorem 1]: Theorem 1. For |x| + |y| < 1, the Appell hypergeometric function F2 is given by 1 1 a, α1 a, α1 x F2 (a + 1; α1 , 1; β1 , 2; x, y) = − x + F 2 F1 2 1 β1 β1 1 − y ay ay(1 − y)a
(5)
where a 6= 0; α1 ∈ C; β1 ∈ C\Z− 0 and
α1 + 1, 1, 1 α1 x α1 + 1, 1, 1 x ln(1 − y) − x F F x − 3 2 3 2 β1 + 1, 2 β1 y 1 − y y β1 + 1, 2 1 − y
F2 (1; α1 , 1; β1 , 2; x, y) =
(6)
C\Z− 0.
where α1 ∈ C; β1 ∈ The present work is devoted to compute F2 (σ; α1 , 1; β1 , 2; x, y) explicitly for different values σ, α1 , β1 of the function parameters using (5) and (6). This is mostly done using many of the reduction formulas of 2 F1 and 3 F2 listed in [27] and other sources of special functions ([5], [6]-[7], [31], [32]), we begun here to tabulate reduction and transformation formulas for F2 . First, in Tables I and II, we give the corrections to some formulas misprinted in the classical monograph by Prudnikov et al. [27]. TABLE I: Correction to some formulas for 2 F1 reported in the classical work of Prudnikov et al [27]. σ
α
β
5 2 4 5
4
1
1
14 5
5 6
1
17 5
1
7 2
9 2
1
b 1−n 2
b−m
− n2
2 F1 (σ, α; β; z) 11 1 (16 + 72z + 18z 2 − z 3 )(1 − z)− 2 16 √ ˆ −1 √ ( 5−1)x+x2 5 5 9 9 √ − 25x − 5 ln 1−2 9 (1 − x ) ln(1 − x ) − 5 ln(1 − x) − 5x5 1+2−1 ( 5+1)x+x2 √ 1 √ 1 √ 1 √ 1 (10+2 5) 2 x (10−2 5) 2 x ˜ 2(10 + 2 5) 2 arctan 4−(√5−1)x − 2(10 − 2 5) 2 arctan 4+(√5+1)x
1
[x = z 5 ]
1 √ ˜ 6 1 1−x+x2 55 1−x 32 x 3 arctan 1−x + 36x 11 (1 − x )(ln 1+x + 2 ln 1+x+x2 + 2 √ ˆ ˜ 15 tanh−1 z 2 7 √ - 15z 3 15 + 15z + 3z − z Pm−1 (−m)k −k−1 b−m−1 m! (z − 1)−m−1 − (1−b) k=0 (2−b)k (1 − z) b−1 m √ 2−n (1 + 1 − z)n , (n 6= 1, 2)
11 6x6
1−n
TABLE II: Correction to some formulas for 3 F2 reported in the classical work of Prudnikov et al [27]. a1 1 4
a2 1
II.
a3
b1
b2
3 F2 (a1 , a2 , a3 ; b1 , b2 ; z)
1
5 4
2
1 3z
ˆ
3` ln(1 − z) + z 4 ln
1
1+z 4 1 1−z 4
1
+ 2 arctan z 4
´˜
SPECIAL VALUES OF THE APPELL HYPERGEOMETRIC FUNCTIONS F2
In the next, we tabulate the explicit computations of F2 (σ; α1 , 1; β1 , 2; x, y) for different values of the function parameters σ, α1 , and β1 . Since the role of α1 , β1 , x and α2 , β2 , y in F2 (σ; α1 , α2 ; β1 , β2 ; x, y) are interchanged, similar tables can be obtain for F2 (σ; 1, α2 ; 2, β2 ; x, y). Even-though the table is given only for α2 = 1 and β2 = 2, the table can be used for a wider variety of cases. This can be notice from the following properties. 1. F2 (σ, α1 , α2 ; β1 , β2 ; x, y) = F2 (σ, α2 , α1 ; β2 , β1 ; y, x). y x 2. F2 (σ, α1 , α2 ; β1 , β2 ; x, y) = (1 − x)−σ F2 (σ, β1 − α1 , α2 ; β1 , β2 ; x−1 , 1−x ) = (1 − x − y)−σ F2 (σ, β1 − α1 , β2 − y x α2 ; β1 , β2 ; x+y−1 , x+y−1 ).
3. F1 (α; β, β ′ , γ; x, y) =
β ′ x y
F2 (β + β ′ ; α, β ′ ; γ, β + β ′ ; x, 1 − xy ) =
y β x
F2 (β + β ′ ; α, β; γ, β + β ′ ; y, 1 − xy ).
3 Further, the analytic expressions presented in the following tables can be useful in many applications of mathematical physics including the computation of the generalized Hubbell rectangular source integrals, elliptic integrals, and the radiation fields ([4], [8] to [26], [28] to [35]).
4 σ
α1
α2
β1
β2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y)
1 2
- 21
1
- 21
2
2 y [(1
1 2
- 21
1
1 2
2
1 2
1 2
1
- 21
2
1 2
1 2
1
3 2
2
1 2
1 2
1
5 2
2
1 2
1 2
1
7 2
2
1 2
1
1
- 12
2
1 2
1
1
1 2
2
1 2
1
1
3 2
2
1 2
1
1
2
2
1 2
1
1
5 2
2
1 2
1
1
3
2
1 2
1
1
7 2
2
1 2 1 2 1 2
1
1
4
2
3 2 3 2
1
- 21
2
1
1 2
2
1 2
3 2
1
5 2
2
1 2
3 2
1
7 2
2
1 2
2
1
- 12
2
1 2
2
1
1 2
2
1 2
2
1
1
2
1 2
2
1
3 2
2
1 2
2
1
5 2
2
1 2 1 2
2
1
3
2
2
1
7 2
2
1 2 1 2
2
1
4
2
5 2
1
- 21
2
1 2
5 2
1
1 2
2
1 2
5 2
1
3 2
2
1 2 1 2
5 2
1
2
3
1
7 2 - 12
2
1
1
− x) 2 − (1 − x − y) 2 ] q √ √ √ √ 2 x ) 1 − x − 1 − x − y + x(arcsin x − arcsin 1−y y 1 2 − 12 − (1 − y)(1 − x − y)− 2 ] y [(1 − x) √ x √ √ arcsin 1−y 1 arcsin x−(1−y) √ + 1−x y x
−
√
1−x−y
√ x √ √ √ (1−4x) arcsin x−(1−y)(1−y−4x) arcsin 1−y √ (1 + 2x) 1 − x − (1 − y + 2x) 1 − x − y − x (1−4x+8x2 ) arcsin √x−(1−y) (1−y)2 −4x(1−y)+8x2 √ 5 √ − (3 − 10x − 8x2 ) 1 − x 2 64x y 3 x √ + 3(1 − y)2 − 10x(1 − y) − 8x2 1 − x − y 3 8xy
3
2 y [(1
− x)−1 − (1 − y) 2 (1 − x − y)−1 ] q √ √ √ 2 x 1 − y − x(tanh−1 x − tanh−1 1−y ) y 1− √ x √ √ (1−x) tanh−1 x−(1−x−y) tanh−1 1−y 1 √ 1 − y − 1 − y x 3 3 3 4 2 2 2 3xy 1 − (1 − x) − (1 − y) + (1 − y − x) √ x √ 2 √ (1−x) tanh−1 x−(1−x−y)2 tanh−1 1−y 3 √ 4xy 1 + x − (1 − y + x) 1 − y − x 5 3 5 5 5 16 2 2 2 15x2 y (1 − x) − (1 − x − y) − 1 + 2 x − (1 − y) (1 − y + 2 x) √ √ x (1−x)3 tanh−1 x−(1−x−y)3 tanh−1 1−y 5 √ − 3 + 8x + 3x2 24x2 y 3 x √ + 1 − y 3(1 − y)2 + 8x(1 − y) + 3x2 7 7 7 5 3 4 2 2 2 − 28x 1 − (1 − y) 2 + 35x2 1 − (1 − y) 2 35x3 y 8 1 − (1 − x) − (1 − y) + (1 − y − x) 3 2 − 32 − (1 − y)2 (1 − x − y)− 2 ] y [(1 − x) 1−2x 1−y−2x 2 √ −√ y 1−y−x 1−x x arcsin √x−(1−y)2 arcsin √ 1−y 3 √ − (1 − 4xy x
√ √ 2x) 1 − x + (1 − y − 2x) 1 − x − y √ √ 5 2 ) 1 − x − 3(1 − y)2 − 4x(1 − y) + 4x2 1 − x − y 16x2 y (3 − 4x + 4x √ √ x (1−2x) arcsin x−(1−y)2 (1−y−2x) arcsin 1−y √ −3 x 5
2 y [(1
− x)−2 − (1 − y) 2 (1 − x − y)−2 ] √ q √ √ 1−y 2(1−y)−3x 1 2−3x x − − 3 x(tanh−1 x − tanh−1 1−y ) y 1−x 1−x−y 2−3x 1 √ √ − 2−2y−3x y 1−y−x 1−x √ x √ √ (1−3x) tanh−1 x−(1−y−3x) tanh−1 1−y 1 √ 1 − y) + 2y 3(1 − x x (1+3x)(1−x) tanh−1 √x−(1−y+3x)(1−y−x) tanh−1 √ 1−y √ 3 √ − 1 + 3x + 1 − y(1 − y − 3x) 8xy x 5 3 3 8 2 − (2 + 3x)(1 − x) 2 + (2 − 2y + 3x)(1 − y − x) 2 15x2 y 2 1 − (1 − y) √ 5 2 1 − y 3(1 − y)2 − 2x(1 − y) + 3x2 16x2 y 3 − 2x + 3x − √ √ x (1−x)2 (1+x) tanh−1 x−(1−x−y)2 (1−y+x) tanh−1 1−y √ −3 x 5 5 5 7 16 2 - 35x − 7x 1 − (1 − y) 2 − (4 + 3x)(1 − x) 2 + (4 − 4y + 3x)(1 − y − x) 2 3 y 4 1 − (1 − y) 2 y [(1
5
5
− x)− 2 − (1 − y)3 (1 − x − y)− 2 ] 2 2 2 3−12x+8x2 − 3(1−y) −12x(1−y)+8x 3 3 3y (1−x) 2 (1−y−x) 2 3−4x 2 √ √ − 3−3y−4x 3y 1−y−x 1−x 3(1−y)3 −x(1−y)2 −10x2 (1−y)+8x3 5 √ − 24x2 y 1−x−y 2 y [(1
7
− x)−3 − (1 − y) 2 (1 − x − y)−3 ]
2 3−x−10x +8x3 √ 1−x
−3
(1−y)3 arcsin
√
x
√ 1−y x
−arcsin
√
x
5 σ α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) √ q √ 2 1−y 8(1−y)2 −25x(1−y)+15x2 −1 √ −1 1 1 1 x − tanh + 8−25x+15x 15 3 1 2 x(tanh x) − 2 2 4y 1−y (1−x−y)2 (1−x)2 2 2 1 1 8−24x+15x2 1 1 2 4y − 8(1−y) −24x(1−y)+15x 3 3 2 3 (1−x) 2 (1−y−x) 2 √ x −1 √ √1−y 13(1−y)−15x (1−y−5x) tanh−1 x 1−y −(1−5x) tanh 13−15x 1 1 3 √ − + 3 3 1 2 2 2 8y 1−x−y 1−x x 4−5x 1 1 √ √ − 4−4y−5x 1 2 2 2y 2 3 1−y−x 1−x √ x √ √ −(1+6x−15x2 ) tanh−1 x (1−y)2 +6x(1−y)−15x2 tanh−1 1 5 3 √ 1−y 3 1 2 1 − y(1 − y − 15x) − 1 + 15x − 2 2 32xy x √ 1 7 5 2 2 2 1 2 2 64x2 y 1 − y 3(1 − y) + 4x(1 − y) − 15x − 3 − 4x + 15x 2 3 √ x 2 −1 √ (1−y)2 +2x(1−y)+5x2 (1−x−y) tanh−1 x 1−y −(1+2x+5x )(1−x) tanh √ −3 x 7 3 1 1 4 2 35x43 y 8 1 − (1 − y) 2 − (8 + 12x + 15x2 )(1 − x) 2 2 3 3 + 8(1 − y)2 + 12x(1 − y) + 15x2 (1 − y − x) 2 7
7
1 2
7 2
1
- 21 2
2 y [(1
1 2
7 2
1
1 2
2
2 5−30x+40x2 −16x3 5 5y (1−x) 2
2
15−40x+24x2
1 2
7 2
1
3 2
1 2
7 2
1
5 2
1 2
4
1
- 21 2
1 2
4
1
1 2
2
2
1 2
4
1
1
2
1 2
4
1
3 2
2
1 2
4
1
2
2
1 2
4
1
5 2
2
1 2
4
1
3
2
1
7 2
2
1 2
4
2 15y
3
1 24y
q √ √ x 105 x(tanh−1 1−y − tanh−1 x) − 48−231x+280x2 −105x3
1 2xy y 1−y
1 2
2
- y1
1 - 23 1
1
2
2 3y
1 - 23 1
3 2
2
1 - 4y
√
3 (1−y) 2
√1 x
2
2
1 - 43 1
1 4
2
- y1 ln
− tanh−1 √ x −1
(3(1−y)−x) tanh
x √
4(1−y)−x
1
2
+
√
x 1−y 3 (1−y) 2
tanh−1
3
− 2x 2
xy 1−y
1 15xy
1 3
3
√ 1−y 48(1−y)3 −231x(1−y)2 +280x2 (1−y)−105x3 (1−x−y)3
24−60x−35x2 2 2 1 − 24(1−y) −60x(1−y)+35x 3 3 12y (1−x) 2 (1−x−y) 2 √1−y 3(1−y)2 +100x(1−y)+105x2 2 1 − 3+100x+105x 64xy 1−x−y 1−x √ x √ −(1+10x−35x2 ) tanh−1 x (1−y)2 +10x(1−y)−35x2 tanh−1 √ 1−y −3 x 6−7x 6(1−y)−7x 1 √ √ − 1−y−x 3y 1−x √ 5 1 − y 3(1 − y)2 + 10x(1 − y) − 105x2 − (3 + 10x − 105x2 ) 384x2 y √ x 2 3 −1 √ x (1−y)3 +3x(1−y)2 +15x2 (1−y)−35x3 tanh−1 1−y −(1+3x+15x −35x ) tanh √ −3 x
1 - 23 1
1 - 32 1
5
(1−x−y) 2 15(1−y) −40x(1−y)+24x2 2
+ (1−x)3 3 2 2 (1−y)−35x3 1 16−72x+90x2 −35x3 − 16(1−y) −72x(1−y) +90x 5 5 8y 2 (1−x) 2 (1−x−y) √ x √ −1 √ 2 2 x (1−y−7x) tanh−1 1−y 81(1−y) −190x(1−y)+105x 1−y −(1−7x) tanh 81−190x+105x2 1 √ − + 15 - 48y 2 2 (1−x−y) (1−x) x
- 21 2
1
−
5(1−y)3 −30x(1−y)2 +40x2 (1−y)−16x3
−
(1−x) 2 (1−x−y) 2 5−5y−6x 2 √ √ − 5y 1−x−y 1−x 9 2 −4 − (1 − y) 2 (1 − x − y)−4 ] y [(1 − x)
5−6x
1 - 23 1
- 23
− x)− 2 − (1 − y)4 (1 − x − y)− 2 ]
1−y
3 (1−y) 2
1−x−y
√ x + ln
√ − (4 − x) 1 − x + 3 ln √ x 1−y
3 (1−y) 2
2 3(1−y)2 +14x(1−y)−2x2 5 (1−y) 2
1−x−y 1−x
√
1−x−y
√ x − ln
1−x 1−x−y
√ √ 1+ √1−x 1−y+ 1−x−y
− (3 + 6x − x2 ) tanh−1
√ x +
xy 1−y
− 4 ln
√ − 2(3 + 14x − 2x2 ) 1 − x + 30x ln
1−x 1−y−x
√ √ 1+ √1−x 1−y+ 1−x−y
1 1 1 1 3 3 1 4 4 x ) 4 − arctan(x 4 ) + x 4 (1 − y)− 4 ln( (1−y) 1 +x 1 ) − ln( 1+x 14 ) + 2 arctan( 1−y
√ 2 2 1 2 3x 3 (1 − y)− 3 arctan - 2y 2
− (3 − x) tanh−1
3(1−y)2 +6x(1−y)−x2 tanh−1
6y +
1−x 1−x−y
2
(1−y) 4 −x 4 √ 1 3x 3
1 2(1−y) 3
2
2
2
2(1−y) 3 +x 3
ln( 1−x−y 1−y ) 1 1 1 3 3 ln( (1−y) −x ) − ln(1 − x 3 ) + 2 ln(1 − y) 1
1 +x 3
−(2 + x 3 ) ln(1 − x) − 3x 3 (1 − y)− 3
1−x 4 √ 1 3x 3
) − arctan( (1−y) 3
1 2+x 3
) +
2 (1−y) 3
6 σ
α1 α2
β 1 β2
1
- 12
1
1 2
2
1
- 12
1
1
2
1
- 12
1
3 2
2
1
- 12
1
2
2
1
- 13
1
2 3
2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y) q q x √ √ −1 x ( 1−y ) − x tanh−1 ( x) + ln 1−y−x - y1 2 1−y tanh 1−x √ q 1−x−y √ 2 √ 1+ √1−x − 1 − x + ln y 1−y 1−y+ 1−x−y √ x √ (1−y+x) tanh−1 1−y 1−x √ − (1 + x) tanh−1 x − ln 1−x−y - y1 √1x 1−y √ √ √ (1−y+2x) 1−x−y 1+ √1−x 2 √ y + − (1 + 2x) 1 − x + 3x ln √1−y+ 3xy 1−y 1−x−y x 13 1−x−y 1−x 1−x 1 − 13 − ln ln 1 1 1 3 y ln 1−x−y − 2y (1 − y) 3 √ 1 −2 3 (1 − y)− 3 arctan(
1
3 4
2
- y1
1 2
1
- 21
2
1 y
1
1 2
1
1
2
2 y
1
1 2
1
3 2
2
1
1 2
1
2
2
1
1
1
- 23
2
1
1
1
- 21
2
1
1
1
1 2
2
1
1
1
3 2
2
1
1
1
2
2 2
1
- 14
1
1
1
1
5 2
1
1
1
3
2
1
1
1
4
2
1
1
- 21
2
1
3 2 3 2
1
1 2
2
1
3 2
1
1
2
1
3 2
1
2
2
1
3 2
1
5 2
2
1
2
1
- 21
2
1
2
1
1 2
2
1
2
1
1
2
1
2
1
3 2
2
1
2
1
3
2
1
3
1
4
2
9 8
1
1
9 8
2
ln
ln
1−x−y 1−x
+x
1 4
1
1
2(1−y) 3 +x 3 − 41
(1 − y)
) − arctan(
ln
(1−y) 4 +x 4 1 (1−y) 4
√
1 3x 3 1 2+x 3
1
1
2xy 1−x 1−x−y − (1−x)(1−x−y) √ √ 1+ √1−x 1−y+ 1−x−y √ x √ √ tanh−1 x− 1−y tanh−1 1−y √ x
(1−x 3 )
(1−y) 3 −x 3 √ 1 3x 3
1 −x 4
) 1
− ln
1+x 4
1 1−x 4
−
x 1−y 1 4 (1−y)
2 arctan
14
1 + 2 arctan(x 4 )
ln 1 1−x + ln 1−x−y y 2 √ p √ 1+ √1−x 2 1 − x + (1 − y)(1 − x − y) + x ln √1−y+ xy y − 1−x−y √ x ln(1−y) 3 arcsin √ 1−y arcsin x 1−y−4x 2x 1−4x 2 − y 3x − − (1−x−y) 5 5 2 + (1−x)2 3y 2 2 (1−x−y) (1−x) √ √ x √ arcsin 1−y y - 2x x − arcsin 3x − ln(1−y) 3 y (1−x)(1−x−y) + y 2 2 (1−x−y) (1−x) √ √ arcsin √ x 2 x x 1−y √ √ − arcsin − ln(1−y) y y 1−x−y 1−x q √ ln(1−y) √ √ x √2 1 − x arcsin x − 1 − x − y arcsin 1−y − y xy 1 xy (1 − x − y) ln(1 − x − y) − (1 − y) ln(1 − y) − (1 − x) ln(1 − x) q √ 3 3 2 √1 x (1 − x − y) 2 arcsin 1−y − (1 − x) 2 arcsin x + y − ln(1−y) xy y x 1−x−y 1 2 2 2 − (1 − x) ln(1 − x) − x ln(1 − y) x2 y xy − (1 − x − y) ln 1−y 1−x−y 1 3 − (1 − x)3 ln(1 − x) − x3 ln(1 − y) + xy(5x + 2y − 4) 2x3 y 2 (1 − x − y) ln 1−y 4xy(x2 +y−1) 1−x 1 y (1−x)2 (1−x−y)2 + ln 1−x−y 2xy 1 1−x y (1−x)(1−x−y) + ln 1−x−y √ q 1−y 2 √1 √ 1+ √1−x y 1−x−y − 1−x + ln 1−y+ 1−x−y √ p √ 1+ √1−x 2 1 − x − (1 − y)(1 − x − y) − y + x ln √1−y+ xy 1−x−y √ x 3 √ −tanh−1 x (1−y) 2 tanh−1 1 1−x √ 1−y x ln − 2 y + xy 1−x−y x √ x √ √ 5(1−y)−2x arcsin (5−2x) arcsin x 1−y 4−x − − + + ln(1−y) - xy 4(1−y)−x x 5 5 2 2 (1−x−y) (1−x) x (1−x−y) 2 (1−x) 2 √ x √ 3(1−y)−2x arcsin x y 1−y x √1 + − (3−2x) arcsin − ln(1−y) 3 3 y (1−x−y)(1−x) x x (1−x−y) 2 (1−x) 2 xy 1 1−x + ln y (1−x)(1−x−y) √1−x−y √ x √ (1−y−2x) arcsin (1−2x) arcsin x 1−y √ √ + x ln(1 − y) - √1xy − 1−x−y 1−x 2 1−x−y 1 1−x 2 − ln(1 − x) − xy x2 y x ln 1−x−y + (1 − y) ln 1−y 1−x−y 1 1−x 2 2 3 3 2x3 y 2x (1 − y) − 1 − x y + 2 (1 − y) ln( 1−y ) − ln(1 − x) + x ln( 1−x−y ) 1 1 1 81 (1−y) 8 +x 8 (1−x 8 ) 1 1 x ln + 2 arctan 1−y − arctan(x 8 ) 1 1 1 1 (1−y) 8 −x 8 (1+x 8 ) x8 y 1 1 1 √ 1 1 √ √ 1 √ 1 √ 2 x(1−y) 8 (1−y) 4 − 2 x(1−y) 8 +x 4 (1+ 2x 8 +x 4 ) 2x 8 − 12 + 2 arctan − arctan − 2 ln 1 1 √ 1 1 1 1 1 √ 1 (1−y) 4 −x 4
1−x 4
(1−y) 4 + 2 x(1−y)
8
+x 4 (1− 2x 8 +x 4 )
7 σ 7 6
α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 1 1 1 2 (1−y) 6 +x 6 (1−x 6 )2 7 1 1 1 6 2 ln 1 1 1 1 2 2x 6 y
5
1 1
13 6
2
7 (1−y) 6 −1 xy
1 1
6 5
2
6 5
1 1
11 5
2
5 4
3 4
1
1 2
2
5 4
3 4
1
3 2
2
5 4
1 1
5 4
2
5 4
1 1
9 4
2
4 3
1 1
4 3
2
4 3
11 8
1 1
7 3
2
1 1
11 8
2
−
7 7
6x 6 y
2
− arctan
q 1 1 1 (1+x 6 ) 1+x 6 +x 3 q 1 1 1 (1−x 6 ) 1−x 6 +x 3
1
1
1
1
1
1
1−x 3
1
+
√
(1−y) 6 +x 6 1
1
(1−y) 6 −x 6
r r
1
(1−y) 3 + x(1−y)
16
1
+x 3
1
1
1
(1−y) 3 − x(1−y) 6 +x 3 1 √ 3 x(1−y) 6
3 (1 − x − y) arctan
1 (1−y) 3
1 −x 3
− (1 − x) arctan
√
1
3x 6
1 1−x 3
1 2 1 2 √ √ 2 2 5+1 5−1 √ √ (1−y) 5 + (1−y) 5 − x(1−y) 5 +x 5 x(1−y) 5 +x 5 2 2 √ √ 5 + 1) ln 5 − 1) ln − ( ( 1 1 1 2 2 5+1 5−1 4x 5 y x 5 +x 5 x 5 +x 5 1+ 1− 2 2 √ √ √ 1 √ 1 p √ 10−2 5x 5 10−2 5x 5 +2 10 − 2 5 arctan( √ √ 1 1 ) − arctan( 1 ) 5 +( 5+1)x 5 4(1−y)√ 4+(√ 5+1)x 5 √ √ 1 1 1 1 p √ 10+2 5x 5 10+2 5x 5 (1−y) 5 −x 5 +2 10 + 2 5 arctan( √ √ 1 ) − arctan( 1 1 ) − 4 ln 1 4(1−y) 5 −( 5−1)x 5 4−( 5−1)x 5 1−x 5 4 √ 1 √ 5 6 (1−y) −1 2 2 − 36 ( 5 + 1) (1 − x − y) ln (1 − y) 5 + ( 5+1 ) x(1 − y) 5 + x 5 xy 2 5y 10x√ 1 2 5 5 −(1 − x) ln 1 + ( 5+1 2 )x + x √ √ √ 15 2 2 2 1 5−1 5 5 5 −( 5 − 1) (1 − x − y) ln (1 − y) 5 − (√ 5−1 − (1 − x) ln 1 − ( + x ) x(1 − y) 2 √ 1 2 )x + x √ √ 1 p √ 5 5 10−2 5x 10−2 5x +2 10 − 2 5 (1 − x − y) arctan( √ √ 1 1 ) − (1 − x) arctan( 1 ) 5 +( 5+1)x 5 4(1−y) 4+( 5+1)x 5 √ √ √ 1 √ 1 p √ 10+2 5x 5 10+2 5x 5 +2 10 + 2 5 (1 − x − y) arctan( √ √ 1 1 ) − (1 − x) arctan( 1 ) 4(1−y) 5 −( 5−1)x 5 4−( 5−1)x 5 1 1 1 −4 (1 − x − y) ln (1 − y) 5 − x 5 − (1 − x) ln(1 − x 5 ) √ √ √ √ √√ 1−y+ 1−x−y 1+ 1−x 2 2 √ √ − y 1−x−y 1−x √ √ √ √ 1 32 − 21 1 − y + 1 − x − y) − (1 + 1 − x)− 2 ( y 1 1 1 41 (1−y) 4 +x 4 (1−x 4 ) 1 x 1 ln + 2 arctan 1−y − arctan x 4 1 1 1 1 1
(1−y) 4 −x 4 (1+x 4 )
x4 y
1 1 1 1 3 4 4 4x 4 (1 − y) 4 − 1 + (1 − x) ln 1+x 41 − (1 − x − y) ln (1−y) 1 +x 1 y 1−x 4 (1−y) 4 −x 4 14 1 x 4 − (1 − x − y) arctan +2 (1 − x) arctan x 1−y 13 2 1 2 2 √ 1 √ 1 √ +x 3 (1−x 3 ) (1−y) 3 + x(1−y) 1 3x 3 3x 3 ln + 2 3 arctan 1 − arctan 1 1 1 2 1 1 2 1
5
5 4x 4
2x 3 y 4
2(1−y) 3 +x 3 r
(1+x 3 +x 3 ) (1−y) 3 −x 3
1 3
2 3
q 2 1 1+x 3 +x 3
2+x 3
2
(1−y) 3 + x(1−y)
− (1 − x − y) ln 3x (1 − y) − 1 + (1 − x) ln 1 1 1 y 1−x 3 (1−y) 3 −x 3 √ 1 √ 1 √ 3x 3 + 3 (1 − x) arctan 3x 13 − (1 − x − y) arctan 1 1 2+x 3 2(1−y) 3 +x 3 18 1 √ 1 1 √ 1 1 1 1 +x 4 (1− 2x 8 +x 4 ) (1−y) 8 +x 8 (1−x 8 ) (1−y) 4 + 2 x(1−y) 1 1 ln − 2− 2 ln 1 √ 1 1 1 3 √
4 3x 3
1
(1−y) 8 −x 8 (1+x 8 )
x8 y
x(1−y)
81
1 −x 4
(1−y) 4 − 2 x(1−y)
− arctan
√ 1 2x 8 1 1−x 4
8
1
1
1
+x 4 (1+ 2x 8 +x 4 ) 1
1
x ) 8 − arctan x 8 − 2 arctan( 1−y 1 √ √ 2 5 5+1 5−1 1
2 2 √ (1−y) 5 + 2 +x 5 1− 2 x 5 +x 5 x(1−y) ln 5 ln 1 2 2 1 √ √ 1 5 − 2 1 2 4x 3 y (1−x) (1−y) 5 −x 5 1+ 5+1 x 5 +x 5 x(1−y) 5 +x 5 (1−y) 5 − 5−1 2 2 √ √ √ 1 √ 1 p √ 10+2 5x 5 10+2 5x 5 +2 10 − 2 5 arctan √ √ 1 1 − arctan 1 5 −( 5−1)x 5 4(1−y)√ 4−(√ 5−1)x 5 √ 1 √ 1 p √ 10−2 5x 5 10−2 5x 5 −2 10 + 2 5 arctan √ √ 1 1 − arctan 1 1
1 1
1
(1 − x − y) ln
1 (1−y) 4
7 5
1
1
(1−y) 3 −x 3
√ √ 2 + 2 arctan
7 5
1
+x 3 (1−x 6 +x 3 )
16
1
−(1 − x) ln 6 5
16
(1−y) 6 −x 6 (1+x 6 )2 (1−y) 3 − x(1−y) +x 3 (1+x 6 +x 3 ) 16 √ √ 1 3 x(1−y) 3x 6
√ +2 3 arctan
7 6
1
(1−y) 3 + x(1−y)
1
(1−x−y)(1−x 5 )5
4(1−y) 5 +( 5+1)x 5
4+( 5+1)x 5
31
2
+x 3
8 σ α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 3 7 (1−y) 5 −1 7 12 − 77 (1 − x − y) ln 1 1 2 5 5 2xy
1−x−y 1
20x 5 y
√
2 √ (1−y) 5 + 5+1 2 − 5 (1 − x − y) ln √ 2
3 2
- 21
1
1 2
2
3 2
- 21 1
3 2
2
3 2
- 21 1
5 2
2
3 2
- 21 1
7 2
2
3 2
1 2
1
- 21
2
3 2
1 2
1
1 2
2
51
5 − (1 − x) ln
1−x 1
(1−x 5 )5 √
2 1 2 +x 5 x 5 +x 5 1+ 5+1 2 − (1 − x) ln √5−1 2 1 1 2 1− 2 x 5 +x 5 (1−y) 5 − 5−1 x(1−y) 5 +x 5 2 √ √ √ √ 1 1 p √ 10+2 5x 5 10+2 5x 5 +2 10 − 2 5 (1 − x − y) arctan √ √ 1 − (1 − x) arctan 1 1 5 −( 5−1)x 5 4(1−y)√ 4−(√ 5−1)x 5 √ 1 √ 1 p √ 10−2 5x 5 10−2 5x 5 −2 10 + 2 5 (1 − x − y) arctan √ √ 1 1 − (1 − x) arctan 1
x(1−y)
4(1−y) 5 +( 5+1)x 5 4+( 5+1)x 5 1 1 2 −1 2 2 (1 − x − y) − (1 − x) ] y [(1 − y) √ x √ √ √ arcsin x 1−x−y 1−y −arcsin 1 √ − 1−x + y 1−y x √ x √ (1−y+2x)√1−x−y √ x (1−y−4x) arcsin 1−y −(1−4x) arcsin 3 √ − (1 + 2x) 1 − x − 8xy 1−y x √ √ x √ 2 x (1−y)2 −4x(1−y)+8x2 arcsin 1−x−y 3(1−y)2 −10x(1−y)−8x2 1−y −(1−4x+8x ) arcsin 5 √ − 64x2 y 3 1−y x √ 2
+(3 − 10x − 8x ) 1 − x
1−y−2x 2 1−2x y (1−x−y) 32 − (1−x) 23 2 − 21 − (1 y [(1 − x − y)
3 2
1 2
1
3 2
2
√2 xy
3 2
1 2
1
5 2
2
3 2xy
3 2
1 2
1
7 2
2
32x2 y
3 2 3 2
1
1
- 21 2
1
1
1 2
2
3 2
1
1
3 2
2
3 2
1
1
2
2
3 2
1
1
5 2
2
3 2
1
1
3
2
3 2
1
1
7 2
2
3 2
1
1
4
2
3 2
3 2
1
- 21 2
3 2
3 2
1
1 2
2
3 2
3 2
1
5 2
2
3 2
3 2
1
7 2
3 2 3 2 3 2
2
1
- 21 2
2
1
1 2
2
2
1
1
2
3 2
2
1
3 2
2
3 2
2
1
5 2
2
3 2
2
1
3
2
2
1
(1−y) 5 −x 5
arcsin
q
x 1−y
1
− x)− 2 ] √ − arcsin x
√ x √ √ √ x (1−y−2x) arcsin 1−y −(1−2x) arcsin √ 1−x−y− 1−x− x √ x 3(1−y)2 −8x(1−y)+8x2 arcsin √ 1−y −(3−8x+8x2 ) arcsin x 15 √
x √ √ −3 (1 − y − 2x) 1 − x − y − (1 − 2x) 1 − x 1 1−3x 2 (1−y) 2 (1−y−3x) − (1−x) 2 y (1−y−x)2 1
2 y [(1
− y) 2 (1 − x − y)−1 − (1 − x)−1 ] q √ x √2 arctan 1−y − arctan x xy √ √ √ 4 1−x+ 1−y− 1−x−y−1 xy √ x −1 √ x (1−x−y) tanh−1 1−y −(1−x) tanh 3 √ √ 1 − y − 1 − xy x 3 3 1 8 2 2 − (2 − 2y − 3x)(1 − y) 2 + 2 − 3x 3x2 y 2 (1 − x − y) − (1 − x) √ x (1−x−y)2 tanh−1 √ 1−y √ −(1−x)2 tanh−1 x 5 √ − 1 − y 3(1 − y) − 5x + 3 − 5x 3 2 4x y x 5 5 5 3 - 5x43 y 8 1 − (1 − y) 2 − (1 − x) 2 + (1 − x − y) 2 − 20x 1 − (1 − y) 2 3 1 −20x(1 − (1 − y) 2 ) + 15x2 1 − (1 − y) 2 2 (1−y−4x)(1−y) − 1−4x5 5 y (1−x−y) 2 (1−x) 2 3 2 − 23 − (1 − x)− 2 ] y [(1 − y)(1 − x − y) √ √ x √ 3 (1−y) arcsin √1−y −arcsin x − 1− xy x
x−y+
√ 1−x
√ √ 3(1 − y) − 2x 1 − x − y − (3 − 2x) 1 − x − 3 2 (1−y−5x)(1−y) 2 1−5x − (1−x) 3 y (1−x−y)3 15 8x2 y
3 2 −2 2 y [(1 − y) (1 − x − y) 2−x 1 2(1−y)−x y (1−x−y) 32 − (1−x) 23
− (1 − x)−2 ] √
√ x √ x √ x (1−y+x) tanh−1 √ 1−y √ −(1+x) tanh−1 x 3 √ − 1−y+1 2xy x √ √ 3 8 2 3x2 y 2 (1 − y) − 1 + (2 + x) 1 − x + 2(1 − y) + x) 1
√1−y 1 y 1−x−y
−
1 1−x
+
tanh−1
(1−y) 3(1−y)−4x arcsin √
−1 x 1−y −tanh
−x−y
√ x
√ x x 1−y −(3−4x) arcsin
9 σ 3 2 3 2 3 2 3 2 3 2
α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) √ x −1 √ (1−x−y) 3(1−y)+x tanh−1 x 1−y −(1−x)(3+x) tanh 7 15 √ √ 2 1 2 1 − y 3(1 − y) − x − (3 − x) − 2 8x2 y x 3 3 3 2 1 4 2 5x163 y 4(1 − y) + x (1 − x − y) 2 − 4(1 − y) − 5x (1 − y) 2 − (4 + x)(1 − x) 2 + 4 − 5x 2 5 − 1−6x7 1 - 21 2 y2 (1−y−6x)(1−y) 7 2 5 2 5 2
2
1
1 2 3 2
1
3 2
5 2
1
7 2
2
3 2 3 2
3
1
- 21 2
3
1
1 2
2
3 2
3
1
1
2 2
2
3 2
3
1
3 2
3 2
3
1
2
2
3 2
3
1
5 2
2 2
3 2
3
1
7 2
3 2
3
1
4
2
3 2
7 2
1
- 21
2
3 2
7 2
1
1 2
2
3 2
7 2
1
3 2
2
3 2
7 2
1
5 2
2
3 2 3 2
4
1
- 21 2
4
1
1 2
2
3 2
4
1
1
2
3 2
4
1
3 2
2
3 2
4
1
2
2
3 2
4
1
5 2
2
3 2
4
1
3
2
1
7 2
2
2
(1−x−y) 2 (1−x) 2 2 2 − 52 − y [(1 − y) (1 − x − y) 2 3(1−y)−2x 3−2x 3y (1−x−y) 32 − (1−x) 32 5 4x2 y
3
(1−y)2 arcsin
√
x
5
(1 − x)− 2 ]
−arcsin
√ 1−y x
5
√
x
√ √ − 3(1 − y) + 2x 1 − x − y + (3 + 2x) 1 − x
2 (1−y−7x)(1−y) 2 1−7x − (1−x) 4 y (1−x−y)4 5 2 −3 2 − (1 − x)−3 ] y [(1 − y) (1 − x − y) 2 2 2 1 8(1−y) −8x(1−y)+3x − 8−8x+3x 5 5 4y (1−x−y) 2 (1−x) 2 √1−y
5(1−y)−3x 5−3x − (1−x) 2 (1−x−y)2 4−3x 1 4(1−y)−3x 2y (1−x−y) 32 − (1−x) 32 1 4y
(1−y+3x) tanh−1 3 8xy 15 32x2 y
√
+3
tanh−1
−1 x 1−y −(1+3x) tanh
√
x
√
3(1−y)2 +2x(1−y)+3x2 tanh−1 √ x
√
√
x
−1 x 1−y −tanh
√ x
−
√ x
√ 1−y(1−y−3x) 1−x−y
2 −1 x 1−y −(3+2x+3x ) tanh
−
√
x
1−3x 1−x
√
1 − y(1 + x + y) − (1 + x) √ √ 5 4 2 2 2 2 2 5x2 y 8 (1 − y) − 1 + (8 + 4x + 3x ) 1 − x − (8(1 − y) + 4x(1 − y) + 3x ) 1 − x − y 3 2 (1−y−8x)(1−y) − 1−8x9 9 y (1−x−y) 2
2 y [(1
−3
(1−x) 2 7
7
− y)3 (1 − x − y)− 2 − (1 − x)− 2 ]
15(1−y)2 −20x(1−y)+8x2 2 5 15y (1−x−y) 2 2 5(1−y)−4x 5−4x 5y (1−x−y) 32 − (1−x) 32
−
15−20x+8x2 5 (1−x) 2
7
3 2
4
8 5
1
1
8 5
13 8
1
1
13 8
2
2 (1−y−9x)(1−y) 2 1−9x − (1−x) 5 y (1−x−y)5 7 2 −4 2 − (1 − x)−4 ] y [(1 − y) (1 − x − y) 3 2 2 3 2 3 1 16(1−y) −24x(1−y) +18x (1−y)−5x − 16−24x+18x7 −5x 7 8y (1−x−y) 2 (1−x) 2 √ x −1 √ 2 2 √ x tanh−1 33(1−y) −40x(1−y)+15x 1−y 1−y −tanh 1 33−40x+15x2 √ − + 15 3 3 24y (1−x−y) (1−x) x 2 2 2 1 8(1−y) −12x(1−y)+5x − 8−12x+5x 5 5 4y (1−x−y) 2 (1−x) 2 √ x √ √ −1 −(1+5x) tanh−1 x 2 (1−y+5x) tanh 1−y 3(1−y)2 −22x(1−y)+15x2 1−y 1 √ − + 3−22x+15x 16xy 3 (1−x−y)2 (1−x)2 x 1 6(1−y)−5x 6−5x 3y (1−x−y) 32 − (1−x) 32
√
(1−y)2 +2x(1−y)+5x2 tanh−1 5 √ 2 64x y 3 x 3+4x−15x2 + 1−x 1
3 4x 5
y
√ ( 5 + 1) ln
2
2 −1 x 1−y −(1+2x+5x ) tanh
√ 5−1 x(1−y) 2 √ 2 5−1 1 1− 2 x 5 +x 5
(1−y) 5 −
51
2
+x 5
√ x
√ − ( 5 − 1) ln √ √ 1
−
√
1−y 3(1−y)2 +4x(1−y)−15x2 1−x−y
2
√ 5+1 x(1−y) 2 √ 2 5+1 1 1+ 2 x 5 +x 5
(1−y) 5 +
51
√ √ 1 1 1 p √ 5 5 10−2 5x 5 10−2 5x 5 − arctan + 2 −4 ln (1−y) −x 10 + 2 5 arctan √ √ 1 1 1 1 1−x 5 4(1−y) 5 +( √ 5+1)x 5 4+( 5+1)x 5 √ √ 1 √ 1 p √ 10+2 5x 5 10+2 5x 5 −2 10 − 2 5 arctan √ √ 1 1 − arctan 1 4(1−y) 5 −( 5−1)x 5 4−( 5−1)x 5 √ 1 1 √ 1 1 1 1 1 1 (1−y) 4 + 2(x(1−y)) 8 +x 4 (1− 2x 8 +x 4 ) (1−y) 8 +x 8 (1−x 8 ) 1 1 √ 1 1 − 2− 2 ln ln √ 5 1 1 1 1 1 1 x8 y (1−y) 8 −x 8 (1+x 8 ) (1−y) 4 − 2(x(1−y)) 8 +x 4 (1+ 2x 8 +x 4 ) 1 √ √ 1 √ 2 x(1−y) 8 1 1 x +2 arctan( 1−y ) 8 − arctan x 8 − 2 arctan − arctan 2x 18 1 1 (1−y) 4 −x 4
1−x 4
2
+x 5
10 σ
α1 α2
β1 β2
5 3
1
1
5 3
2
5 3
1
1
8 3
2
7 4
1 4
1
1 2
2
7 4
1 4
1
3 2
2
7 4
1
1
7 4
2
7 4
1
1
11 4
2
7 4 7 4
5 4 5 4
1
2
1
1 2 3 2
9 5
1
1
9 5
2
9 5
1
1
14 5
2
11 6
1
1
11 6
2
2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 1 3 √ 1 √ 1 √ 3) 1 3x 3 3x 3 ln (1−x−y)(1−x 3 arctan 1 − arctan 2 1 1 1 3 − 2 1 3 3 3 2x y 2(1−y) +x 2+x 3 (1−x) (1−y) 3 −x 3 1 5 (1−y) 3 −1 1−x−y 1−x − 55 (1 − x − y) ln 1 1 1 3 − (1 − x) ln 2xy 3 6x 3 y
2x 6 y
(1−y) 3 − x(1−y) 6 +x 3 1 √ 3 x(1−y) 6
√ −2 3 arctan 1
11 6
1
1
17 6
2
11 (1−y) 6 −1 5xy
−(1 − x) ln
−
1
1
15 8
2
2
- 21
1
1 2
2
2
- 21
1
1
2
2
- 21
1
3 2
2
2
- 21
1
2
2
2
- 21
1
5 2
2
1 7
x8 y
ln
1
1
(1−y) 3 −x 3 11
6x
11 6
y
1
√ 1 3x 6 1
1−x 3
r
(1 − x − y) ln r
1
1
(1−y) 8 −x 8 (1+x 8 )
1
(1−y) 3 + x(1−y) 1
(1−y) 3 − x(1−y)
−
61
16
1
+ 2− 2 ln
1
1
1
1
1
1
+x 3 (1−y) 6 +x 6 +x 3 (1−y) 6 −x 6 1 √ 3 x(1−y) 6
√ 3 (1 − x − y) arctan
1
1
(1−y) 8 +x 8 (1−x 8 )
(1+x 6 +x 3 )(1+x 6 )2
(1−y) 6 −x 6
− arctan
q 1 1 1 1+x 6 +x 3 (1+x 6 ) q 1 1 1 1−x 6 +x 3 (1−x 6 ) 1
15 8
(1−x 3 )
(1−y) 3 −x 3
√ 1 √ 1 √ 3x 3 3x 3 −2 3 (1 − x − y) arctan 1 − (1 − x) arctan 1 1 2(1−y) 3 +x 3 2+x 3 √ √ √ √ √√ 1+ 1−x 2 2 √ 1−y+ 1−x−y − √1−x 3y (1−x−y)(1−y) p √√1−y+√x−√√1−y−√x p √ √ √4 √ − 1+ x+ 1− x 3 xy 1−y 1 1 1 (1−y) 4 +x 4 (1−x 4 ) 1 1 1 x ln ) 4 − arctan x 4 − 2 arctan( 1−y 3 1 1 1 x4 y (1−y) 4 −x 4 (1+x 4 ) 1 1 1 1 7 (1−y) 4 −1 4 4 − 77 (1 − x − y) ln (1−y) 1 +x 1 − (1 − x) ln 1+x 41 3xy 4x 4 y (1−y) 4 −x 4 1−x 4 1 1 x ) 4 − (1 − x) arctan x 4 −2 (1 − x − y) arctan( 1−y √ √ √ −3 √ √ √ 3 3 3 2 x) 2 + ( 1 − y + x)− 2 − (1 − x)− 2 − (1 + x)− 2 ] 3y ( 1 − y − √ √ √ √ √ √ 1 1 1 1 √4 ( 1 − y − x)− 2 − ( 1 − y + x)− 2 − (1 − x)− 2 + (1 + x)− 2 ] 3 xy √ √ 2 2 1 1 2 1 √ (x(1−y)) 5 +x 5 (1+ 5+1 x 5 +x 5 ) (1−y) 5 − 5−1 (1−x−y)(1−x 5 )5 2 2 1 √ √ ln 5 ln 2 2 2 4 1 1 1 5 − 1 (1−y) 5 + 5+1 4x 5 y (x(1−y)) 5 +x 5 (1− 5−1 x 5 +x 5 ) (1−x) (1−y) 5 −x 5 2 2 √ √ √ √ 1 1 p √ 10+2 5x 5 10+2 5x 5 −2 10 + 2 5 arctan √ √ 1 1 − arctan 1 5 −( 5−1)x 5 5 4(1−y)√ 4−( √ 5−1)x √ 1 √ 1 p √ 10−2 5x 5 10−2 5x 5 −2 10 − 2 5 arctan √ √ 1 1 − arctan 1 4(1−y) 5 +( 5+1)x 5 4+( 5+1)x 5 √ √ 1 2 2 1 1 2 √ 9 (1−y) 5 −1 (x(1−y)) 5 +x 5 1− 5−1 x 5 +x 5 (1−y) 5 − 5−1 9 2 2 √ √ + − (1 − x) ln 5 (1 − x − y) ln 2 2 9 2 1 1 4xy 20x 5 y (1−y) 5 + 5+1 1+ 5+1 (x(1−y)) 5 +x 5 x 5 +x 5 2 2 1−x−y 1−x − (1 − x) ln − (1 − x − y) ln 1 1 1 5 5 )5 (1−y) 5 −x 5 √ (1−x √ √ 1 √ 1 p √ 10+2 5x 5 10+2 5x 5 +2 10 + 2 5 (1 − x − y) arctan − (1 − x) arctan √ √ 1 1 1 5 −( 5−1)x 5 5 4(1−y)√ 4−( √ 5−1)x √ 1 √ 1 p √ 10−2 5x 5 10−2 5x 5 +2 10 − 2 5 (1 − x − y) arctan √ √ 1 1 − (1 − x) arctan 1 4(1−y) 5 +( 5+1)x 5 4+( 5+1)x 5 1 1 1 1 1 2 1 1 1 (1−y) 6 +x 6 (1−x 6 +x 3 )(1−x 6 )2 (1−y) 3 + x(1−y) 6 +x 3 1 ln 5 1 1 1 1 1 1 2 1 1
1 (1−y) 3
1 (1−y) 4
1 −x 4
(1−y) 2
3
1
1
− y)− 2 (1 − x − y) 2 − (1 − x) 2 ] √ x y √ (1−x−y) tanh−1 1−y 1 √1 + − (1 − x) tanh−1 x 3 2y 1−y x (1−y) 2 23 3 1−x−y 2 2 3xy (1 − x) − 1−y √ x xy √ (1−x−y)2 tanh−1 1−y 3 √1 − (1 − x)2 tanh−1 x − 3 8xy 1−y x (1−y) 2
− (1 − x) arctan
1 1 √ 1 1 √ 1 (1−y) 4 + 2 x(1−y) 8 +x 4 (1− 2x 8 +x 4 ) 1 1 √ 1 1 √ 1 (1−y) 4 − 2 x(1−y) 8 +x 4 (1+ 2x 8 +x 4 ) 1 √ √ 1 √ 2 x(1−y) 8 2x 8
1 1 x ) 8 − arctan x 8 − 2 arctan −2 arctan( 1−y √ x y √ tanh−1 1−y √ 1 − − tanh−1 x x 3 y 1−y
1 y [(1
1 −x 3
− arctan
1 1−x 4
√
1
3x 6
1 1−x 3
11 σ α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) (1−x−y) 25 5 8 2 - 12 1 3 2 − (1 − x) 2 + y 3 2 15x y 2 (1−y) x 3 (1−x−y)3 tanh−1 √ 1−y √ 1 7 5 √ 2 -2 1 2 − (1 − x)3 tanh−1 x − 3 2 48x2 y x (1−y) 2
7
2 - 12 1
4
2
8 35x3 y
1 8
9 8
2
1
2
1
(1−x−y) 2
2 (1 − y)2 − 1 + 7xy − 2
3 (1−y) 2
1 6
1
7 6
2
1
1 12x 6
y
5
(1 − y)− 6 ln
1 (1−y) 6
1 +x 6
1 (1−y) 6
1 −x 6
2
1
2
2
1 5
1
6 5
2
2
1 5
1
11 5
2
2
1 4
1
5 4
2
2
1 4
1
9 4
2
2
1 3
1
4 3
2
-
1−x−y
7 7
5
36x 6 y (1−y) 6
1 (1−y) 6
2
1 (1−y) 3 1
(1−y) 6 +x 6
ln
2
1 (1−y) 3 1 (1−y) 3 1 6
√ 3 x(1−y)
1
13 6
1 1 1 81 7 7 1 8 8 x (1 − y)− 8 ln (1−y) 1 +x 1 − ln 1+x 81 + 2 (1 − y)− 8 arctan 1−y − arctan(x 8 ) y (1−y) 8 −x 8 1−x 8 81 √ √ 1 √ 2 x(1−y) 7 −8 − arctan 2x 18 + 2 (1 − y) arctan 1 1 4 (1−y) 4 −x 4 81 1 1−x √ 1 √ 1 1 4 4 +x − (1−y) 2 x(1−y) 7 1 1− 2x 8 +x 4 −2− 2 (1 − y)− 8 ln 1 1 − ln √ 1 1 √ 1
√ 5 +2 3 (1 − y)− 6 arctan 1 6
+ 3 − 8x − 3x2
1 8x 8
8
(1−y) 4 + 2 x(1−y)
2
7
− (1 − x) 2
3(1−y)2 −8x(1−y)−3x2 1−y
1 −x 6
r
+ x(1−y)
− arctan
1 −x 3 1
1 (1−y) 3
1 √ 3 x(1−y) 6
61
− x(1−y)
(1−y) 3 + x(1−y) r
1+ 2x 8 +x 4
+x 4
16 √
1 +x 3 1
3x 6
1 1−x 3
61
− x(1−y)
1
+x 3
16
1
+x 3 1 +x 3
1 6
1 6 2
1 3
(1+x ) (1+x +x ) − ln 1 1 1 6 2 6 3
(1−x ) (1−x +x )
q 1 1 1+x 6 +x 3 q 1 1 1 (1−x 6 ) 1−x 6 +x 3 1
− (1 − x) ln
(1+x 6 )
√ 1 √ − (1 − x) arctan 3x 16 + 3 1−x−y5 arctan 1 1 6 3 3 (1−y) (1−y) −x 1−x 3 √ √ √ 1 1 4 2 2 2 1 x(1 − y) 5 + x 5 − ln 1 + 5+1 x5 + x5 ( 5 + 1) (1 − y)− 5 ln (1 − y) 5 + 5+1 1 2 2 20x 5 y √ √ √ 1 1 2 2 2 4 5−1 x(1 − y) 5 + x 5 −√ x5 + x5 ln 1 − 5−1 −( 5 − 1) (1 − y)− 5 ln (1 − y) 5 − √ 2 2 √ √ 1 1 p √ 4 10−2 5x 5 10−2 5x 5 +2 10 − 2 5 (1 − y)− 5 arctan( √ √ 1 ) − arctan( 1 1 ) 5 +( 5+1)x 5 4(1−y)√ 4+(√ 5+1)x 5 √ 1 √ 1 p √ 4 10+2 5x 5 10+2 5x 5 +2 10 + 2 5 (1 − y)− 5 arctan( √ √ 1 1 ) − arctan( 1 ) 4(1−y) 5 −( 5−1)x 5 4−( 5−1)x 5 1 1 1 4 −4 (1 − y)− 5 ln (1 − y) 5 − x 5 − ln(1 − x 5 ) √ √ 1 2 2 ) x(1 − y) 5 + x 5 - 36 ( 5 + 1) ( 1−x−y4 ) ln (1 − y) 5 + ( 5+1 2 50x 5 y √(1−y) 5 1 2 5 5 −(1 − x) ln 1 + ( 5+1 2 )x + x √ √ √ 15 1 2 2 2 1−x−y 5−1 5−1 5 − ( 5 ) x(1 − y) )x 5 + x 5 − (1 − x) ln 1 − ( −( 5 − 1) ( + x 4 ) ln (1 − y) 2 2 5 (1−y) √ √ √ 1 √ 1 p √ 10−2 5x 5 10−2 5x 5 ) − (1 − x) arctan( +2 10 − 2 5 ( 1−x−y4 ) arctan( √ √ 1 1 1 ) 5 +( 5+1)x 5 (1−y) 5 4(1−y) 4+( 5+1)x 5 √ √ √ √ 1 1 p √ 10+2 5x 5 10+2 5x 5 +2 10 + 2 5 ( 1−x−y4 ) arctan( √ √ 1 1 ) − (1 − x) arctan( 1 ) (1−y) 5 4(1−y) 5 −( 5−1)x 5 4−( 5−1)x 5 1 1 1 1−x−y 5 − x5 −4 ( − (1 − x) ln(1 − x 5 ) 4 ) ln (1 − y) (1−y) 5
1
1 4x 4
y
5 5 16x 4
y
1 1 6x 3
3 (1 − y)− 4 ln
y
1
1
1 (1−y) 4
1 −x 4
(1−y) 4 +x 4 1
(1 − x) ln 1+x 41 − 1−x 4
2
1
7 3
2
1 1−x 4 1 4
3
(1−y) 3 +
1 4
ln (1−y) 1 +x 1 + 2 (1 − x) arctan x 4 − (1−y) 4 −x 4 31 2 1 2 +x 3 x(1−y) 3 − ln 1+x 3 +x 1 1 2 1 2 1
(1−y) 3 −x 3 √ 1 3x 3 1
1
2(1−y) 3 +x 3
− arctan r
(1−x 3 ) √ 1 3x 3 1
2+x 3
1 2 2 2 1 (1−y) 3 + x(1−y) 3 +x 3 1+x 3 +x 3 1−x−y − (1 − x) ln 1 4 1 2 ln 1 9x 3 y 1−x 3 (1−y) 3 (1−y) 3 −x 3 √ 1 √ 1 √ 1−x−y 3x 3 3x 3 + 3 (1 − x) arctan 1 − 2 arctan 1 1 4
q
2+x 3
x 1−y
+ 2 (1 − y)− 4 arctan
3 (1−y) 4
√ 2 +2 3 (1 − y)− 3 arctan
1 3
1
1+x 4
− ln
1−x−y 2
2 (1 − y)− 3 ln
(1−y) 3
2(1−y) 3 +x 3
41
1
− arctan x 4
1−x−y 3 (1−y) 4
arctan
x 1−y
41
12 σ α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 1 1 1 (1−y) 8 +x 8 3 1+x 8 − 58 (1 − y) 2 38 1 11 2 ln 1 − ln 3 1 1 8 8 8 8 8 8x y (1−y) −x 1−x 1 1 √ 1 √ 1 1 (1−y) 4 + 2 x(1−y) 8 +x 4 1 5 1+ 2x 8 +x 4 −2− 2 (1 − y)− 8 ln 1 1 − ln √ 1 1 √ 1 (1−y) 4 − 2 x(1−y) 1 √ 2 x(1−y) 8
2
2 5
1
7 5
2
2
2 5
1
12 5
2
2
1
- 21 2
2
1 2 1 2
1
1 2
2
1 2
1
3 2
2
1 2
1
2 2
2
1 2
1
5 2
2
1 2
1
3 2
2
1 2
1
7 2
2
2
3 5
1
8 5
2
2
2
5 8
1
13 8
2
1
1
1 y [(1
2x 2 y
(1−x−y) 2 8 √ 3x2 y 1−y
3
− (1 − x) 2 + y √ x 2 −1
5
5
8x 8 y
2
2 3
5 3
1
8 3
2
− 21
− 38
(1 − y)
2
1
1 2 3x 3
-
y
5 5 9x 3
1−y
− (1 − x)2 tanh−1
4(1−y) 5 −( 5−1)x 5
1 1 1 3 8 8 (1 − y)− 8 ln (1−y) 1 +x 1 − ln 1+x 81
+2 (1 − y) 1
√ x +y 1 2 √ 2 √ √ (1−y) 5 − 5−1 x(1−y) 5 +x 5 1 2 2 3 − 52 5 5 − ln(1 − 5−1 ( 5 + 1) (1 − y) ln 3 2 2 x +x ) 20x 5 y (1−y) 5 1 2 √ 2 √ √ (1−y) 5 + 5+1 x(1−y) 5 +x 5 1 2 2 2 x5 + x5 ) − ln(1 + 5+1 −( 5 − 1) (1 − y)− 5 ln 2 2 (1−y) 5 1 1 1 (1−y) 5 −x 5 − 25 − ln(1 − x 5 ) −4 (1 − y) ln 1 (1−y) 5 √ √ √ 1 √ 1 p √ 2 10−2 5x 5 10−2 5x 5 +2 10 + 2 5 (1 − y)− 5 arctan √ √ 1 1 − arctan 1 5 +( 5+1)x 5 4(1−y)√ 4+(√ 5+1)x 5 √ √ 1 1 p √ 2 10+2 5x 5 10+2 5x 5 −2 10 − 2 5 (1 − y)− 5 arctan √ √ 1 1 − arctan 1 1 (1−x−y) tanh 15 √ √ 8x2 y x 1−y
− 83
2 3
1
− y)− 2 (1 − x − y)− 2 − (1 − x)− 2 ] x arctan √ 1−y √ √1 √ − arctan x xy 1−y q √ 2 1 − x − 1−x−y xy 1−y x (1−x−y) tanh−1 √ 1−y √ √ - 33 − (1 − x) tanh−1 x 1−y
−2
2
1− 2x 8 +x 4
+x 4
√ 1 √ 5 1 1 5 x + 2 (1 − y)− 8 arctan − arctan 2x 18 − 2 (1 − y)− 8 arctan( 1−y ) 8 − arctan x 8 1 1 (1−y) 4 −x 4 1−x 4 1−x−y 1 1−x − 53 (1 − y) − ln ln 2 1 1 1 5 10x 3 y (1−x 5 )5 (1−y) 5 −x 5 1 √ √ 2 2 2 1 √ (1−y) 5 + 5+1 x(1−y) 5 +x 5 3 x 5 +x 5 1+ 5+1 2 2 √ − 5 (1 − y)− 5 ln − ln 2 1 1 √ 5−1 2 2 1− 2 x 5 +x 5 (1−y) 5 − 5−1 x(1−y) 5 +x 5 2 √ √ √ √ 1 1 p √ 3 10+2 5x 5 10+2 5x 5 +2 10 − 2 5 (1 − y)− 5 arctan √ √ 1 1 − arctan 1 5 −( 5−1)x 5 5 4(1−y)√ 4−( √ 5−1)x √ 1 √ 1 p √ 3 5 5 10−2 5x 10−2 5x −2 10 + 2 5 (1 − y)− 5 arctan √ √ 1 1 − arctan 1 4(1−y) 5 +( 5+1)x 5 4+( 5+1)x 5 1−x−y 1−x - 77 1−x−y3 ln 1 1 1 5 − (1 − x) ln 50x 5 y (1−y) 5 (1−x 5 )5 (1−y) 5 −x 5 1 √ √ 2 2 2 1 √ (1−y) 5 + 5+1 x(1−y) 5 +x 5 1+ 5+1 x 5 +x 5 2 2 √ − (1 − x) ln − 5 1−x−y3 ln 1 2 1 √ 2 2 (1−y) 5 1− 5−1 x 5 +x 5 2 (1−y) 5 − 5−1 x(1−y) 5 +x 5 2 √ √ √ 1 √ 1 p √ 10+2 5x 5 10+2 5x 5 − (1 − x) arctan +2 10 − 2 5 1−x−y3 arctan √ √ 1 1 1 5 −( 5−1)x 5 (1−y) 5 4(1−y)√ 4−(√ 5−1)x 5 √ 1 √ 1 p √ 1−x−y 5 10−2 5x 10−2 5x 5 −2 10 + 2 5 √ √ 1 − (1 − x) arctan 3 arctan 1 1 (1−y) 5 4(1−y) 5 +( 5+1)x 5 4+( 5+1)x 5 1 1−y−3x 1−3x y (1−x−y)2 − (1−x)2
3
2
8
x ) arctan( 1−y
[(1 − y)− 3 ln 1−x−y 1
y (1−y) 3
√ −2 3
ln
1−x−y
1 (1−y) 3
(1−y) 8 −x 8 1−x 8 √ 1 1 1 (1−y) 4 + 2(x(1−y)) 8 +x 4 ln √ 1 1 1 (1−y) 4 − 2(x(1−y)) 8 +x 4 1 8
1−x−y 1 (1−y) 3
1 −x 3
1−x−y 1
1
− arctan x
3 − ln
1 2(1−y) 3
1 +x 3
1
1
− ln 1+√2x 81 +x 14 1− 2x 8 +x 4
√ √ 2 3 − 2 (1 − y)− 8 arctan
1−x
1 (1−x 3 )3
3 − (1 − x) ln
(1−y) 3 −x 3 √ 1 3x 3
arctan
1 8
√
4−( 5−1)x 5
x(1−y)
1 (1−y) 4
√ 1 − 2 3 (1 − y)− 3 arctan
1−x 1
(1−x 3 )3
− (1 − x) arctan
√
1
3x 3
1 2+x 3
√
18
1 −x 4
− arctan
1 +x 3
1
2x 8
1 1−x 4
1
3x 3
1 2(1−y) 3
√
− arctan
√ 1 3x 3 1 2+x 3
]
13 σ α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 1 1 1 1 1 1 1 4 4 3 x ) 4 − arctan x 4 (1 − y)− 4 ln (1−y) 1 +x 1 − ln 1+x 14 − 2 (1 − y)− 4 arctan( 1−y 2 34 1 74 2 3 4x 4 y
2
3 4
1
11 4
2
2
4 5
1
9 5
2
-
(1−y) 4 −x 4
21
7 16x 4
1 4
5x 5 y
y
1−x−y 1 (1−y) 4
ln
1 (1−y) 4 1 (1−y) 4
1 (1 − y)− 5 ln
1 +x 4 1 −x 4
1−x 4
1
1−x−y
− (1 − x) ln 1+x 14 − 2
1 (1−y) 4
1−x 4
1−x−y 1
1
(1−y) 5 −x 5
1
1
x ) 4 − (1 − x) arctan x 4 arctan( 1−y
1−x
5 − ln
1
(1−x 5 )5
√ √ 1 1 2 2 2 √ 1 (x(1−y)) 5 +x 5 1− 5−1 x 5 +x 5 (1−y) 5 − 5−1 2 2 √ √ − ln − 5 (1 − y)− 5 ln 2 2 2 1 1 5+1 5+1 5 +x 5 (1−y) 5 + 2 (x(1−y)) √ 1+ 2 x 5 +x 5 √ √ 1 √ 1 p √ 10+2 5x 5 10+2 5x 5 − 51 −2 10 + 2 5 (1 − y) arctan √ √ 1 1 1 − arctan 5 −( 5−1)x 5 5 4(1−y)√ 4−( √ 5−1)x √ 1 √ 1 p √ 1 10−2 5x 5 10−2 5x 5 −2 10 − 2 5 (1 − y)− 5 arctan √ √ 1 1 − arctan 1
4(1−y) 5 +( 5+1)x 5
√ 2 1 5−1 (x(1−y)) 5 +x 5 2 √ 2 2 1 (1−y) 5 + 5+1 (x(1−y)) 5 +x 5 2
4+( 5+1)x 5
2
2
4 5
1
14 5
2
9 9 25x 5
y
5 6
1
11 6
2
1−x−y
1 (1−y) 5
1−x−y
ln
(1−y) 5 −
1
(1−y) 5
1−x−y
ln
1
1
(1−y) 5 −x 5
12x 6 y
(1−y) 3 − x(1−y) 6 +x 3 1 √ 3 x(1−y) 6
√ 1 −2 3 (1 − y)− 6 arctan 2
5 6
1
17 6
2
-
1−x−y
55 36x
11 6
1
y (1−y) 6
√ − 3
1−x−y 1 (1−y) 6
r
ln r
2
1
15 8
2
7 7 8x 8
y
1
1
(1−y) 3 − x(1−y) 1 √ 3 x(1−y) 6
arctan
1 (1−y) 3
1
- 21 2
2 1
1
1 2
2
2 1
1
1
2
2 1
1
3 2
2
2 1
1
2
2
2 1
1
5 2
2
2 1
1
3
2
2 1
1
7 2
2
2 1
1
4
2
2 1
1
5
2
1
2
1
- 21 1 2
1
1
2
1
2
2
2 2 2 2
3 2 3 2 3 2 3 2
2
1 1 (1−y) 8
ln
1
(1−y) 8 +x 8 1 (1−y) 8
1 −x 3
1 −x 8
61
16
1
1
1
2 +x 5
1
1
− (1 − x) arctan
1+x 8
+
1 1−x 8
√1 2
1
q 1 1 1 1+x 6 +x 3 (1+x 6 )
1 (1−y) 8
(1−x−y) 2
1 y [(1
−1
1
1
1
1−x 3
ln
1 1 √ 1 (1−y) 4 + 2 x(1−y) 8 +x 4 1 1 √ 1 (1−y) 4 − 2 x(1−y) 8 +x 4 1 √ 2 x(1−y) 8 1 (1−y) 4
1 −x 4
− x − y) − (1 − x) ] √ x √ arcsin( 1−y ) arcsin( x) √1 √ √ − xy 1−x−y 1−x (1−x)(1−y) 1 ln xy 1−x−y q √ √ √ 3 x 1 − x arcsin x − 1 − x − y arcsin 1−y 3 2 x y 1−x−y 2 − (1 − x) ln(1 − x) x2 y (1 − x − y) ln 1−y 3 √ x (1−x−y) 23 arcsin √ 1−y −(1−x) 2 arcsin x 5 √ +y 2 x y x 1−x−y 3 2 2 x3 y xy − (1 − x − y) ln( 1−y ) + (1 − x) ln(1 − x) 1−x−y 2 3 2 2 3 x4 y 2 (1 − x − y) ln( 1−y ) − (1 − x) ln(1 − x) + 2x (1 − y) − 1 + 5x y 2 2 2 1 (1−y) −6x(1−y)−3x − 1−6x−3x y (1−x−y)3 (1−x)3 1−y+x 1 1+x y (1−x−y)2 − (1−x)2 1 1 − 23 2 y [(1 − y) (1 − x − y) √ 2 √ 1−y 1 − √1−x xy 1−x−y
3
− (1 − x)− 2 ]
√
1
1
2x 8
+x 4
− ln 1+√2x 18 +x 14
− arctan
(1−x) 2
−1
1
1−x 6 +x 3 (1−x 6 )
√ 1 3x 6
− 81
(1 − y)
√ − 2
− (1 − x) ln q 1
+x 3 (1−y) 6 −x 6
1
1
1 3x 6 1 1−x 3
+x 3 (1−y) 6 +x 6
1
− ln
√
x 1 arctan( 1−y ) 8 − arctan x 8 1 arctan (1−y) 8 √ √ x arcsin 3 1−y 1−4x 1 1−y−4x 2 − arcsin 5x 5 y (1−x−y)2 − (1−x)2 − 3x (1−x−y) 2 (1−x) 2 √ arcsin √ x √ arcsin x x 1−y 1 − 3 3 (1−x−y)(1−x) + y
−2
2 1
2
+x 5
(1−x 6 +x 3 )(1−x 6 )
(1−y) 6 −x 6
− arctan
1
1
(1−y) 3 −x 3
(1−y) 3 + x(1−y)
1
7 8
− (1 − x) ln 1−x
√
5−1 1 x5 2 √ 1 5 1+ 5+1 x 2
1−
5 − (1 − x) ln 1 5 )5 √ (1−x √ √ 1 √ 1 p √ 1−x−y 10+2 5x 5 10+2 5x 5 +2 10 + 2 5 √ √ 1 − (1 − x) arctan 1 1 arctan 1 5 −( 5−1)x 5 (1−y) 5 4(1−y)√ 4−(√ 5−1)x 5 √ 1 √ 1 p √ 1−x−y 10−2 5x 5 10−2 5x 5 +2 10 − 2 5 √ √ 1 arctan 1 1 − (1 − x) arctan 1 (1−y) 5 4(1−y) 5 +( 5+1)x 5 4+( 5+1)x 5 1 1 1 2 1 1 1 1 1 (1−y) 6 +x 6 (1−y) 3 + x(1−y) 6 +x 3 1 (1+x 6 +x 3 )(1+x 6 )2 5 (1 − y)− 6 ln − ln 1 1 5 1 1 1 1 1 1 2 2
−
2
√ 5
1−
√
1
2x 8
1 1−x 4
14 σ
α1
α2
β1
β2
2
3 2
1
5 2
2
2
3 2
1
3
2
2
3 2
1
7 2
2
2
3 2
1
4
2
2
2
1
- 21
2
2
2
1
1 2
2
2 2
2 2
1 1
1 3 2
2 2
2
2
1
5 2
2
2
2
1
3
2
2
2
1
7 2
2
2
2
1
4
2
2
5 2
1
- 21
2
2
1
1 2
2
1
1
2
2
5 2 5 2 5 2
1
3 2
2
2
5 2
1
2
2
2
5 2
1
3
2
2
5 2
1
7 2
2
2
5 2
1
4
2
2
3
1
- 21
2
2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y) q √ √ 3 x − tanh−1 x 1 − y tanh−1 1−y 3 x2 y p √ 4 1 − x − (1 − y)(1 − x − y) − y x2 y √ x √ −1 √ 1−y(1−x−y) tanh−1 x 1−y −(1−x) tanh 15 √ - 2x2 y y + x 3 3 3 1 2 2 (1 − x − y) 2 − (1 − y) 2 − 8 (1 − x) 2 − 1 − 12xy x3 y 8(1 − y) √ x √ 2 2 3 (1−y) arcsin 1−y 2−14x−3x2 1 2(1−y) −14x(1−y)−3x 2 − − 15x − arcsin 7x 7 2y (1−x−y)3 (1−x)3 (1−x−y) 2 (1−x) 2 √ x √ √ (1−y) arcsin 1−y arcsin x 1 2(1−y)+x 2+x − 5 5 2y (1−x−y)2 − (1−x)2 + 3 x (1−x−y) 2
1 y [(1
1
−2
− y)(1 − x − y)
3 3
(1−y) arcsin
2x 2 y 2 x2 y ln(1
√
− (1 − x)
] √
x 1−y
(1−y) arcsin
+ √1xy √ x
1 2 (1−x)(1−x−y)
3 (1−x−y) 2
1−y
−
1−x−y
(1−x) 2
−2
−
arcsin
√ x 3
(1−x) 2
√
arcsin x √ 1−x
1−x−y √1−yx √ √ √ − 1−x arcsin x (1−y) 1−x−y arcsin 15 √ 1−y - 2x2 y y + x 1−x−y 6 (1 − y)(1 − x − y) ln − (1 − x) ln(1 − x3 y 1−y 3 2 2 3 2 1 (1−y) −9x(1−y) −9x (1−y)+x +x3 − 1−9x−9x y (1−x−y)4 (1−x)4 2 2 2 1 3(1−y) +6x(1−y)−x − 3+6x−x 3y (1−x−y)3 (1−x)3 3 5 1 − 52 2 − (1 − x)− 2 ] y [(1 − y) (1 − x − y) 3−x 1 3(1−y)−x 3y (1−x−y)2 − (1−x)2
− x) − (1 − y) ln
x) − xy
3
(1−y) 2 2 3xy (1−x−y) 32
−
1
3
(1−x) 2
3
2 2
3 3
1
1 2
(1−y) 2 8 √ 3x2 y 1−x−y
8(1−y)2 +9x(1−y)−2x2
2
1 y [(1
1 5(1−y)−2x 8y (1−x−y)2
2
2
3
1
3 2
2
3
1
2
2
2
3
1
5 2
2
2
3
1
7 2
2
2
3
1
4
2
2
7 2
1
- 21
2
2
1
1 2
2
2
7 2 7 2
1
1
2
2
7 2
1
3 2
2
2
7 2
1
2
2
2
7 2
1
5 2
2
+y
3 2 2 3 1 8(1−y) −80x(1−y) −39x (1−y)+6x 8y (1−x−y)4 1 8y
1
√1 1−x
√ x (1−y) 32 tanh−1 √ 1−y −tanh−1 x 5 √ +y x2 y x 1 3 8 2 2 2 x3 y 2 (1 − y) − (1 − x − y) (1 − y)
2
1
−
−
(1−x−y)3
8+9x−2x2 (1−x)3
−
1 + (1 − x) 2 − 1 + xy
8−80x−39x2 +6x3 (1−x)4
√ + 15 x
− y)2 (1 − x − y)−3 − (1 − x)−3 ]
1 2(1−y)−x 2y (1−x−y)2
−
−
5−2x (1−x)2
2−x (1−x)2
√
1 (1−y)2 arcsin 3 √ 3 8xy x (1−x−y) 2
+
x 1−y
√3 x
−
(1−y)2 arcsin
√
(1−y) arcsin
x 1−y
5 (1−x−y) 2
arcsin
√ x
3 (1−x) 2
+
2
3
− 105x 2 √ x
1−y 1−x−y
1−y
7
(1−x−y) 2
− −
arcsin
√ 5
(1−x) 2
1 1−x
(1−y)2 arcsin
9 (1−x−y) 2
−
√ arcsin x
5
−
−
1
5 (1−x) 2
5−3x (1−x)2
7
(1−x) 2
x
√ x 1 (1−y)2 arcsin √ 1−y x 15 √ √ √ +y − arcsin 8x2 y x 1−x−y 1−x 1−x−y 3 2 x3 y xy + ln(1 − x) − (1 − y) ln 1−y 4 3 2 2 3 4 2 +20x3 −3x4 1 5(1−y) −60x(1−y) −90x (1−y) +20x (1−y)−3x − 5−60x−90x 5y (1−x−y)5 (1−x)5 3 2 2 3 2 1 5(1−y) −15x(1−y) −5x (1−y)+x +x3 − 5+15x−5x 5y (1−x−y)4 (1−x)4 5 7 1 − 72 2 − (1 − x)− 2 ] y [(1 − y) (1 − x − y) 15(1−y)2 −10x(1−y)+3x2 2 1 − 15−10x+3x 15y (1−x−y)3 (1−x)3
(1−y) 2 2 5xy (1−x−y) 52 1 5(1−y)−3x 5y (1−x−y)2
√
x 1−y
−
arcsin
√ x 9
(1−x) 2
15 σ α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) (1−y) 25 8 1 2 72 1 3 2 3 − 3 + y 2 15x y (1−x−y) 2
2(1−y) 52
2
7 2
1
4
2
8 √ 5x3 y 1−x−y
2
7 2
1
9 2
2
7 3x3 y
2
4
1
- 21 2
(1−y) 52 3
−
2
4 4
1
1 2
√
2
1 y [(1
2
2
4
1
3 2
2
4
1
2
2
2
4
1
5 2
2
2
4
1
3
2
2
4
1
7 2
2
2
4
1
9 2
2
9 4
3 4
1
1 2
2
9 4
3 4
1
3 2
2
5 2
- 21 1
1 2
2
5 2
- 21 1
3 2
2
5 2
- 21 1
5 2
2
5 2
- 21 1
7 2
2
5 2
1 2
1
- 12 2
5 2
1 2
1
3 2
2
5 2
1 2
1
5 2
2
5 2
1 2
1
7 2
5 2
1
1
- 12 2
5 2
1
1
1 2
2
5 2 5 2
1
1
3 2
2
1
1
2
2
5 2
1
1
5 2
2
5 2
1
1
3
2
5 2
1
1
7 2
2
5 2
1
1
4
2
5 2
3 2
1
- 12 2
2
−1 x 1−y −tanh
√
(1−x−y)
−
11 2
(1−x)
48(1−y)3 +87x(1−y)2 −38x2 (1−y)+8x3
1 48y
1
√
− 2 (1 − y)2 − 1 + xy
x − 3 (1 − y)2 − 1 − xy x 16(1−y)4 −208x(1−y)3 −165x2 (1−y)2 +50x3 (1−y)−8x4 2 +50x3 −8x4 1 − 16−208x−165x 16y (1−x−y)5 (1−x)5 √ 3 √ x 3 (1−y) arcsin arcsin x 1−y 2
2
1
√2 1−x
tanh−1
−315x
2
(1−x) 2
(1−x−y)4
(1−y)3 1 3xy (1−x−y)3
−
1 (1−x)3
√
x 3 (1−y)3 arcsin 1−y 1 √ 5 16xy x (1−x−y) 2 1 3(1−y)−2x 3−2x 3y (1−x−y)2 − (1−x)2
5 √3 48x2 y x
−
(1−y)3 arcsin
√
3 (1−x−y) 2
−
48+87x−38x2 +8x3 (1−x)4
−
x 1−y
√
33−26x+8x2 (1−x)3
√
arcsin
11 2
− y)3 (1 − x − y)−4 − (1 − x)−4 ]
33(1−y)2 −26x(1−y)+8x2 1 48y (1−x−y)3
x
5 (1−x) 2
+
−
15 √ x
√ + 105 x
(1−y)3 arcsin
√
3(1−y)2 −14x(1−y)+8x2 (1−x−y)2
arcsin
√1 (1+ 1−x)2
− (3 − 2x) − 3
(1−x−y) tanh−1
3 3 8 (1 − x − y) 2 − (1 − x) 2 − 2 2 2 2 (1−y) −8x(1−y)−8x − 1−8x−8x 7 7 3y 4 3x3 y
(1−x−y) 2
3−14x+8x2 (1−x)2
3
2 − 12 (1 − x − y)−1 − (1 − x)−1 ] 3y [(1 − y) 1 1 4 − 21 − (1 − x)− 2 − (1 − y)− 2 3xy (1 − x − y) √ √ −1 −1 x x 1−y −tanh 2 tanh 1 √ − √1−y +1 xy x
3(1−y)−2x 5 √ 3x2 y 1−y
x
7
(1−x) 2
(1−x) 2 √ √ √ 1+ x− 1− x √ 1−x
(1−x) 2
+1
√
x
3(1−y)−4x arcsin
2 2 −6x(1−y)−3x2 2 (1−y) √ − 1−6x−3x 3y (1−x)3 1−y(1−x−y)3 2 √ 1−y+x 1+x − (1−x) 2 3y 1−y(1−x−y)2
−
√
√
1 1 2 −1 (1 − x − y)− 2 − (1 − x)− 2 ] 3y [(1 − y) √ √ √ x √ x 1−y −arcsin 1 arcsin √ + 1−x − 1−x−y xy 1−y x 3(1−y)−2x √1−x−y √ 5 − (3 − 2x) 1 − x − 8x2 y 1−y
arcsin
−
√ x
1−2x 2 √ 1−y−2x −√ 3y 1−x−y(1−y)2 1−x 1 1 2 −2 (1 − x − y) 2 − (1 − x) 2 ] 3y [(1 − y) √ √ x arcsin √ 1−y √ −arcsin x 1−x−y 1 √ − (1−y−2x) − (1 − 2x) 1 − 4xy (1−y)2 x 3(1−y)2 −4x(1−y)+4x2 √1−x−y √ 5 − (3 − 4x + x2 ) 1 − x) 48x2 y (1−y) √ 2x √ x (1−y−2x) arcsin 1−y −(1−2x) arcsin √ −3 x 1−y−4x 2 1−4x 3y (1−x−y) 52 − (1−x) 52
1 √ 8 √ √ 3y 1−y( 1−y+ 1−x−y)2
+
x 1−y
9 (1−x−y) 2
−
7 (1−x−y) 2
√
2 2 2 − 3(1−y) +2x(1−y)−8x + 3+2x−8x 3 1−x−y 1−x (1−x) 2 √ x √ − arcsin − 3x (1 − y)2 − 1 + 2x2 y 1−x √ 3 √ 3 (1− x) 2 +(1+ x) 2
−
x √ (1−y)3 arcsin 1−y 35 √ 3 x 4 48x y 1−x−y √ √ 3 √ 3 √ 2 ( 1−y− x) 2 +( 1−y+ x) 2 − 3√ 5y (1−x−y) 2 1−y √ √ √1−y+√x− √1−y−√x √4 √ − 5 xy (1−y)(1−x−y)
x 1−y
(1−y)3 arcsin
x
√1−y x
−(3−4x) arcsin
−1 x 1−y −(1−x) tanh
√
√
x 8(1−y)2 −12x(1−y)+3x2 √ 1−y
√
x
+ 8 − 12x + 3x2
√ x
arcsin
√ x 9
(1−x) 2
16 σ
α1
α2
β1
β2
5 2
3 2
1
1 2
2
5 2
3 2
1
3 2
2
5 2
3 2
1
5 2
2
5 2
3 2
1
7 2
2
5 2
2
1
- 12
2
5 2 5 2
2
1
1 2
2
2
1
1
2 2
5 2
2
1
3 2
5 2
2
1
5 2
2
5 2
2
1
3
2
5 2
2
1
7 2
2
5 2
2
1
4
2
5 2
5 2
1
- 21
2
5 2
5 2
1
1 2
2
5 2
5 2
1
3 2
2
5 2
5 2
1
7 2
2
5 2
3
1
- 12
2
5 2
3
1
1 2
2
5 2
3
1
1
2
3
1
3 2
2
3
1
2
2 2
5 2 5 2 5 2
3
1
5 2
5 2
3
1
7 2
2
5 2
3
1
4
2
5 2
7 2
1
- 21
2
5 2
7 2
1
1 2
2
5 2 5 2
7 2 7 2
1
2
1
3 2 5 2
5 2
4
1
- 12
2
5 2
4
1
1 2
2
5 2
4
1
1
2
5 2
4
1
3 2
2
5 2
4
1
2
2
5 2
4
1
5 2
2
2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 1−y+2x 1+2x 2 5 − 5 3y (1−x−y) 2 (1−x) 2 2 − 23 − (1 [(1 − x − y) 3y
3
− x)− 2 ]
√ x √ arcsin x 1 1 1−y −arcsin √ (1 − x − y)− 2 − (1 − x)− 2 − x √ x 3(1−y)−2x arcsin √ 1−y √ √ −(3−2x) arcsin x 5 √ − 3( 1 − x − y − 1 − x) 2x2 y x √1−y (1−y)2 −10x(1−y)−15x2 2 2 − 1−10x−15x 3y (1−x−y)4 (1−x)4 √1−y(1−y+3x) 2 1+3x − (1−x) 3 3y (1−x−y)3 1 2(1−y)+x 2+x 5 − 5 3y 2 xy
(1−x−y) 2 (1−x) 2 1 2 −2 2 − (1 − x)−2 ] 3y [(1 − y) (1 − x − y) √ x −1 √ √1−y x tanh−1 1−y −tanh 1 1 √ − − xy 1−x−y 1−x x 2(1−y)−x √ 8 √ − 2( 1 − y − 1) − √2−x 3x2 y 1−x−y 1−x √ x 3(1−y)−x tanh−1 √ 1−y √ −(3−x) tanh−1 x 5 √ − 3( 1 2 2x y x √ √ 16 √ 1 − x − y)( − 3) − (1 + 1 − x) 3y ( 1 − y + 2 2 2 (1−y) (1−y) −12x(1−y)−24x 9 3y (1−x−y) 2 2 (1−y)(1−y+4x) − 1+4x7 7 3y 2 2 (1−x−y) (1−x)
−
1−12x−24x2 9
(1−x) 2
5
2 3y [(1
− y − 1)
5
− y)(1 − x − y)− 2 − (1 − x)− 2 ] √ x √ 3(1−y)−x x (1−y) arcsin 1−y −arcsin 5 3−x √ √ √ − 3 − 3x2 y 1−x−y x 1−x 3 2 2 2 2 (1−y) 2 (1−y) −14x(1−y)−35x − 1−14x−35x 3y (1−x−y)5 (1−x)5 3 2 (1−y) 2 (1−y−5x) 1+5x − (1−x) 4 3y (1−x−y)4 8(1−y)2 +8x(1−y)−x2 2 1 − 8+8x−x7 7 12y (1−x−y) 2 3 2 −3 2 3y [(1 − y) (1 − x − y) 4−x 1 4(1−y)−x 6y (1−x−y) 52 − (1−x) 25 1 4xy
√1−y(1−y+x)
(1−x) 2
− (1 − x)−3 ]
1+x (1−x)2
− (1−x−y)2 √ 1−y 3(1−y)−x 5 8x2 y 1−x−y
−
8(1−y)2 −4x(1−y)−x2 4 √ 3x3 y 1−x−y
−
3−x 1−x
−
tanh−1
2 2 − 72 3y [(1 − y) (1 − x − y) 5(1−y)−2x 2 5−2x 15y (1−x−y) 52 − (1−x) 25
−1 x 1−y −tanh
√ x
2 8−4x−x √ 1−x
−
5
3
− 8 (1 − y) 2 − 1 1−16x−48x2 (1−x)
−(3+x) tanh−1
√ x
11 2
7
5
−
2 (1−y) 2 (1−y+7x) 1+7x − (1−x) 5 3y (1−x−y)5 16(1−y)3 +24x(1−y)2 −6x2 (1−y)+x3 1 9 24y (1−x−y) 2
1−18x−63x2 (1−x)6
−
16+24x−6x2 +x3 9 (1−x) 2
5 2 −4 2 − (1 − x)−4 ] 3y [(1 − y) (1 − x − y) 8(1−y)2 −4x(1−y)+x2 2 1 − 8−4x+x7 7 12y 2 2 (1−x−y) (1−x)
√1−y
x
√1−y x
− (1 − x)− 2 ]
2 2 2 (1−y) 2 (1−y) −18x(1−y)−63x 3y (1−x−y)6
1 24xy
√ x
√
3(1−y)+x tanh−1
−
2 2 2 2 (1−y) (1−y) −16x(1−y)−48x 11 3y (1−x−y) 2 2 2 (1−y) (1−y+6x) − 1+6x9 9 3y (1−x−y) 2 (1−x) 2
√
3(1−y)2 +8x(1−y)−3x2 (1−x−y)3
−
3+8x−3x2 (1−x)3
−3
tanh−1
√
−1 x 1−y −tanh
√ x
√ x
17 σ
α1
α2
β1
β2
5 2
4
1
3
2 2
5 2
4
1
7 2
3
- 21
1
1 2
2
3
- 21
1
1
2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 2−x 1 2(1−y)−x 5 − 5 3y
(1−x−y) 2 (1−x) 2 √ 2 1−y 3(1−y) −2x(1−y)+3x2 5 48x2 y (1−x−y)2
2(1−y)−3x 1 4y (1−y)2 (1−x−y)
−
2(1−y)−3x 1 4y (1−y) 52 √1−x−y
−
√
1−x
1 −2 −1 + 8y 3 (1 − y)
(1−y−3x) tanh−1
2
- 21
1
2
2
3
- 21
1
5 2
2
(1−y+3x)(1−y−x) tanh 3 √1 5 32xy x (1−y) 2
3
- 21
1
3
2
2 15x2 y
3
- 21
1
7 2
2
3
√1 x
5
1 2y [(1
1
1
4
2
3
1
- 21
2
3
1 2 1 2
1
1
2
3
1 2
1
3 2
2
1−y−5x 1−5x 1 2y (1−x−y)3 − (1−x)3 2(1−y)−x 1 2−x 32 − 3 4y 2 (1−x) (1−y)(1−x−y)
3
1 2
1
2
2
3
1 2
1
5 2
2
3
1 2
1
3
2
3
1 2
1
7 2
2
3
1 2
1
4
2
3
1
1
- 21
2
3
1
1
1 2
2
3
1
1
3 2
2
1
1
2
2
3
1
1
5 2
2
3
1
1
3
2
3
1
1
7 2
2
3
1
1
4
2
3
1
- 21
2
1
1 2
2
3
3 2 3 2 3 2
1
1
2
3
3 2
1
2
2
3
3 2
1
5 2
2
3
5 (1−y) 2
1 2y [(1
3
1 2y [(1
−1
+ 3x2 )
− (1 − x)2 (1 − x) tanh−1
− (4 + 3x)(1 − x) 2 + 4y
−
−1 x 1−y −(1+x) tanh
√
x
1 1−x
+
√
x 1−y 3 (1−y) 2
tanh−1
√1 x
1
√
x
√ x
√ x + 1 − 3x −
(1−y−3x) (1−y)2
5
3
3
5
4(1−y)+3x (1−y−x) 2
1 1 4y (1−y)(1−x−y)
√
− (1 − 3x) tanh−1
− (1 + 3x)(1 − x) tanh−1
5 (1−y) 2
4 35x3 y
3
1−y
(2(1−y)+3x)(1−x−y) 2
3
(2 + 3x)(1 − x) 2 −
- 21
x 1−y
1
3(1−y)2 −2x(1−y)+3x2 5 − (3 − 2x 64x2 y (1−y)2 √ x 2 −1 (1−x−y) (1−y+x) tanh 1−y − √3x 5 (1−y) 2
√
5 (1−y) 2
− y)− 2 (1 − x − y) 2 − (1 − x) 2 ] √ x −1
−3
√ x √ tanh−1 1−y √ − 3 x( − tanh−1 x) 5 (1−y) 2 2−3x
1
3
−
(1+x−y) tanh−1
2−3x 1−x
3 2
- 21
3−2x+3x2 (1−x)2
√ x
− tanh−1
1
√ x
− y)− 2 (1 − x − y)− 2 − (1 − x)− 2 ] x 1 (1−y+x) tanh−1 √ 1−y √ y 3 √ − (1 − x) tanh−1 x − 1−y 3 8xy x (1−y) 2 2(1−y)+x √1−x−y √ − (2 + x) 1 − x - 3x22 y 3 (1−y) 2 √ x √ (1−x−y) 3(1−y)+x tanh−1 3(1−y)−x 1−y 1 15 √ − (1 − x)(3 + x) tanh−1 x − (3 − x) − 3 2 32x y 1−y x (1−y) 2 1−x−y 32 3 4 − (4 + x)(1 − x) 2 + 4y 5x3 y 4(1 − y) + x 1−y √ x √ 2 2 3 arcsin 1−y 2−14x−3x2 1 2(1−y) −14x(1−y)−3x 2 − (1−x)3 − 15x − arcsin 7x 7 4y (1−y)(1−x−y)3 2 2 √ x (1−x−y)√ (1−x) √ arcsin 2(1−y)+x x arcsin 1−y 1 2+x 4y (1−y)(1−x−y)2 − (1−x)2 + 3 x (1−x−y) 25 − (1−x) 52 √ x √ arcsin arcsin x 1−y 1 1 1 √1 − − + 3 3 4y (1−y)(1−x−y) 1−x x (1−x−y) 2
− y)
−1
(1 − x − y)
−1
− (1 − x)
(1−x) 2
]
√ x √ arcsin x 1−y y 3 √1 √ √ − 1−y − arcsin 4xy x 1−x−y 1−x xy 1−x−y + ln (1−x)(1−y) - x12 y 1−y √ x √ √ √ 3(1−y)−x 1−x−y arcsin x 1−y − 1−x arcsin 5 √ − (3 − x) − 3 2 4x y 1−y x
1−x−y 3 − (1 − x) ln(1 2x3 y 2 (1 − x − y) ln 1−y 2 2 2 1 (1−y) −10x(1−y)−15x − 1−10x−15x 2y (1−x−y)4 (1−x)4 1−y+3x 1+3x 1 2y (1−x−y)3 − (1−x)3 2(1−y)+x 2+x 1 4y √1−y(1−x−y) 52 − (1−x) 25
1 2y [(1
1
3
3
− x) −
− y)− 2 (1 − x − y)− 2 − (1 − x)− 2 ] √ x √ tanh−1 y 1−y 3 √1 √ − − tanh−1 x 4xy (1−x−y)(1−x) x 1−y
x2 y 1−y
18 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 2(1−y)−x 2 √ − √2−x x2 y 1−x (1−y)(1−x−y) √ x −1
σ
α1
α2
β1
β2
3
3 2
1
3
2
3
3 2
1
7 2
2
3
3 2
1
4
2
3
2
1
- 21
2
2 2 1 4(1−y) −48x(1−y)−61x 8y (1−x−y)4
3
2
1
1 2
2
3
2
1
1
2
1 4(1−y)+11x 8y (1−x−y)3
3
2
1
3 2
3
2
1
3
2
3
2
3(1−y)−x tanh √ 1−y
15 5
8x 2 y
- x43 y
q 1−x−y 4(1 − y) − x 1−y
−
1+x (1−x)3
2
1 3 8y (1−x−y)2
−
3 (1−x)2
2
2
1 2y [(1
1
5 2
2
y 3 8xy (1−x−y)(1−x)
1
3
2
1 x(1−x)(1−x−y)
2
3
2
1
7 2
3
2
1
4
2
3
5 2
1
- 21
2
3
5 2
1
1 2
2
3
5 2
1
1
2
3
1
3 2
2
3
5 2 5 2
1
2
2
3
5 2
1
3
2
3
5 2
1
7 2
2
3
5 2
1
4
2
3
5 2
1
5
2
3
3
1
- 21
2
5 8x 2
3 x3 y
y
4−48x−61x2 (1−x)4
+
+
(1−y+2x) arcsin √1 5 x (1−x−y) 2
√1 x
(1−y−2x) arcsin
1 x2 y
ln
1−x−y (1−x)(1−y)
√
√
x 1−y
3 (1−x−y) 2
√
x 1−y
−
(3−2x) arcsin √ 1−x
x 1−y
−
√
x 1−y
3 2 2 3 1 (1−y) −15x(1−y) −45x (1−y)−5x 2y (1−x−y)5 2 2 2 1 (1−y) +6x(1−y)+x − 1+6x+x 2y (1−x−y)4 (1−x)4
−
−
5 (1−x) 2
1−15x−45x2 −5x3 (1−x)5
3
1
1 2
2
3
3
1
1
2
1
3 2
2
3
3
3
3
1
2
2 2
2
3
3
1
5 2
3
3
1
7 2
√
1 (1−y) 2 2(1−y)+3x) − 2+3x7 7 4y (1−x−y) 2 (1−x) 2 1 3(1−y)+x 3+x 6y (1−x−y)3 − (1−x)3 5 1 1 − 52 2 − (1 − x)− 2 ] 2y [(1 − y) (1 − x − y) √ 2−3x 1−y 2(1−y)−3x 2 − 3 3 2 3x y (1−x) 2 (1−x−y) 2 √ x √ √ 1−y tanh−1 −tanh−1 x xy 5 √1−y − 3 2 4x y (1−x−y)(1−x) x 3 3 4 √ 1 1 1 √ √ √ − 1−x 1+√11−x y 1−x−y 1−y+ 1−x−y 3 4 1 8 √ √ − 1+√11−x y 1−y+ 1−x−y 16(1−y)3 −272x(1−y)2 −659x2 (1−y)−30x3 2 1 −30x3 − 16−272x−659x 32y (1−x−y)5 (1−x)5 √ x √ 3 (1−y) 5(1−y)+4x arcsin (5+4x) arcsin x 1−y −105x 2 − 11 11 (1−x−y) 2 (1−x) 2 2 2 2 16(1−y) +83x(1−y)+6x 1 − 16+83x+6x 32y (1−x−y)4 (1−x)4 √ x √ √ (1−y) 3(1−y)+4x arcsin 1−y x − (3+4x) arcsin +15 x 9 9 (1−x−y) 2 (1−x) 2 1+2x 1 (1−y)(1−y+2x) − (1−x) 4 2y (1−x−y)4 13(1−y)+2x 1 13+2x 32y (1−x−y)3 − (1−x)3 √ x √ (1−y)(1−y+4x) arcsin x 1−y + √3x − (1+4x) arcsin 7 7 (1−x−y) 2 (1−x) 2 1 −3 −3 − (1 − x) ] 2y [(1 − y)(1 − x − y) 1−y+2x 3 1+2x 32xy (1−x−y)2 − (1−x)2 √ x √ (1−y)(1−y−4x) arcsin x 1−y − √1x − (1−4x) arcsin 5 5 (1−x−y) 2 (1−x) 2 3(1−y)−2x 3−2x 15 − 1−x 32x2 y 1−x−y √ x √ (1−y) 3(1−y)−4x) arcsin x 1−y − √1x − (3−4x) arcsin 3 3 (1−x−y) 2 (1−x) 2
√ x
x
1
3
7 (1−x) 2
(1+2x) arcsin
3 (1−x) 2
x 1−y
x 1−y
(3+2x) arcsin
(1−2x) arcsin
x
(2 − x) ln(1 − x) − 2(1 − y) − x ln 1 −
−
√
9 (1−x−y) 2
7 (1−x−y) 2
−
3(1−y)−2x arcsin √ 1−x−y
5(1−y)+2x arcsin
3
− 15x 2 √
3(1−y)+2x arcsin
− x − y)−2 − (1 − x)−2 ]
15
−
√ − (3 − x) tanh−1 x √ − (4 − x) 1 − x + 4y
√ +3 x
4+11x (1−x)3
−
1+x−y 1 2y (1−x−y)3
1−y
√
−
x
(5+2x) arcsin 9 (1−x) 2
√ x
19 σ
α1
α2
β1
β2
3
3
1
4
2
3
7 2
1
- 21
2
3
7 2
1
1 2
2
3
7 2
1
1
2
3
1
3 2
2
1
2
2
3
7 2 7 2 7 2
1
5 2
2
3
7 2
3
7 2
1
4
2
3
4
1
- 21
2
3
F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 1−x−y x2 y 3 2x3 y (1−x)(1−x−y) + 2 (1 − y) ln 1−y − ln(1 − x) 4 3 2 2 3 4 2 −20x3 +x4 1 (1−y) −20x(1−y) −90x (1−y) −20x (1−y)+x − 1−20x−90x 2y (1−x−y)6 (1−x)6 5(1−y)3 +45x(1−y)2 +15x2 (1−y)−x3 5+45x+15x2 −x3 1 − 10y (1−x−y)5 (1−x)5 3 2 2(1−y)+5x 1 (1−y) − 2+5x9 9 4y (1−x−y) 2 (1−x) 2 15(1−y)2 +10x(1−y)−x2 15+10x−x2 1 − (1−x)4 30y (1−x−y)4 3 1 − 27 2 2y [(1 − y) (1 − x − y) 5(1−y)−x 1 5−x 10y (1−x−y)3 − (1−x)3
7
− (1 − x)− 2 ]
3
1
3
2
3
4
1
1 2
2
3
4
1
1
2
3
4
1
3 2
2
3
4
1
2
2
3
4
1
5 2
2
3
4
1
3
2
3
4
1
7 2
2
7 2
- 12
1
1 2
2
7 2
- 12
1
3 2
2
7 2
- 12
1
5 2
2
7 2
- 12
1
7 2
2
7 2
1 2
1
- 21
2
7 2
1 2
1
3 2
2
7 2
1 2
1
5 2
2
7 2
1 2
1
7 2
2
7 2
1
1
- 21
2
7 2
1
1
1 2
2
7 2
1
1
3 2
2
7 2 7 2 7 2
1
1
2
2
1
1
5 2
2
1
1
3
2
7 2
1
1
7 2
2
7 2
1
1
4
2
4 2−5x 15x2 y (1−x) 52
−
(1−y) 2 2(1−y)−5x 5 (1−x−y) 2 3
4−5x (1−y) 2 4(1−y)−5x 8 − 4y 3 5x3 y (1−x) 32 − (1−x−y) 2 32(1−y)4 −704x(1−y)3 −2553x2 (1−y)2 −260x3 (1−y)+20x4 2 1 −260x3 +20x4 − 32−704x−2553x 64y (1−x−y) (1−x)6 6 √ 2 √ x 5(1−y)+6x arcsin 3 (1−y) (5+6x) arcsin x 1−y − −315x 2 13 13 (1−x−y) 2 (1−x) 2 3 2 2 3 2 32(1−y) +247x(1−y) +40x (1−y)−4x 1 −4x3 − 32+247x+40x 64y (1−x−y)5 (1−x)5 √ √ x √ (1−y)2 (1−y+2x) arcsin 1−y x − (1+2x) arcsin +105 x 11 11 (1−x−y) 2 (1−x) 2 2 1 (1−y) (1−y+3x) 1+3x − (1−x) 5 2y (1−x−y)5 √ x 2 81(1−y)2 +28x(1−y)−4x2 1−y 81+28x−4x2 15 (1−y) (1−y+6x) arcsin 1 √ − − + 9 4 4 192y (1−x−y) (1−x) x
(1+6x) arcsin 9 (1−x) 2
(1−x−y) 2
1 2y [(1
− y)2 (1 − x − y)−4 − (1 − x)−4 ]
3(1−y)2 +16x(1−y)−4x2 1 64xy (1−x−y)3
−
3+16x−4x2 (1−x)3
3(1−y)2 −4x(1−y)+4x2 5 64x2 y (1−x−y)2
−
3−4x+4x2 (1−x)2
1 3(1−y)−x 6y (1−x−y)3
−
3−x (1−x)3
+
− 3−12x+8x2
(1−y)2 (1−y−6x) arcsin √3 7 x (1−x−y) 2
√3 x
(1−y)2 (1−y−2x) arcsin
−
3−2x
3 (1−x) 2 1
√
x 1−y
x 1−y
5 (1−x−y) 2
3(1−y)2 −12x(1−y)+8x2 2 − 3 3 15y (1−y)3 (1−x−y) 2 (1−x) 2 3(1−y)−4x 2 3−4x √ √ 15y (1−y)3 1−x−y − 1−x 1 1 2 −3 (1 − x − y) 2 − (1 − x) 2 ] 5y [(1 − y) √ √ x arcsin 1−y 3 2 −arcsin x −10x2 (1−y)+8x3 1 √ √ − 3(1−y) −x(1−y) 24x2 y 3 x (1−y)3 1−x−y 1−y−6x 2 1−6x 5y (1−x−y) 27 − (1−x) 72 3(1−y)−2x 2 15y (1−y)2 (1−x−y) 32 2 −2 (1 − x 5y [(1 − y)
√
+
8(1−y)2 −4x(1−y)−x2 4 3 5x3 y (1−y) 2
−
(1−6x) arcsin 7 (1−x) 2
(1−2x) arcsin 5 (1−x) 2
2 3−x−10x +8x3 √ 1−x
1
− y)− 2 − (1 − x)− 2 ] √ √ x arcsin √ 1−y √ −arcsin x 3(1−y)+2x 1−x−y 1 √ − + (3 + 2x) 1 − x 4x2 y 3 (1−y)2 x 3 2 2 3 1−9x−9x2 +x3 2 (1−y) −9x(1−y) −9x (1−y)+x − 3 4 5y (1−x) (1−y) 2 (1−x−y)4 3(1−y)2 +6x(1−y)−x2 2 2 − 3+6x−x 3 3 15y (1−x) 3 2 (1−y) (1−x−y) 3(1−y)−x 3−x 2 15y (1−y) 32 (1−x−y)2 − (1−x)2 3 3 4 − 32 − (1 − x)− 2 − (1 − y)− 2 + 1 15xy (1 − x − y) 2 − 32 (1 − x − y)−1 − (1 − x)−1 ] 5y [(1 − y) 8 2 √ 2 − 2(1−y)+x +2+x − √1−x 3 15x2 y 1−x−y (1−y) 2 √ x tanh−1 √ 1−y −tanh−1 x 2 √ − 3(1−y)+x + 3 3 2 3x y x (1−y) 2
−
3+x √ √ − (8 − 4x − x2 ) − 8( 1 − x − y − 1 − x)
√ x
√ x
√
x
20 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 8 − 12 −1 − 15x2 y 2 (1 − y)
σ
α1
α2
β1
β2
7 2
2
1
3
2
7 2
2
1
7 2
2
7 2
2
1
4
2
7 2
2
1
5
2
7 2
5 2
1
- 21
2
7 2
5 2
1
1 2
2
7 2
5 2
1
3 2
2
7 2
5 2
1
5 2
2
7 2
5 2
1
7 2
2
− x − y)− 2 − (1 − x)− 2 ] q 3 √ 2 x √ (arcsin 3x2 y 1−y − arcsin x) − x
1
- 21
2
2 5y
2
2 5y
7 2
3
7 2
3
1
1 2
7 2
3
1
1
2
7 2 7 2
3
1
3 2
2
3
1
2
2
7 2
3
1
5 2
2
7 2
3
1
7 2
2
7 2
3
1
4
2
1
- 21
7 2
1
1 2
2
7 2
7 2
1
3 2
2
7 2
7 2
1
5 2
2
7 2
4
1
- 21
2 2 2
7 2
7 2
7 2
2
2(1−y)−3x
+ 2−3x3 2 √ x(1−x) −1
3 (1−x−y) 2
−1 √ 3(1−y)−2x x tanh 1−y −tanh 1 3−2x √ √ − − 3 x2 y 1−x x 1−y(1−x−y) 4(1−y)−3x 16 4−3x √ √ −√ − 4(1−y)−x +4−x 5x3 y 1−x−y 1−y 1−x (√1−y−√1−x−y)4 √ 32 √ − (1 − 1 − x)4 5x4 y 1−y 3 2 2 3 2 3 2 (1−y) −18x(1−y) −72x (1−y)−16x − 1−18x−72x11−16x 11 5y (1−x−y) 2 (1−x) 2
3(1−y)2 +24x(1−y)+8x2 2 9 15y (1−x−y) 2 3(1−y)+2x 2 3+2x 15y (1−x−y) 72 − (1−x) 27
−
3+24x+8x2
5
2 5y [(1
√1−y
9
(1−x) 2
5
3(1−y)−4x
(1−y)3 −21x(1−y)2 −105x2 (1−y)−35x3 (1−x−y)6
√1−y
4
1
7 2
4
1
1
2
4
1
3 2
7 2
4
1
2
2
7 2 7 2
4
1
5 2
2
4
1
3
2
1
7 2
2
7 2
4
4
- 21
1
1 2
4
- 21
1
1
2
4
- 21
1
3 2
2
4
- 21
1
2
2
2
−
3−4x 3
(1−x) 2
1−21x−105x2 −35x3 (1−x)6
(1−y)2 +10x(1−y)+5x2 − (1−x)5 (1−x−y)5 8(1−y)2 +24x(1−y)+3x2 1 8+24x+3x2 − 9 9 20y (1−x−y) 2 (1−x) 2 √1−y(1−y+x) 1+x 2 − (1−x)4 5y (1−x−y)4 4(1−y)+x 1 4+x 10y (1−x−y) 27 − (1−x) 72
− y) 2 (1 − x − y)−3 − (1 − x)−3 ] √ q 3 1−y 3(1−y)−5x) −1 √ 1 x √ (tanh−1 − tanh − x) − 2 4x y 1−y (1−x−y)2 x 2 2 √ 2 8(1−y) −12x(1−y)+3x 4 − 8−12x+3x 3 3 5x3 y 8( 1 − y − 1) − (1−x−y) 2
2 5y
1
2 5y [(1
(1−y)
(1−y)3 −24x(1−y)2 −144x2 (1−y)−64x3 (1−x−y)
13 2
2 2 2 (1−y) (1−y) +12x(1−y)+8x 11 5y 2 (1−x−y)
−
11 (1−x) 2
−
1−24x−144x2 −64x3 (1−x)
13 2
−
1−27x−189x2 −105x3 (1−x)7
(1−y) 2 3(1−y)2 +42x(1−y)+35x2 2 2 − 3+42x+35x 15y (1−x−y)6 (1−x)6 16(1−y)3 +72x(1−y)2 +18x2 (1−y)−x3 2 1 −x3 − 16+72x+18x 11 11 40y (1−x−y) 2 (1−x) 2
(1−y) 2 3(1−y)+5x 3+5x 2 − (1−x) 5 15y (1−x−y)5 24(1−y)2 +12x(1−y)−x2 2 1 − 24+12x−x 9 9 60y (1−x−y) 2 (1−x) 2 3 2 −4 2 − (1 − x)−4 ] 5y [(1 − y) (1 − x − y) 6(1−y)−x 1 6−x 15y (1−x−y) 27 − (1−x) 72 1 √3 (tanh−1 24x2 y x
3 2 2 3 2 (1−y) 2 (1−y) −27x(1−y) −189x (1−y)−105x 5y (1−x−y)7
3−5x (1−x)2
(1−x) 2
1+12x+8x2
(1−y) 3(1−y)+4x 2 − 3+4x9 9 15y (1−x−y) 2 (1−x) 2 7 2 − 72 − (1 − x)− 2 ] 5y [(1 − y)(1 − x − y)
3
7 2
− 1+10x+5x2
3
1 2
3
(1−x−y) 2
3
7 2
q
x 1−y
−1
− tanh
√ x) −
√
1−y 3(1−y)2 −8x(1−y)−3x2 (1−x−y)3
−
3−8x−3x2 (1−x)3
√ x −1 √ √ tanh−1 1−y x − tanh − − 15 x( ) 7 2 (1−x) (1−y) 2 2 2 2 8(1−y) −24x(1−y)+15x 1 − 8−24x+15x 7 3 3 24y (1−y) 2 (1−x−y) 2 (1−x) 2 √ x 13(1−y)−15x √ (1−y−5x) tanh−1 1−y 13−15x 1 √3 − (1 − 5x) tanh−1 x − + 7 3 48y (1−y) (1−x−y) 1−x x (1−y) 2 4(1−y)−5x 4−5x 1 √ − 7√ 12y 1−x 8(1−y)2 −25x(1−y)+15x2 1 24y (1−y)3 (1−x−y)2
(1−y) 2
1−x−y
8−25x+15x2 (1−x)2
21 σ α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) √ x 1 √ (1−y)2 +6x(1−y)−15x2 tanh−1 1−y 1 √ 4 - 12 1 52 2 64xy − (1 + 6x − 15x2 ) tanh−1 x − 7 x (1−y) 2
− 72
1
3
2
1 3y [(1
4 - 12 1
7 2
2
5 √ 384x2 y x
4
- 12
4
1
4
4
1 2
1
- 21 2
4
1 2
1
1
4
1 2
1
4
1 2
1
2
2
4
1 2
1
5 2
2
4
1 2
1
3
2
4
1 2
1
7 2
4
1 2
1
4
4 1
1
- 21 2
4 1
1
1 2
2
4 1
1
3 2
2
1 24y 1 6y
2
2
2 105x3 y
1
(1−y)2 +2x(1−y)+5x2 (1−x−y) tanh−1
3 2
2
+ 3 + 4x − 15x2 3 2
2
5(1−y)−3x
(1−y)(1−x−y)
2 2
- 15x23 y
2
2
4 1
1
5 2
2
4 1
1
3
2
4 1
1
7 2
2
4 1
1
4
2
1
- 21 2
4
3 2 3 2
1
1 2
2
4
3 2
1
1
2
4
3 2
1
2
2
4
3 2
1
5 2
2
4
3 2
1
3
2
4
3 2
1
7 2
2
4
3 2
1
4
2
4 2
1
- 21 2
−
5−3x (1−x)2 4−3x
3
(1−x) 2
√
+
√3 x
√
x 1−y 5 (1−y) 2
tanh−1
3(1−y)2 +2x(1−y)+3x2 tanh−1 5 (1−y) 2
8(1−y)2 +4x(1−y)+3x2 5 (1−y) 2
√
1−x−y
8(1−y)3 −80x(1−y)2 −39x2 (1−y)+6x3 1 24y (1−y)2 (1−x−y)4 8(1−y)2 +9x(1−y)−2x2 1 24y (1−y)2 (1−x−y)3 5(1−y)−2x
(1−y)(1−x−y) 2(1−y)−x (1−y)(1−x−y)
2 −
2 −
−
8+9x−2x2 (1−x)3
5−2x (1−x)2
2−x (1−x)2
+
√3 x
√
x 1−y
− tanh−1
√ x −
√ x
1−y−3x (1−y)2 (1−x−y)
− (3 + 2x + 3x2 ) tanh−1
√ − (8 + 4x + 3x2 ) 1 − x −
8−80x−39x2 +6x3 (1−x)4
(1−x−y) 2
(1−x) 2
(1−y) 2
3
3
− y)− 2 (1 − x − y)− 2 − (1 − x)− 2 ] √ x 3(1−y)−x √ tanh−1 1−y 5 3−x 1 √ − tanh−1 x 3 16x2 y (1−y)(1−x−y) − 1−x − x (1−y) 2 8(1−y)2 −4x(1−y)−x2 8−4x−x2 2 − √1−x 3√ 3x3 y (1−y) 2 1−x−y 16(1−y)3 −272x(1−y)2 −659x2 (1−y)−30x3 2 −30x3 1 − 16−272x−659x 5 48y (1−y)(1−x−y) (1−x)5 √ x √ 5(1−y)+4x arcsin 3 x 1−y −105x 2 − (5+4x) arcsin 11 11 (1−x−y)
2
(1−x)
2
+
1−3x 1−x
√ x −3 √
x 1−y 9 (1−x−y) 2
arcsin
√ x √ √ arcsin 1−y + 15 x − arcsin 7x 7 2 2 √ x (1−x−y) √ (1−x) arcsin arcsin x 1−y − 5 5
x 2(1−y)+x 1−x−y − x(x + 2) + 2 ln (1−x)(1−y) - 2x13 y (1−y)2 2 2 2 1 (1−y) −14x(1−y)−35x − 1−14x−35x 3y (1−x−y)5 (1−x)5 1−y+5x 1+5x 1 3y (1−x−y)4 − (1−x)4 8(1−y)2 +8x(1−y)−x2 8+8x−x2 1 − 7 3 7 24y (1−y) 2 (1−x−y) 2 (1−x) 2 4(1−y)−x 1 4−x 12y (1−y) 23 (1−x−y) 52 − (1−x) 52 √ x −1 √ 1−y 1−y+x 1+x 1 tanh 1 √ − tanh−1 x − − 3 8xy (1−y)(1−x−y)2 (1−x)2 x 3
3
− 105x 2
√ x 1 arcsin √ 1−y arcsin x 1−y−2x 1 1−2x √ − − (1−y) 3 3 2 (1−x−y) + 1−x 8xy x (1−x−y) 2 (1−x) 2 1 −2 (1 − x − y)−1 − (1 − x)−1 ] 3y [(1 − y) √ x 3 arcsin √ 1−y y 2x(2−y)+3(1−y) arcsin x 5 √ √ √ − − 24x2 y (1−y)2 x 1−x−y 1−x
1 3y [(1
√ x
3
7 (1−y) 2
x 1 (1−y+3x) tanh−1 1−y 1 √ − (1 + 3x) tanh−1 5 16xy x (1−y) 2 1 1 1 − 52 (1 − x − y)− 2 − (1 − x)− 2 ] 3y [(1 − y)
− (1 + 2x + 5x2 )(1 − x) tanh−1
+ 1 − 15x
(1−x)
2 −
4(1−y)−3x 1 12y (1−y) 25 (1−x−y) 32
5 √1 64x2 y x
1
x 1−y
8(1−y)2 +12x(1−y)+15x2 (1−x−y) 2
(8 + 12x + 15x )(1 − x) − 1−y−7x 1−7x 1 3y (1−x−y)4 − (1−x)4 8(1−y)2 −8x(1−y)+3x2 8−8x+3x2 1 52 − 5 24y 2 1 24y
√
7 (1−y) 2
(1−y)(1−x−y)
4 1
4
1
(1 − x − y) 2 − (1 − x) 2 ]
3(1−y)2 +4x(1−y)−15x2 (1−y)3
− - 12
− y) 3
(1−y−15x) (1−y)3
−
1+x+y (1−y)2
arcsin
√
− (1 + x)
x
9 (1−x) 2
22 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 16(1−y)2 +83x(1−y)+6x2 1
σ
α1 α2
β 1 β2
4
2
1
1 2
2
4
2
1
1
2
4
2
1
3 2
2
4
2
1
5 2
2
1−y+2x 1 16y (1−y)(1−x−y)2
4
2
1
3
2
1 3y [(1
− y)−1 (1 − x − y)−2 − (1 − x)−2 ]
2
5 16x2
2 1−y
1−x−y 1 1 2 1 x2 1−y + (1−x)(1−x−y) + x3 y ln (1−y)(1−x) 3 2 2 3 2 1 (1−y) −21x(1−y) −105x (1−y)−35x −35x3 − 1−21x−105x 3y (1−x−y)6 (1−x)6 2 2 2 1 (1−y) +10x(1−y)+5x − 1+10x+5x 3y (1−x−y)5 (1−x)5 8(1−y)2 +24x(1−y)+3x2 2 1 − 8+24x+3x 9 9 √ 24y 1−y(1−x−y) 2 (1−x) 2
4
2
1
7 2
4
2
1
4
2
4
5 2
1
- 12
2
4
5 2
1
1 2
2
4
5 2
1
1
2
4
1
3 2
2
4
5 2 5 2
1
2
2
4
5 2
1
3
2
4
5 2
1
7 2
2
4
5 2
1
4
2
4
3
1
- 21
2
(1−y)(1−x−y)4
48y
1−y+2x 1 3y (1−x−y)4
3
1
1 2
2
4
3
1
1
2
4
3
1
3 2
2
4
3
1
2
2
4
3
1
5 2
2
4
3
1
3
2
4
3
1
7 2
2
4
3
1
4
2
4
7 2
1
- 12
2
4
7 2
1
1 2
2
4
7 2
1
1
2
4
7 2
1
3 2
2
4
7 2
1
2
2
4
7 2 7 2
1
5 2
2
1
3
2
4
1+2x (1−x)4
13(1−y)+2x 1 48y (1−y)(1−x−y)3
+
−
13+2x (1−x)3
+
(1−y+4x) arcsin √3 7 x (1−x−y) 2
−
1+2x (1−x)2
−
(1−y−4x) arcsin √1 5 x (1−x−y) 2
1 (1−x)(1−x−y)
−
√1 xy
√ + 15 x
16+83x+6x2 (1−x)4
3(1−y)+4x arcsin
√
√
x 1−y
9 (1−x−y) 2
√
3(1−y)−4x arcsin
x 1−y
x 1−y
√
−
(1+4x) arcsin
−
(1−4x) arcsin
x 1−y
3 (1−x−y) 2
7 (1−x) 2
−
5 (1−x) 2
−
(3+4x) arcsin 9 (1−x) 2
√
x
√ x
√ x
(3−4x) arcsin
√
3 (1−x) 2
1−y+x 1 1+x 3y (1−x−y)4 − (1−x)4 4(1−y)+x 1 4+x 12y √1−y(1−x−y) 72 − (1−x) 72 5 5 1 − 21 (1 − x − y)− 2 − (1 − x)− 2 ] 3y [(1 − y) x 3 tanh−1 √ 1−y √ 5 √ √ − tanh−1 x − 3(1−y)−5x 2 24x y (1−x−y)2 x 1−y
x
2 2 −12x(1−y)+3x2 − 8−12x+3x - 3x23 y 8(1−y) 3 3 √ 1−y(1−x−y) 2 (1−x) 2 64(1−y)3 −1536x(1−y)2 −6885x2 (1−y)−2038x3 1 − 192y (1−x−y)6 √ 35(1−y)2 +56x(1−y)+8x2 arcsin
3
4
−
−
x
+
3−5x (1−x)2
64−1536x−6885x2 −2038x3 (1−x)6 √ (35+56x+8x2 ) arcsin x
1−y − −105x 2 13 13 (1−x−y) 2 (1−x) 2 2 2 2 64(1−y) +607x(1−y)+274x 1 − 64+607x+274x 5 192y (1−x−y)5 (1−x) √ x √ 2 √ 15(1−y)2 +40x(1−y)+8x2 arcsin 1−y +15 x − (15+40x+8x )11arcsin x 11 2 2 (1−x−y) (1−x) 2 2 1+4x+x2 1 (1−y) +4x(1−y)+x − 3y (1−x−y)5 (1−x)5 √ x √ 2 3(1−y)2 +24x(1−y)+8x2 arcsin 11(1−y)+10x x 1−y 3 11+10x 1 √ 5 + − − (3+24x+8x ) arcsin 9 9 192y (1−x−y)4 (1−x)4 x (1−x−y) 2 (1−x) 2 1 2(1−y)+x 2+x 6y (1−x−y)4 − (1−x)4 √ x √ 1−y+14x 2 (1−y)2 −8x(1−y)−8x2 arcsin x 1−y 1 1+14x 1 √ − (1−8x−8x ) arcsin − − 7 7 3 3 64xy (1−x−y) (1−x) x
(1−x−y) 2
1 3y [(1
− x − y)−3 − (1 − x)−3 ] √ x 1 3(1−y)2 −8x(1−y)+8x2 arcsin 1−y
5 √ 64x2 y x
5 (1−x−y) 2
−
(1−x) 2
(3−8x+8x2 ) arcsin 5 (1−x) 2
√
x
−3
1−y−2x (1−x−y)2
x 2(1−y)−3x 1−x−y - 2x13 y − x(2−3x) (1−x−y)2 (1−x)2 + 2 ln (1−x)(1−y) 4 3 2 2 3 4 2 1 (1−y) −28x(1−y) −210x (1−y) −140x (1−y)−7x −140x3 −7x4 − 1−28x−210x 3y (1−x−y)7 (1−x)7 3 2 2 3 2 1 (1−y) +15x(1−y) +15x (1−y)+x +x3 − 1+15x+15x 3y (1−x−y)6 (1−x)6 √1−y 8(1−y)2 +40x(1−y)+15x2 2 1 − 8+40x+15x 11 11 24y (1−x−y) 2 (1−x) 2 5(1−y)2 +10x(1−y)+x2 5+10x+x2 1 − (1−x)5 15y (1−x−y)5 √ 1−y 4(1−y)+3x 1 − 4+3x9 9 12y (1−x−y) 2 (1−x) 2 5(1−y)+x 5+x 1 15y (1−x−y)4 − (1−x)4 1 3y [(1
1
7
7
− y) 2 (1 − x − y)− 2 − (1 − x)− 2 ]
−
1−2x (1−x)2
23 σ
α1 α2
β1 β2
4
7 2
1
4
2
4
4
1
- 21
2
4
4
1
1 2
2
4
4
1
1
2
4
4
1
3 2
2
4
4
1
2
2
4
4
1
5 2
2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y) √1−y 8(1−y)2 −20x(1−y)+15x2 2 5 (1−x−y) 2
15x3 y
8−20x+15x2
−
5 (1−x) 2
128(1−y)4 −3968x(1−y)3 −26223x2 (1−y)2 −14702x3 (1−y)−280x4 2 1 −14702x3 −280x4 − 128−3968x−26223x 384y (1−x−y)7 (1−x)7 √ x 2 2 √ arcsin 3 (1−y) 35(1−y) +84x(1−y)+24x (35+84x+24x2 ) arcsin x 1−y − −315x 2 15 15 (1−x−y) 2 (1−x) 2 3 2 2 3 2 128(1−y) +1779x(1−y) +1518x (1−y)+40x 1 +40x3 − 128+1779x+1518x 384y (1−x−y)6 (1−x)6 √ √ x 2 √ (1−y) 5(1−y)2 +20x(1−y)+8x2 arcsin 1−y arcsin x − (5+20x+8x )13 +105 x 13 (1−x−y) 2 (1−x) 2 2 2 2 (1−y) (1−y) +6x(1−y)+3x 1 − 1+6x+3x 3y (1−x−y)6 (1−x)6 2 2 2 113(1−y) +194x(1−y)+8x 1 − 113+194x+8x 384y (1−x−y)5 (1−x)5√ √ x 2 (1−y) (1−y)2 +12x(1−y)+8x2 arcsin arcsin x 1−y − (1+12x+8x )11 + √15x 11 (1−x−y) 2 (1−x) 2 1 (1−y)(1−y+x) 1+x − (1−x)5 3y (1−x−y)5 2 2 2 3(1−y) +94x(1−y)+8x 1 − 3+94x+8x 384xy (1−x−y)4 (1−x) 4 √ √ x 2 (1−y) (1−y)2 −12x(1−y)−24x2 arcsin 1−y − (1−12x−24x )9arcsin x − √3x 9 (1−x−y) 2
4
4
1
3
2
4
4
1
7 2
2
9 2
- 12
1
1 2
2
9 2
- 12
1
3 2
2
9 2
- 12
1
5 2
2
9 2 9 2
- 12 1 2
1
2
1
7 2 - 12
9 2
1 2
1
3 2
2
9 2
1 2
1
5 2
2
9 2
1 2
1
7 2
2
9 2
1
1
- 21
2
9 2
1
1
1 2
2
9 2
1
1
3 2
2
9 2 9 2
1
1
2
2
1
1
5 2
2
9 2
1
1
3
2
1
7 2
9 2
1
2
2
1 3y [(1
(1−x) 2
−4
−4
− y)(1 − x − y) − (1 − x) ] x 3 (1−y) (1−y)2 −4x(1−y)+8x2 arcsin √ 1−y
5 √ 384x2 y x
7 (1−x−y) 2
2 + 3−10x−8x (1−x)3 5(1−y)3 −30x(1−y)2 +40x2 (1−y)−16x3 2 5 (1−y)4 (1−x−y) 2
35y
15(1−y)2 −40x(1−y)+24x2 2 3 105y (1−y)4 (1−x−y) 2 5(1−y)−6x 2 5−6x √ √ 35y (1−y)4 1−x−y − 1−x 1 2 −4 (1 − x − y) 2 − 7y [(1 − y) 1−y−8x 2 1−8x 7y (1−x−y) 29 − (1−x) 92
−
−
−
(1−4x+8x2 ) arcsin 7 (1−x) 2
5−30x+40x2 −16x3 5 (1−x) 2
15−40x+24x2 3 (1−x) 2
√
x
−
1
(1 − x) 2 ]
15(1−y)2 −20x(1−y)+8x2 2 2 − 15−20x+8x 5 5 105y 3 2 2 (1−y) (1−x−y) (1−x) 5(1−y)−4x 2 5−4x − 3 35y (1−y)3 (1−x−y) 32 (1−x) 2
1 1 2 −3 (1 − x − y)− 2 − (1 − x)− 2 ] 7y [(1 − y) 5(1−y)4 −60x(1−y)3 −90x2 (1−y)2 +20x3 (1−y)−3x4 2 5 35y (1−y) 2 (1−x−y)5
−
5−60x−90x2 +20x3 −3x4 (1−x)5
5(1−y)3 +15x(1−y)2 −5x2 (1−y)+x3 2 5+15x−5x2 +x3 − 5 4 35y (1−x) (1−y) 2 (1−x−y)4 15(1−y)2 −10x(1−y)+3x2 2 2 − 15−10x+3x 5 3 105y (1−x) 3 2 (1−y) (1−x−y) 4 − 52 35xy (1 − x − y) 5(1−y)−3x 2 35y (1−y) 52 (1−x−y)2
2 8 105x2 y (1−x−y) 32 2 − 25 (1 − 7y [(1 − y)
9 2
1
1
4
2
4 √ 8 35x3 y 1−x−y
9 2
1
1
9 2
2
2 15x3 y
9 2
3 2
1
- 12
2
9 2
3 2
1
1 2
2
9 2
3 2
1
5 2
2
15
5
5
− (1 − x)− 2 − (1 − y)− 2 + 1 5−3x − (1−x) 2 2(1−y)+3x 2 − + 2 + 3x 3 − 5 (1−x) 2
8 − √1−x − √ −1 x
tanh
− (1 − x)−1 ]
8(1−y)2 +4x(1−y)+3x2 5 (1−y) 2
−1 1−y −tanh
√
x
√ x
2 2 2 (1−y) −16x(1−y)−48x 11 7y 2 (1−x−y) 1−y+6x 2 1+6x 7y (1−x−y) 29 − (1−x) 92 5(1−y)−2x 2 35y (1−y)2 (1−x−y) 52
−
(1−y) 2
−1
x − y)
−
−
15(1−y)2 +5x(1−y)+3x2
1−16x−48x2
5−2x
5 (1−x) 2
11 (1−x) 2
+ 8 + 4x + 3x2
5 (1−y) 2
+ 15 + 5x + 3x2
3(1−y)2 −10x(1−y)−8x2 (1−x−y)3
24 σ
α1
α2
β1
β2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y)
9 2
3 2
1
7 2
2
9 2
2
1
- 21
2
9 2
2
1
1 2
2
3 3 2 −2 (1 − x − y)− 2 − (1 − x)− 2 ] 7y [(1 − y) 4 3 2 2 3 4 2 (1−y) −20x(1−y) −90x (1−y) −20x (1−y)+x 3 7y (1−y) 2 (1−x−y)6
9 2
2
1
1
2
9 2
2
1
3 2
2
9 2
2
1
5 2
2
9 2
2
1
3
2
9 2 9 2
2
1
7 2
2
2
1
4
2
9 2
5 2
1
- 21
2
9 2
5 2
1
1 2
2
9 2
5 2
1
3 2
2
9 2
5 2
1
7 2
2
9 2
3
1
- 21
2
9 2
3
1
1 2
2
9 2
3
1
1
2
9 2
3
1
3 2
2
9 2
3
1
2
2
9 2
3
1
5 2
2
9 2
3
1
7 2
2
9 2
3
1
4
2
9 2
7 2
1
- 21
2
9 2
7 2
1
1 2
2
9 2
7 2
1
3 2
2
9 2
7 2
1
5 2
2
9 2
7 2
1
7 2
2
9 2
4
1
- 21
2
9 2
4
1
1 2
2
9 2
4
1
1
2 2 2
9 2
4
1
3 2
9 2
4
1
2
2
9 2 9 2
4
1
5 2
4
1
3
2
9 2
4
1
7 2
2
5(1−y)3 +45x(1−y)2 +15x2 (1−y)−x3 2 3 35y (1−y) 2 (1−x−y)5 1 2(1−y)+5x 2+5x 7y (1−x−y) 92 − (1−x) 92 15(1−y)2 +10x(1−y)−x2 2 3 105y (1−y) 2 (1−x−y)4
−
+
2−5x 5 (1−x) 2
4(1−y)−5x 3
− x − y)−2 − (1 − x)−2 ] − (4 + x) −
1−20x−90x2 −20x3 +x4 (1−x)6
5+45x+15x2 −x3 (1−x)5
15+10x−x2 (1−x)4
5(1−y)−x 2 5−x 35y (1−y) 23 (1−x−y)3 − (1−x)3 2 2(1−y)−5x 8 105x2 y (1−y) 32 − 2 − (1−x−y) 52 2 − 23 (1 7y [(1 − y) 4(1−y)+x 16 3 35x3 y (1−y) 2
−
−
4−5x
+
3
(1−x−y) 2 (1−x) 2 3 2 2 3 2 (1−y) −24x(1−y) −144x (1−y)−64x 1−24x−144x2 −64x3 − 13 13 7y (1−x−y) 2 (1−x) 2 2 2 1+12x+8x2 2 (1−y) +12x(1−y)+8x − 11 11 7y (1−x−y) 2 (1−x) 2
3(1−y)+4x 2 3+4x 21y (1−x−y) 29 − (1−x) 92 5 5 2 −1 (1 − x − y)− 2 − (1 − x)− 2 ] 7y [(1 − y) 4 3 2 2 3 4 2 2 (1−y) −28x(1−y) √−210x (1−y) −140x (1−y)−7x −140x3 −7x4 − 1−28x−210x 7y (1−x)7 1−y(1−x−y)7 3 2 2 +15x2 (1−y)+x3 2 (1−y) +15x(1−y) +x3 √ − 1+15x+15x 7y (1−x)6 1−y(1−x−y)6 8(1−y)2 +40x(1−y)+15x2 2 1 − 8+40x+15x 11 11 28y (1−x−y) 2 (1−x) 2 5(1−y)2 +10x(1−y)+x2 2 5+10x+x2 √ − (1−x)5 35y 1−y(1−x−y)5 4(1−y)+3x 4+3x 1 14y (1−x−y) 29 − (1−x) 92
5(1−y)+x 2 5+x √ − (1−x) 4 35y 1−y(1−x−y)4 2 − 21 (1 − x − y)−3 − (1 − x)−3 ] 7y [(1 − y) 8(1−y)2 −20x(1−y)+15x2 8−20x+15x2 4 − 5 5 35x3 y (1−x−y) 2 (1−x) 2
1
− 8 (1 − y)− 2 − 1
5(1−y)4 −160x(1−y)3 −1440x2 (1−y)2 −1280x3 (1−y)−128x4 2 15 35y (1−x−y) 2 5(1−y)3 +90x(1−y)2 +120x2 +16x3 2 13 35y (1−x−y) 2 15(1−y)2 +40x(1−y)+8x2 2 11 105y (1−x−y) 2 5(1−y)+2x 2 5+2x 35y (1−x−y) 29 − (1−x) 92
−
−
5+90x+120x2 +16x3 13 (1−x) 2
15+4−x+8x2 11 (1−x) 2
−
5−160x−1440x2 −1280x3 −128x4 15 (1−x) 2
7 2 − 27 − (1 − x)− 2 ] 7y [(1 − x − y) √1−y (1−y)4 −36x(1−y)3 −378x2 (1−y)2 −420x3 (1−y)−63x4 2 −420x3 −63x4 2 − 1−36x−378x 7y (1−x−y)8 (1−x)8 √1−y (1−y)3 +21x(1−y)2 +35x2 (1−y)+5x3 2 2 +7x3 − 1+21x+35x 7y (1−x−y)7 (1−x)7 16(1−y)3 +120x(1−y)2 +90x2 (1−y)+5x3 2 1 +5x3 − 16+120x+90x 13 13 56y (1−x−y) 2 (1−x) 2
√1−y
2 3(1−y)2 +10x(1−y)+3x2 − 3+10x+3x (1−x−y)6 (1−x)6 8(1−y)2 +12x(1−y)+x2 2 1 − 8+12x+x 11 11 28y (1−x−y) 2 (1−x) 2
2 21y
√1−y 5(1−y)+3x 2 5+3x − (1−x) 5 35y (1−x−y)5 6(1−y)+x 6+x 1 21y (1−x−y) 92 − (1−x) 92 1 2 −4 2 − (1 − 7y [(1 − y) (1 − x − y)
x)−4 ]
25 σ α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 48(1−y)3 −231x(1−y)2 +280x2 (1−y)−105x3 2 1 −105x3 − 48−231x+280x 5 - 21 1 12 2 192y 4 (1−x−y)3 (1−y) (1−x)3 √ x √ √ tanh−1 1−y − tanh−1 x)] −105 x( 9 2 (1−y) 16(1−y)3 −72x(1−y)2 +90x2 (1−y)−35x3 2 3 1 − 16−72x+90x5 −35x 5 - 21 1 1 2 64y 5 9 (1−y) 2 (1−x−y) 2
1
3 2
2
5 - 21 1
2
2
- 21
5 2
5
5
- 21
1
5 - 21 1
3
5 - 21 1
7 2
5 - 21 1
2
2 2
1 384y
24(1−y)2 −60x(1−y)+35x2 1 9 3 96y (1−y) 2 (1−x−y) 2
2
5
1 2
1
- 21 2
5
1 2
1
1
2
5
1 2
1
3 2
2
5
1 2
1
2
2
5
1 2
1
5 2
2
5
1 2
1
3
2
5
1 2
1
7 2
2
5
1 2
1
4
2
5 1
1
- 12 2
1
1 2
2
5 1
1
3 2
2
5 1
1
2
2
5 1
1
5 2
2
5 1
1
3
2
5 1
1
7 2
2
5 1
1
9 2
2
5 1
1
4
2
1
- 21 2
5
3 2 3 2
1
1 2
2
5
3 2
1
1
2
5
3 (1−x) 2
9 (1−y) 2 2
2
+100x(1−y)+105x − 3(1−y)(1−y) + 4 (1−x−y) 6(1−y)−7x 6−7x 1 −√ 9√ 24y 1−x (1−y) 2
5 √3 3072x2 y x
2
√
2
+
x 1−y
3+100x+105x2 1−x
9 (1−y) 2
+ 3 + 10x − 105x2
−
x 1−y
9 (1−y) 2
− (1 + 10x − 35x2 ) tanh−1
(1−y)3 +3x(1−y)2 +15x2 (1−y)−35x3 tanh−1
33(1−y)2 −40x(1−y)+15x2 1 3 192y (1−y)(1−x−y)
√
1−x−y
+10x(1−y)−105x2 (1−y)4
(1−y−7x) tanh−1
15 √ x
√
x 1−y
33−40x+15x2 (1−x)3
+
− (1 − 7x) tanh−1
√
−1 x 1−y 15 tanh √ 7 x (1−y) 2
− tanh−1
8(1−y)2 −12x(1−y)+5x2 1 7 5 32y (1−y) 2 (1−x−y) 2
√ x
√ x
− (1 + 3x + 15x2 − 35x3 ) tanh−1
1 1 1 − 92 (1 − x − y) 2 − (1 − x) 2 ] 4y [(1 − y) 1−y−9x 1 1−9x 4y (1−x−y)5 − (1−x)5 16(1−y)3 −24x(1−y)2 +18x2 (1−y)−5x3 2 3 1 − 16−24x+18x7 −5x 72 64y 2 (1−x) (1−y)(1−x−y)
√ x
√ x
2 − 8−12x+5x 5 (1−x) 2 x 3 (1−y+5x) tanh−1 √ 1−y 2 √ 2 −22x(1−y)+15x2 1 √ + 3−22x+15x − (1 + 5x) tanh−1 x − 3(1−y) 7 3 (1−x−y)2 2 128xy (1−y) (1−x) x 2 (1−y) 6(1−y)−5x 6−5x 1 7 24y (1−y) 2 (1−x−y) 23 − (1−x) 32 √ x 3 2 √ (1−y)2 +2x(1−y)+5x2 tanh−1 +4x(1−y)−15x2 1−y 5 √ − (1 + 2x + 5x2 ) tanh−1 x − 3(1−y) 7 512x2 y (1−y)3 (1−x−y) x (1−y) 2 2 + 3+4x−15x 1−x 1 1 1 − 72 (1 − x − y)− 2 − (1 − x)− 2 ] 4y [(1 − y) 16(1−y)4 −208x(1−y)3 −165x2 +50x3 (1−y)−8x4 1 64y (1−y)3 (1−x−y)5 √ √ x 3 arcsin arcsin x 1−y
−315x 2
5 1
24−60x+35x2
(1−y)2 +10x(1−y)−35x2 tanh−1
1 √3 512xy x
−
81−190x+105x (1−x)2
−
(1−y)4 (1−x−y)2
− 3(1−y)
4
(1−x) 2
81(1−y)2 −190x(1−y)+105x2
(1−x−y)
11 2
−
(1−x)
1 12xy
−
16−208x−165x2 +50x3 −8x4 (1−x)5
11 2
48(1−y)3 +87x(1−y)2 −38x2 (1−y)+8x3 1 192y (1−y)3 (1−x−y)4 33(1−y)2 −26x(1−y)+8x2 1 3 192y (1−y)(1−x−y)
−
−
33−26x+8x2 (1−x)3
48+87x−38x2 +8x3 (1−x)4
+
15 √ x
√
√ + 105 x
x 1−y 7 (1−x−y) 2
arcsin
−
arcsin
√
x 1−y 9 (1−x−y) 2
arcsin √ x 7
(1−x) 2
(1 − x − y)−3 − (1 − x)−3 − (1 − y)−3 + 1 √ x 3 arcsin √ 1−y 2 2 −14x(1−y)+8x2 arcsin x 1 √ + 3−14x+8x − − 3(1−y) 5 5 64xy (1−y)3 (1−x−y)2 (1−x)2 x (1−x−y) 2 (1−x) 2 3(1−y)−2x 1 3−2x 12y (1−y)3 (1−x−y)2 − (1−x)2 √ x 3 arcsin √ 1−y 2 2 +2x(1−y)−8x2 5 √ − arcsin 3x − 3(1−y) + 3+2x−8x 3 3 (1−x−y) 192x2 y (1−y) 1−x x (1−x−y) 2 (1−x) 2 √ x 15 arcsin √ 1−y 2 2 arcsin 7 √ √ − √1−x x − 15(1−y) +10x(1−y)+8x + 15 + 10x + 8x2 192x3 y (1−y)3 x 1−x−y 1 −3 (1 − x − y)−1 − (1 − x)−1 ] 4y [(1 − y) 2 2 2 1 (1−y) −18x(1−y)−63x − 1−18x−63x 4y (1−x−y)6 (1−x)6 1−y+7x 1+7x 1 4y (1−x−y)5 − (1−x)5 16(1−y)3 +24x(1−y)2 −6x2 (1−y)+x3 2 3 1 − 16+24x−6x9 +x 9 5 64y (1−y) 2 (1−x−y) 2 (1−x) 2
−
arcsin
√
x
9
(1−x) 2
26 σ
α1
α2
β1
β2
5
3 2
1
2
2
5
3 2
1
5 2
2
5
3 2
1
3
2
5
3 2
1
7 2
2
5
3 2
1
4
2
5
2
1
- 21
2
5
2
1
1 2
2
5
2
1
1
2
5
2
1
3 2
2
5
2
1
5 2
2
5
2
1
3
2
5
2
1
7 2
2
5
2
1
4
2
5
5 2
1
- 21
2
5
5 2
1
1 2
2
5
5 2
1
1
2
5
5 2
1
3 2
2
5
5 2
1
2
2
5
5 2
1
3
2
5
5 2
1
7 2
2
5
5 2
1
4
2
1
- 21
2
5
3
5
3
1
1 2
2
5
3
1
1
2
5
3
1
3 2
2
5
3
1
2
2
5
3
1
5 2
2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y) 8(1−y)2 −4x(1−y)+x2 1 − 7 5 32y
8−4x+x2 7 (1−x) 2
(1−y) 2 (1−x−y) 2
3(1−y)2 +8x(1−y)−3x2 1 64xy (1−y)2 (1−x−y)3 1 8y
2(1−y)−x
(1−y)(1−x−y)
52 −
1 4y [(1
3+8x−3x2 (1−x)3
−
2−x 5
(1−x) 2
3(1−y)2 −2x(1−y)+3x2 5 2 128x2 y (1−y)(1−x−y) 5
−
√3 x
−
√
x 1−y 5 (1−y) 2
tanh−1
− tanh−1
3−2x+3x2 (1−x)2
3
−
(1+x−y) tanh−1 √3 5 x (1−y) 2
√
x 1−y
√ x
− (1 + x) tanh−1
3
− y)− 2 (1 − x − y)− 2 − (1 − x)− 2 ]
32(1−y)4 −704x(1−y)3 −2553x2 (1−y)2 −260x3 (1−y)+20x4 1 6 128y (1−y)2 (1−x−y) √ x √ 5(1−y)+6x arcsin 3 (5+6x) arcsin x 1−y
−
√ x
32−704x−2553x2 −260x3 +20x4 (1−x)6
− −315x 2 13 13 (1−x−y) 2 (1−x) 2 3 2 2 3 2 32(1−y) +247x(1−y) +40x (1−y)−4x 1 −4x3 − 32+247x+40x 128y (1−y)2 (1−x−y) (1−x)5 √ 5x √ √ (1−y+2x) arcsin 1−y x − (1+2x) arcsin +105 x 11 11 (1−x−y) 2 (1−x) 2 1−y+3x 1+3x 1 4y (1−x−y)5 − (1−x)5 √ x √ 81(1−y)2 +28x(1−y)−4x2 (1+6x) arcsin x 1−y 1 81+28x−4x2 15 (1−y+6x) arcsin √ − − + 9 9 2 4 4 384y (1−y) (1−x−y) (1−x) x (1−x−y) 2 (1−x) 2 √ x √ 2 2 (1−y−6x) arcsin 2 3(1−y) +16x(1−y)−4x x 1−y 1 − (1−6x) arcsin − 3+16x−4x − √3x 7 7 128xy (1−y)2 (1−x−y)3 (1−x)3 2 2 (1−x−y) (1−x) 3(1−y)−x 1 3−x 12y (1−y)2 (1−x−y)3 − (1−x)3 √ x √ 3(1−y)2 −4x(1−y)+4x2 x 1−y 5 3−4x+4x2 3 (1−y−2x) arcsin √ − − (1−2x) arcsin − 2 5 5 128x2 y (1−x)2 x (1−x−y) 2
(1−y)(1−x−y)
(1−x) 2
1 −2 (1 − x − y)−2 − (1 − x)−2 ] 4y [(1 − y) 3 2 2 3 2 1 (1−y) −27x(1−y) −189x (1−y)−105x −105x3 − 1−27x−189x 4y (1−x−y)7 (1−x)7 3(1−y)2 +42x(1−y)+35x2 2 1 − 3+42x+35x 12y (1−x−y)6 (1−x)6 16(1−y)3 +72x(1−y)2 +18x2 (1−y)−x3 2 1 −x3 − 16+72x+18x 3 11 11 64y (1−y) 2 (1−x−y) 2 (1−x) 2
3(1−y)+5x 1 3+5x 12y (1−x−y)5 − (1−x)5 24(1−y)2 +12x(1−y)−x2 1 9 3 96y (1−y) 2 (1−x−y) 2 6(1−y)−x 1 24y (1−y) 23 (1−x−y) 72
√
−
−
24+12x−x2
6−x
7 (1−x) 2
9 (1−x) 2
x 3 tanh−1 1−y 2 √ 2 −8x(1−y)−3x2 5 √ − tanh−1 x − 3(1−y) + 3−8x−3x 3 3 3 192x2 y (1−y)(1−x−y) (1−x) x (1−y) 2 5 5 1 − 32 (1 − x − y)− 2 − (1 − x)− 2 ] 4y [(1 − y) 128(1−y)4 −3968x(1−y)3 −26223x2 (1−y)2 −14702x3 (1−y)−280x4 2 1 −14702x3 −280x4 − 128−3968x−26223x 512y (1−y)(1−x−y) (1−x)7 7 √ √ x 35(1−y)2 +84x(1−y)+24x2 arcsin 3 (35+84x+24x2 ) arcsin x 1−y
−315x 2 − 15 15 (1−x−y) 2 (1−x) 2 3 2 2 3 2 128(1−y) +1779x(1−y) +1518x (1−y)+40x 1 +40x3 − 128+1779x+1518x 512y (1−y)(1−x−y)6 (1−x)6 √ x √ 2 √ 5(1−y)2 +20x(1−y)+8x2 arcsin arcsin x 1−y +105 x − (5+20x+8x )13 13 (1−x−y) 2 (1−x) 2 2 2 1+6x+3x2 1 (1−y) +6x(1−y)+3x − (1−x)6 4y (1−x−y)6 2 2 113(1−y) +194x(1−y)+8x2 1 − 113+194x+8x 512y (1−y)(1−x−y)5 (1−x)5 √ x √ 2 (1−y)2 +12x(1−y)+8x2 arcsin arcsin x 1−y − (1+12x+8x ) 11 + √15x 11 (1−x−y) 2 (1−x) 2 1−y+x 1+x 1 − 4y (1−x−y)5 (1−x)5 3(1−y)2 +94x(1−y)+8x2 2 1 − 3+94x+8x 4 512xy (1−y)(1−x−y)4 (1−x)√ √ x 2 (1−y)2 −12x(1−y)−24x2 arcsin 1−y − (1−12x−24x )9arcsin x − √3x 9 (1−x−y) 2
(1−x) 2
27 σ α1 α2 β1 β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) √ x 3 (1−y)2 −4x(1−y)+8x2 arcsin 1−y 7 5 √ 5 3 1 2 − 7 2 512x2 y x (1−x−y) 2 2 2 2 −10x(1−y)−8x + 3+94x+8x − 3(1−y) (1−y)(1−x−y)3 (1−x)3 5 3
1
4
5
7 2
1
- 12 2
5
7 2
1
1 2
2
5
7 2
1
1
2
5
7 2
1
3 2
2
5
7 2
1
2
2
5
1
5 2
2
5
7 2 7 2
1
3
2
5
7 2
1
4
2
5 4
1
- 21 2
5 4
1
1 2
2
2
5 4
1
1
2
5 4
1
3 2
2
(1−4x+8x2 ) arcsin
1
2
2
5 4
1
5 2
2
5 4 5 4
1
3
1
7 2
2 2
5(1−y)+3x 1 5+3x 20y (1−x−y)5 − (1−x)5 6(1−y)+x 1 6+x 24y √1−y(1−x−y) 92 − (1−x) 29
1 4y [(1
1
7
7
− y)− 2 (1 − x − y)− 2 − (1 − x)− 2 ] 256(1−y)4 −10240x(1−y)3 −99021x2 (1−y)2 −102592x3 (1−y)−13628x4
1 1024y (1−x−y)8 256−10240x−99021x2 −102592x3 −13628x4 − (1−x)8 √ x 3 105(1−y) +378x(1−y)2 +216x2 (1−y)+16x3 arcsin 3 1−y
−315x 2 17 (1−x−y) 2 256(1−y)3 +5175x(1−y)2 +8132x2 (1−y)+1452x3
1
4
2
√ +35 x 15 (1−x−y) 2 3 2 2 3 2 1 (1−y) +9x(1−y) +9x (1−y)+x +x3 − 1+9x+9x 4y (1−x−y)7 (1−x)7 7 33(1−y)2 +104x(1−y)+28x2 2 ) 1 − 7(33+104x+28x 1024y (1−x−y)6 (1−x) 6 √ + √5x 3(1−y)2 +6x(1−y)+x2 1
(105+378x+216x2 +16x3 ) arcsin 17 (1−x) 2
−
x 1−y
13 (1−x−y) 2
2 − 3+6x+x (1−x−y)6 (1−x)6 (1−y)2 +68x(1−y)+36x2 2 3 − 1+68x+36x 1024xy (1−x−y)5 (1−x)5 √ x (1−y)3 −18x(1−y)2 −72x2 (1−y)−16x3 arcsin 1−y − √1x 11 (1−x−y) 2 3(1−y)+x 1 3+x 12y (1−x−y)5 − (1−x)5
5 √3 3072x2 y x
2
−
(1−x)
15 2
(5+90x+120x2 +16x3 ) arcsin 13 (1−x) 2
12y
1 4y [(1
−
√ x
2 +1452x3 − 256+5175x+8132x (1−x−y)7 (1−x)7 √ x √ 35(1−y)3 +210x(1−y)2 +168x2 (1−y)+16x3 arcsin (35+210x+168x2 +16x3 ) arcsin x 1−y
1 1024y
(1−y)3 −6x(1−y)2 +24x2 (1−y)+16x3 arcsin 2
−16x(1−y)−92x − 3(1−y) (1−x−y) + 4
5 4
√ x
1 −1 (1 − x − y)−3 − (1 − x)−3 ] 4y [(1 − y) 4 3 2 2 3 4 2 −420x3 −63x4 1 (1−y) −36(1−y) −378x (1−y) −420x (1−y)−63x − 1−36−378x 4y (1−x−y)8 (1−x)8 3 2 2 3 2 +7x3 1 (1−y) +21x(1−y) +35x (1−y)+7x − 1+21x+35x 4y (1−x−y)7 (1−x)7 16(1−y)3 +120x(1−y)2 +90x2 (1−y)+5x3 2 +5x3 1 − 16+120x+90x 13 13 √ 64y 1−y(1−x−y) 2 (1−x) 2 3(1−y)2 +10x(1−y)+3x 3+10x+3x2 1 − (1−x)6 12y (1−x−y)6 2 2 2 8(1−y) +12x(1−y)+x 1 − 8+12x+x 11 11 √ 32y 1−y(1−x−y) 2 (1−x) 2
5(1−y)3 +90x(1−y)2 +120x2 (1−y)+16x3 arcsin
5 4
7 (1−x) 2
9 (1−x−y) 2
3−16x−92x2 (1−x)4
− x − y)−4 − (1 − x)−4 ]
√
− x 1−y
(1−18x−72x2 −16x3 ) arcsin 11 (1−x) 2
−
√
x
(1−6x+24x2 +16x3 ) arcsin 9 (1−x) 2
√ x
√
x
28 REPRESENTATIONS OF APPELL HYPERGEOMETRIC FUNCTION F2
III.
σ
α1
α2 β1
β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y)
σ
α1
1
β1
2
a+1
a−
1 2
1
2a
2
a+1
a+
1 2
1
2a
2
a+1
a+
1 2
1
2a + 1 2
a+1
a+
1
a+
1
1 2 3 2
2
a+1
1 2 1 2
a+1
a 2
+1 1
a 2
2
a+1
a
1
a+1 2
a
a
1
a+1 2 2
2
a+1
−a
1
1 2
a+1
1−a 1
1 2
2
a+1
1−a 1
3 2
2
a+1
2−a 1
3 2
2
a+1
α
1
a
2
a+1
α
1
α
2
a+1
1
1
2
2
a+
3 2
a
1
2a
2
a+
3 2
a
1
2a + 1 2
2a + 1 a + 1 1
a
2
a 2 1 2
+2 a
2
n+1 2
1
a 2 n−1 2
1
0
1
β
2
1
α1
1
α1
2
1
β+1 1
β
2
2
b
1
2
2
1
1
1
m
2
3 2
1
1
m+
2
n
1
m
2
2
n
1
m
2
2
n
1
n+
1 2
2
2
n−
1
n+
1 2
2
2
n
1
n+1 2
y x , 1−x , (σ 6= 0) (1 − x)−σ F2 σ; β1 − α1 , 1; β1 , 2; x−1 √ √ √ 1−y+ 1−x−y 1−2a 1+ 1−x 1−2a 1 √1 − ay 2 2 1−y 2a−1 2a−1 1 1 √ 1 2 √ √ √2 − √1−x ay 1−x−y 1−y+ 1−x−y 1+ 1−x 2a 2a 2 1 √ √ , (a 6= − 12 , −1) − 1+√21−x ay 1−y+ 1−x−y
√ √ √ √ √ √ ( 1−y+ x)−2a +( 1−y− x)−2a −(1+ x)−2a −(1− x)−2a 2ay √ √ 1−2a √ √ √ √ 1 √ 1 − y − x) − (1 − x)1−2a − ( 1 − y + x)1−2a + (1 + x)1−2a ( 2a(2a−1) xy 1−y+x 1 1+x ay (1−x−y)a+1 − (1−x)a+1 a a+1 Γ(a)Γ(1 − a), x = y = 12 , a < 1, a 6= 0, −1, −2, . . . -2a ψ( a+1 2 ) − ψ( 2 ) + 2 a 1 -2a (Γ(a + 1)Γ(1 − a) + a[ψ( a2 ) − ψ( a−1 2 )] + 1−a ), x = y = 2 , a < 2, a 6= 0, −1, −2, . . .
√
√ − cos (2a) arcsin x √ x √ cos (2a−1) arcsin x 1−y 1 cos (2a−1) arcsin √ , (a 6= 0) − 1√ ay 1−x (1−y)a− 2 1−x−y x sin (2a−1) arcsin √ 1−y √ 1 √ − sin (2a − 1) arcsin x , (a 6= 0) 1 a− a(2a−1) xy 2 (1−y) √ x sin 2(a−1) arcsin √ 1−y sin 2(a−1) arcsin x 1 √ √ √ − 2a(a−1) xy (1−y)a−1 1−x−y 1−x 1 α−a −α −α (1 − x − y) − (1 − x) , (a 6= 0) ay (1 − y) 1 −a −a − (1 − x) ay (1 − x − y) 1 cos (2a) arcsin ay (1−y)a
x 1−y
(1−x−y)1−a −(1−y)1−a −(1−x)1−a +1 a(a−1)xy
2a−1 2a−1 2 1 1 √ √ √2 − √1−x 1−y+ 1−x−y 1+ 1−x (1−x−y)(1−y) 2a 1 2a 1 2 √ √ √ − 1+√21−x (a+ 12 )y 1−y 1−y+ 1−x−y 1−y+x 1 1+x 2ay (1−x−y)2a+1 − (1−x)2a+1 1 (a+ 12 )y
√
a
1
1 2
2
1 2
2
(1−y) 2 −1 (1−y+x) 1+x 2 − (1−x) a+1 (a+4)y (1−x−y)a+1 (n−1)−nx (n−1)(1−y)−nx 2 √ √ , n = 2, 3, . . . − (n−1)y 1−x−y 1−x ln(1−y) - y 1 1−x y ln 1−x−y 1 1 1−x x β (x−1)(x+y−1) + y ln( 1−x−y ) 1−x−y 1−b 1 − (1 − x)1−b (b−1)xy 1−y Pm (x+y−1)k−2 −(x−1)k−2 m−1 1 − x+y−1 ln 1−x−y k=3 y x 1−y (m−k+1)xk−2
x−1 m−1 x
ln(1 − x) − ln(1 − y) , (m = 1, 2, 3...) q √ √ 2( 21 )m −1 −1 x m−1 m−1 tanh tanh x (m−1)!xm y 2 x (x + y − 1) 1−y − (x − 1) k √ Pm−1 + k=1 (k−1)!x 1 − y(x + y − 1)m−k−1 − (x − 1)m−k−1 ( 12 )k Pn−m (m−n)k xk (1−x−y)m−n−1 m−1 − (1 − x)m−n−1 (m ≤ n) k=0 k!(m+k−1) y (1−y)m−n+k Pm−n−1 (m−n−k−1)! (m−1)! k−1 − (x − 1)k−1 k=1 (m−n−1)!xy (m−k−1)!xk−1 (x + y − 1) k−1 m−n−1 P n−1 (1−y) (x+y−1) −(x−1)m−n−1 − (n−1)!x1m−n−2 k=1 (n−k)xk m−n−1 +x−n ((x + y − 1)m−n−1 (1 − y)n−1 ln( 1−x−y ln(1 − x)) , 1−y ) − (x − 1) (m > n) q √ √ (1−y)n−1 k P ( 12 )n n−2 (k−1)!x x arcsin x √ (1 − y)n−k−1 − 1 − √1−x − k=1 ( 1 ) arcsin 1−y (n−1)!xn y 2 x 1−x−y 2 k q Pn−1 xk −1 −1 √ 2n−1 √ x n− 23 n−k−1 x (1 − y) tanh x − k=1 −1 n x y 1−y − tanh 2k−1 (1 − y) Pn−2 k - xnn y (1 − y)n−1 ln 1−x−y − ln(1 − x) + k=1 xk (1 − y)n−k−1 − 1 , (n = 1, 2, 3, ...) 1−y +
29 σ
α1
α2 β1
2
1
1
m
2
1 2
1
m+
1 2
2
1
1
m+
1 2
2
-n
1
m
2
-n
1
-m
n+1 1
1
m
n+1 1
1
m
n+1 1
1
m
n+1 1
1
n+
1 2
1
1
n+
1 2
n+1 1
1
n+1
1−n 1
1
-m
1−n 1
1
m
1
-n
n+
1−
1 2
n 2
3−n 2
1−n 2
- n2
1
-n
β2 F2 (σ; α1 , α2 ; β1 , β2 ; x, y) Pm−1 (x+y−1)k−2 −(x−1)k−2 2 (m−1)x k=2 y (m−k)xk −x−m (x + y − 1)m−2 ln 1−x−y − (x − 1)m−2 ln(1 − x) 1−y x √ (x+y−1)m−1 tanh−1 √ 1−y √ ( 21 )m √ 2 (m−1)!x x − (x − 1)m−1 tanh−1 x my 2 1−y k Pm−2 + k=1 (k−1)!x (x + y − 1)m−k−1 − (x − 1)m−k−1 ( 12 )k √ x √ √ arcsin 1−y arcsin x m−1 (−1) 2 2m−1 x 3 −m − 3 −m xm y (1−x−y) 2 (1−x) 2 Pm−1 xk (x + y − 1)m−k−1 − (x − 1)m−k−1 , (m = 1, 2, 3, ...) + k=1 2k−1 Pm−3 (1−m−n)k xk n!(−x)1−m (1−x−y)m+n−1 m+n−1 − (1 − x) − k=0 (1 − y)m−k−2 + 1 2 (m)n y (1−y)n+1 k! Pm−n (n−m)k (1−y)k 1 2 y1 m+1 k=0 (n+2)k (1−x−y)k+1 − (1−x)k+1 n+1 n (1−y)−n−1 n!xm+1 1 (n > m) + (−1)(−m) (x+y−1)m−n+1 − (x−1)m−n+1 , n k m−n−1 P n−m (m−n)k x (1−x−y) m−n−1 , (m ≤ n, n 6= 0) 2 m−1 k=0 k!(m+k−1) ny (1−y)m+k−1 − (1 − x) Pm−n−1 (m−n−k−1)! (x+y−1)k−1 (m−1)! k−1 2 (m−n−1)!nxy k=1 (1−y)n−1 − (x − 1) (m−k−1)!xk−1 k−n m−n−1 m−n−1 P n−1 (1−y) (x+y−1) −(x−1) − (n−1)!x1m−n−2 k=1 (n−k)xk m−n−1 ln(1 − x)) , (m > n, n 6= 0) +x−n ((x + y − 1)m−n−1 ln( 1−x−y 1−y ) − (x − 1) (1−m)n (−x)1−m (1 − x)m−n−1 ln(1 − x) − (1 − x − y)m−n−1 ln 1−x−y 2 (n−1)!ny 1−y Pm−n−1 (n−m+1)k Pn+k−1 xj−k−1 (1 − y)k−j − 1 , (m > n > 1) +(−x)1−n k=0 j=1 k! j √ x √ arcsin √ 1−y k Pn−1 ( 12 )n x √ 2 (n−1)!nx x √1−x−y − arcsin (1 − y)−k − 1 , (n 6= 0) − k=1 (k−1)!x ny 2 ( 12 )k 1−x q P √ √ k 1 n−1 x x 2 −k − 1 − tanh−1 x − k=1 2 xn2 y x tanh−1 1−y , (n = 1, 2, 3, ...) 2k−1 (1 − y) P k n−1 1−x−y + k=1 xk (1 − y)−k − 1 , (n = 1, 2, 3, ...) 2 - xn1 y ln (1−y)(1−x) k+n+1 P m−n (n−m)k (1−y) 1 m+1 1 2 - ny k=0 (n+2)k (1−x−y)k+1 − (1−x)k+1 n+1 m+1 n m+1 (1−y) n!x 1 (n > m) + (−1)(−m) (x+y−1)m−n+1 − (x−1)m−n+1 , n (n−1)!(−x)1−m (1 − x − y)m+n−1 − (1 − x)m+n−1 2 (m)n y Pm−2 (1−m−n)k xk − k=0 (1 − y)n−k − 1 k! √ √ √ √ √ √ n+1 n+1 −( 1−y− 1−x−y)n+1 −(1− 1−x)n+1 , 2 - 2n1ny ( 1−y+ 1−x−y) √1−x−y − (1+ 1−x) √1−x 2
2
b
1
b−m 2
2
b
1
m
2
2
b
1
m
2
b+1
1
1
b−m 2
b+1
1
1
m
2
b+1
1
1
2
2
b+1
-n
1
c
2
(√1−y+√1−x−y)n+1 −(√1−y−√1−x−y)n+1 1 √ 2n (1−n)y (1−y)(1−x−y)
(n 6= 0)
−
√ √ (1+ 1−x)n+1 −(1− 1−x)n+1 √ , 1−x
(n 6= 0, 1)
k−b+1 (1−y)m−b+1 1 b−m−1 Pm−1 (−m)k (1−y) 1 1 m! k=0 (2−b)k (1−x−y)k+1 − (1−x)k+1 − (1−b)m (x+y−1)m+1 − (x−1)m+1 by b−1 (m−1)! m−b−1 (1 − y)b+1 − (1 − x)m−b−1 (1−b)m−1 (−x)m−1 y (1 − x − y) P (b−m−1)k xk − m−2 (1 − y)m−k − 1 , (m = 1, 2, 3, ...; m − b 6= 1, 2, 3, ...) k=0 k! 1−x−y 1−b 1 1−b − (1 − x) (b−1)xy 1−y (1−y)m (1−y)k 1 1 m! 1 b−m−1 Pm−1 (−m)k k=0 (2−b)k (1−x−y)k+1 − (1−x)k+1 − (1−b)m (x+y−1)m+1 − (x−1)m+1 , y b−1 (m−1)! m−b−1 − (1 − x)m−b−1 b(1−b)m−1 (−x)m−1 y (1 − x − y) k Pm−2 kx (1 − y)m−b−k−1 − 1 , (m = 1, 2, 3, ...; m − − k=0 (b−m−1) k! 1 1−b 1−b 1−b − (1 − x) − (1 − y) +1 b(b−1)xy (1 − x − y) Pn (−n)k (b)k xk 1 (1 − y)−(b+k) − 1 k=0 by (c)k k! n x n+c−1 n+c−b x b−c d x1−c (1−x−y) [( 1−y ) (1 − 1−y ) ] = b(c) x (1−y)n+1 d( 1−y ) ny n d −(1 − x)n+c−b dx [xn+c−1 (1 − x)b−c ]
(b 6= 0)
b 6= 1, 2, 3, ...)
30 σ
α1
α2
β1
β2
1−n
b
1
c
2
F2 (σ; α1 , α2 ; β1 , β2 ; x, y) k 1 Pn−1 (−n)k (b)k x (1 − y)n−k − 1 - ny k=0 (c)k k! n x n+c−1 n+c−b x b−c d x1−c (1−x−y) (1 − 1−y ) ] [( 1−y ) = − n(c) x d( 1−y ) (1−y)1−b ny n n+c−1 b−c n+c−b d [x (1 − x) ] , (n 6= 0) −(1 − x) dx
Acknowledgments
The present study was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant GP249507 (NS).
[1] P. Appell, Sur les fonctions hyperg´ om´etriques de plusieurs variables In M´emoir. Sci. Math. Paris: Gauthier-Villars, 1925. [2] P. Appell and Kamp´e de Feriet J, Fonctions Hyperg´eometriques et Hypersph´eriques, Polynome d’Hermite (Paris: GautheirVillars), 1926. [3] W. N. Bailey, Appell’s Hypergeometric Functions of Two Variables., Ch. 9 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 73-83 and 99-101, 1935. [4] U. Becker, N. Gr¨ un and W. Scheid, Evaluation of Appell functions in relativistic Coulomb-Dirac form factors, J. Phys. A: Math. Gen. 20 (1987) 5447-5458. [5] H. Exton, Multiple Hypergeometric Functions and Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1976. [6] A. Erd´elyi, Hypergeometric functions of two variables, Acta Mathematica, 83 (1964) 131-164. [7] A. Erd´elyi, Higher Transcendental Functions Vol. 1, New York: McGraw-Hill, 1953. [8] J. Fleischer, F. Jegerlehner and O. V. Tarasov, A new hypergeometric next term representation of one-loop scalar integrals in d dimensions, Nuclear Physics B 672 (2003) 303-328. [9] L. Galu´e, Una generalizaci´ on de la integral de Hubbell, Rev. T´ec. Ing. Univ. Zulia 14 (2), 153160 (1991). [10] L. Galu´e, Unification of generalized radiation field integrals involving confluent hypergeometric function, Rad. Phys. Chem. 66 (2003) 269-273. [11] L. Galu´e, S. L. Kalla and C. Leubner, Algorithms for the approximation of the Hubbell rectangular source integral and its generalizations, Radiat. Phys. Chem. 43 (1994) 497-502. [12] M. EL-Gabali and S. Kalla, Some generalised radiation field integrals, Computers Math. Applic 32 (1996) 121-128. [13] B. Gabutti, S. L. Kalla and J. H. Hubbell, Some expansions related to the Hubbell rectangular source integral. J. Comput. Appl. Math. 37, 273285 (1991). [14] L. Galu´e and V. Kiryakova, Further results on a family of generalized integrals, Radiat. Phys. Chem. 43 (6), 573579 (1994). [15] I. I. Guseinov and B. N. Mamedov, Calculation of the generalized Hubbell rectangular source integrals using binomial coefficients, Appl. Math. Comput. 161 (2005) 285-292. [16] Richard L. Hall, Nasser Saad, and Attila B von Keviczky, Closed-form sums for some perturbation series involving associated Laguerre polynomials, J. Phys. A: Math. Gen. 34, 11287-11300 (2001). [17] J. H. Hubbell, R. L. Bach and J. C. Lamkin, Radiation field from a rectangular source, J. Res. Nat. Bur. Stand 64C (1960) 121-138. [18] S. Kalla, The Hubbell rectangular source integral and its generalizations, Radiat. Phys. Chem. 41 (1993) 775781. [19] S. L. Kalla, B. Al-Saqabi and S. Conde, Some results related to radiation field problems, Hadronic J. 10 (1987) 221230. [20] S. L. Kalla and H. G. Khajah, Tau method approximation of some integrals related to radiation field problems, Computers Math. Applic 33 (1997) 21-27. [21] S. L. Kalla, L. Galu´e and V. Kiryakova Some expansion related to a family of generalized radiation integrals, Math. Balkanic 5 (1991) 190-202. [22] S. L. Kalla, C. Leubner, and B. Al-Saqabi, Some results for the radiation flux in a rectangular straight duct, Nucl. Sci. J. 28 (1991) 403-410. [23] E. Karule, Integrals of two confluent hypergeometric functions, J. Phys. A: Math. Gen. 23 (1990), 1969-1971. [24] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, London, 1981. [25] J. L. Madajczyk and M. Trippenbach, Singular part of the hydrogen dipole matrix element, J. Phys. A: Math. Gen. 22 (1989), 2369-2374. [26] Sheldon B. Opps, Nasser Saad and H. M. Srivastava, Some reduction and transformation formulas for the Appell hypergeometric function F2 , J. Math. Anal. Appl. 302 (2005) 180-195. [27] A.P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, Integrals and Series, Vol. 3: More Special Functions (Translated from the 1983 Russian Edition by G.G. Gould), Gordon and Breach Science Publishers, New York, 1990
31 [28] M. Salman, Generalized elliptic-type integrals and their representations, Applied Mathematics and Computation 181 (2006) 12491256. [29] Nasser Saad and Richard L. Hall, Integrals containing confluent hypergeometric functions with applications to perturbed singular potentials, J. Phys. A: Math. Gen. 36 (2003), 7771-7788. [30] Nasser Saad and Richard L. Hall, Closed-form sums for some perturbation series involving hypergeometric functions, J. Phys. A.: Gen. Math. 35, 4105-4123 (2002) [31] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966. [32] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1985. [33] V. F. Tarasov, W. Gordon’s integral (1929) and its representations by means of Appell’s functions F2 , F1 , and F3 , J. Math. Phys., 44 (2003) 1449-1452. [34] V. F. Tarasov, The generalizations of Slaters and Marvins integrals and their representations by means of Appells functions F2 (x, y). Mod. Phys. Lett. B 8 (1994) 14171426. [35] V. F. Tarasov, Hypergeometric representation of the two-loop equal mass sunrise diagram, arXiv:hep-ph/0603227v1 (2006).