Theory

7 downloads 197 Views 6MB Size Report
Theory. Estonia. T3 page 2 of 5. A1 ρ(t)c. 2. +. (ρ + ( )) = 0 ρ˙ A2 p c2 a˙ a p. A2 p = p(ρ) p(t)/ = wρ(t) c2 w.
PC

Theory Estonia

Üldised konstandid Valguse kiirus vaakumis

c Vaakumi magnetiline läbitavus μ0 Vaakumi elektriline läbitavus ε0 Elementaarlaeng e Elektroni mass me

=

Prootoni mass



= =

Neutroni mass



Aatommassiühik Rydbergi konstant Gravitatsioonikonstant Gravitatsioonikiirendus Maal Plancki konstant Avogadro arv Molaarne gaasikonstant Molaarmassi konstant Boltzmanni konstant Stefan-Boltzmanni konstant

mp

= = = =

= mn = = u =

R∞ = G = g = h = NA = R = Mu = kB = σ =

299 792 458 m ⋅ s−1 4π × 10−7 kg ⋅ m ⋅ A−2 ⋅ s−2 8.854 187 817 × 10 −12 A 2 ⋅ s 4 ⋅ kg−1 ⋅ m−3 1.602 176 620 8(98) × 10−19 A ⋅ s 9.109 383 56(11) × 10−31 kg 0.510 998 946 1(31) MeV/c2 1.672 621 898(21) × 10−27 kg 938.272 081 3(58) MeV/c 2 1.674 927 471(21) × 10−27 kg 939.565 413 3(58) MeV/c 2 1.660 539 040(20) × 10−27 kg 10 973 731.568 508(65) m−1 6.674 08(31) × 10−11 m3 ⋅ kg−1 ⋅ s−2 9.81 m ⋅ s−2 6.626 070 040 (81) × 10−34 kg ⋅ m2 ⋅ s−1 6.022 140 857 (74) × 1023 mol−1 8.314 4598(48) kg ⋅ m2 ⋅ s −2 ⋅ mol−1 ⋅ K −1 1 × 10−3 kg ⋅ mol−1 1.380 548 52(79) × 10−23 kg ⋅ m2 ⋅ s−2 ⋅ K −1 5.670 367 (13) × 10−8 kg ⋅ s−3 ⋅ K −4



page 1 of 1

T1

Theory Estonia



N R

M m

M

R



i fi

fi

i

f0

N

V cr i = 1, . . . , N. f0 c

N



vrms

N fi

f0 vrms

page 1 of 5

m

i = 1, . . . , N

T1

Theory Estonia



⟨K⟩ t −γ⟨U⟩ t ⟨K⟩ t

⟨U⟩t

γ

→ → Γ = ∑ pi ⋅ ri i

dΓ/dt γ Γ

⟨ dΓ ⟩ dt t γ



N mg R

v rms

mg



Rg ms

n v(r) v(r)

r < Rg

r ≥ Rg



page 2 of 5

T1

Theory Estonia

v(r) r ≤ Rg

v(r)

v0

v(r) r > Rg



mR

Rg

v0 Rg

r Rg v0 n r ≥ Rg

page 3 of 5

ms

r < Rg

T1

Theory Estonia

mp

n(r)

T(r)

r

m′ (r) r r

dP/dr ′

m (r)



page 4 of 5

n(r)

T1

Theory Estonia



m′ (r) T(r)

r



T0

n(r) = α

α , r(β + r)2

β r

page 5 of 5

n(r)

T2

Theory Estonia

mm Tm

mw

Tw

page 1 of 6

T2

Theory Estonia



CVw

C Vm

ve

p

m

V p m

V

κ



Mw

P P

S

S P P

page 2 of 6

T2

Theory Estonia

page 3 of 6

T2

Theory Estonia



P P

P P P

P

v(z) = v 0 + az

z

p = sin θ(z)/v(z)

a

θ(z)

p p v0

a

T z δz i vi

T

i v1 v3

p

δz 1

page 4 of 6

δz2

v2 δz3

T2

Theory Estonia

λL/2 h

page 5 of 6

L≫λ

T2

Theory Estonia

ρ

d0

A0

page 6 of 6

T3

Theory Estonia

ρ

Rs R(t) = a(t)R s

a(t)

˙ 2

a ( a ) = A1 ρ(t) −

k

kc 2 R 2s a2 (t)

c



page 1 of 5

T3

Theory Estonia

A1 ρ(t)c 2

p ρ˙ + A2 (ρ + ( c 2 ))

a˙ a

=0

p

A2 p = p(ρ) w

H=

p(t)/c 2 = wρ(t)

a˙ a

t0 ρ 0 H0 a0 a0 = 1

w



a(t)

k=0 a0 = 1

a(t = 0) = 0

k

k = +1 k=0

k = −1 ρc c 2 = H 2 /A 1 Ω = ρ/ ρc

page 2 of 5

T3

Theory Estonia

A1 k

Ω H a

R0



k = +1 k = 0

k = −1

Ω





(Ω(t) − 1)

(Ω(t) − 1) (Ω(t) − 1) ≪ 1

(a¨ > 0) −1

(d(aH ) /dt < 0) ϵ = −H˙ /H 2

ϵ