Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 430409, 8 pages http://dx.doi.org/10.1155/2013/430409
Research Article Weak Convergence Theorem for Finding Fixed Points and Solution of Split Feasibility and Systems of Equilibrium Problems Kamonrat Sombut and Somyot Plubtieng Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand Correspondence should be addressed to Somyot Plubtieng;
[email protected] Received 15 October 2012; Accepted 13 December 2012 Academic Editor: Allan Peterson Copyright Š 2013 K. Sombut and S. Plubtieng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The purpose of this paper is to introduce an iterative algorithm for finding a common element of the set of fixed points of quasinonexpansive mappings and the solution of split feasibility problems (SFP) and systems of equilibrium problems (SEP) in Hilbert spaces. We prove that the sequences generated by the proposed algorithm converge weakly to a common element of the fixed points set of quasi-nonexpansive mappings and the solution of split feasibility problems and systems of equilibrium problems under mild conditions. Our main result improves and extends the recent ones announced by Ceng et al. (2012) and many others.
1. Introduction Let đś be a nonempty closed convex subset of a real Hilbert space đť. A mapping đ : đś â đś is said to be nonexpansive if âđđĽ â đđŚâ ⤠âđĽ â đŚâ for all đĽ, đŚ â đś. Denote the set of fixed points of đ by đš(đ). On the other hand, a mapping đ : đś â đś is said to be quasi-nonexpansive if đš(đ) ≠ 0 and âđđĽ â đâ ⤠âđĽ â đâ for all đĽ â đś and đ â đš(đ). If đ : đś â đś is nonexpansive and the set đš(đ) of fixed points of đ is nonempty, then đ is quasi-nonexpansive. Fixed point iterations process for nonexpansive mappings and quasinonexpansive mappings in Banach spaces including Mann and Ishikawa iterations process have been studied extensively by many authors to solve the nonlinear operator equations (see [1â4]). Let đš be a bifunction of đś Ă đś into R, where R is the set of real numbers. The equilibrium problem for đš : đś Ă đś â R is to find đĽ â đś such that đš (đĽ, đŚ) ⼠0
âđŚ â đś.
(1)
The set of solutions of (1) is denoted by EP(đš). Numerous problems in physics, optimization, and economics reduce to find a solution of (1) in Hilbert spaces; see, for instance,
Blum and Oettli [5], Flam and Antipin [6], and Moudafi [7]. Moreover, Flam and Antipin [6] introduced an iterative scheme of finding the best approximation to the solution of equilibrium problem, when EP(đš) is nonempty, and proved a strong convergence theorem (see also in [8â11]). Let đš1 , đš2 : đś Ă đś â R be two-monotone bifunction and đ > 0 is a constant. Recently, Moudafi [12] considered the following of a system of equilibrium problem, denoting the set of solution of SEP by Ί, for finding (đĽâ , đŚâ ) â đś Ă đś such that đđš1 (đĽâ , đ§) + â¨đŚâ â đĽâ , đĽâ â đ§âŠ ⼠0,
âđ§ â đś,
đđš2 (đŚâ , đ§) + â¨đĽâ â đŚâ , đŚâ â đ§âŠ ⼠0,
âđ§ â đś.
(2)
He also proved the weak convergence theorem of this problem (some related work can be found in [13, 14]). The split feasibility problem (SFP) in Hilbert spaces for modeling inverse problems which arise from phase retrievals and in medical image reconstruction was first introduced by Censor and Elfving [15] (see, e.g., [16, 17]). It has been found that the SFP can also be used to model the intensitymodulated radiation therapy (see [18, 19]). In this work, the SFP is formulated as finding a point đĽâ with the property đĽâ â đś,
đ´đĽâ â đ,
(3)
2
Abstract and Applied Analysis
where đś and đ are the nonempty closed convex subsets of the infinite-dimensional real Hilbert spaces đť1 and đť2 , respectively, and đ´ â đľ(đť1 , đť2 ) (i.e., đ´ is a bounded linear operator from đť1 to đť2 ). Very recently, there are related works which we can find in [16, 18, 20â26] and the references therein. A special case of the SFP is called the convex constrained linear inverse problem (see [27]), that is, the problem to finding an element đĽ such that đĽ â đś,
đ´đĽ = đ â đ.
(4)
In fact, it has been extensively investigated in the literature using the projected Landweber iterative method [27, 28]. Throughout this paper, we assume that the solution set Î of the SFP is nonempty. Motivated and inspired by the regularization method and extragradient method due to Ceng et al. [29], we introduce and analyze an extragradient method with regularization for finding a common element of the fixed points set of quasinonexpansive mappings and the solution of split feasibility problems (SFP) and systems of equilibrium problems (SEP) in Hilbert spaces. Our results represent the improvement, extension, and development of the corresponding results in [14, 29].
2. Preliminaries Let đť be a real Hilbert space with inner product â¨â
, â
⊠and norm â â
â, and let đś be a closed convex subset of đť. We write đĽđ â đĽ to indicate that the sequence {đĽđ } converges weakly to đĽ and đĽđ â đĽ to indicate that the sequence {đĽđ } converges strongly to đĽ. For every point đĽ â đť, there exists a unique nearest point in đś, denoted by đđśđĽ, such that óľŠ óľŠ óľŠ óľŠ óľŠ óľŠóľŠ óľŠóľŠđĽ â đđśđĽóľŠóľŠóľŠ = inf óľŠóľŠóľŠđĽ â đŚóľŠóľŠóľŠ ⤠óľŠóľŠóľŠđĽ â đŚóľŠóľŠóľŠ đŚâđś
âđŚ â đś.
(5)
đđś is called the metric projection of đť onto đś. Some important properties of projections are gathered in the following proposition. Proposition 1 (see [29]). For given đĽ â đť and đ§ â đś: (i) đ§ = đđśđĽ đđ đđđ đđđđŚ đđ â¨đĽ â đ§, đŚ â đ§âŠ 0, đđđ đđđ đŚ â đś;
â¤
(ii) đ§ = đđśđĽ đđ đđđ đđđđŚ đđ âđĽ â đ§â2 ⤠âđĽ â đŚâ2 â âđŚ â đ§â2 , đđđ đđđ đŚ â đś. Definition 2 (see [30, 31]). Let đ be a nonlinear operator with domain đˇ(đ) â đť and range đ
(đ) â đť, and let đ˝ > 0 and đŁ > 0 be given constants. The operator đ is called
(c) đŁ-inverse strongly monotone (đŁ-ism) if óľŠ2 óľŠ â¨đĽ â đŚ, đđĽ â đđŚâŠ ⼠đŁóľŠóľŠóľŠđđĽ â đđŚóľŠóľŠóľŠ ,
âđĽ, đŚ â đˇ (đ) ;
(6)
Definition 3 (see [29]). A mapping đ : đť â đť is said to be an averaged mapping if it can be written as the average of the identity đź and a nonexpansive mapping, that is, đ ⥠(1 â đź) đź + đźđ,
(9)
where đź â (0, 1) and đ : đť â đť is nonexpansive. More precisely, when (9) holds, we say that đ is đź-đđŁđđđđđđ. It is easly to see that if đ is an averaged mapping, then đ is nonexpansive. Proposition 4 (see [20]). Let đ : đť â đť be a given mapping. Then consider the following. (i) đ is nonexpansive if and only if the complement đź â đ is (1/2)-ism. (ii) đ is averaged if and only if the complement đźâđ is đŁ-ism for some đŁ > 1/2. Indeed, for đź â (0, 1), đ is đź-averaged if and only if đź â đ is (1/2đź)-ism. (iii) The composite of finitely many averaged mappings is averaged. That is, if each of the mappings {đđ }đ=1 đ is averaged, then so is the composite đ1 â đ2 â â
â
â
â đđ. In particular, if đ1 is đź1 -averaged and đ2 đđ đź2 -đđŁđđđđđđ, where đź1 , đź2 â (0, 1), then the composite đ1 â đ2 is đźaveraged, where đź = đź1 + đź2 â đź1 đź2 . In this paper, we use an equilibrium bifunction đš : đś Ă đś â R for solving the equilibrium problems, let us assume that đš satisfies the following conditions: (A1) đš(đĽ, đĽ) = 0 for all đĽ â đś; (A2) đš is monotone, that is, đš(đĽ, đŚ) + đš(đŚ, đĽ) for all đĽ, đŚ â đś;
â¤
0
(A3) for each đŚ â đś, đĽ ół¨â đš(đĽ, đŚ) is weakly upper semicontinuous; (A4) for each đĽ â đś, đŚ ół¨â đš(đĽ, đŚ) is convex; semicontinuous. Lemma 5 (see [6]). Assume that đš : đśĂđś â R satisfies (A1)â (A4). For đ > 0 and đĽ â đť, define a mapping đđ : đť â đś as follows: đđ (đĽ) = {đ§ â đś : đš (đ§, đŚ) +
1 â¨đŚ â đ§, đ§ â đĽâŠ ⼠0, âđŚ â đś} , đ (10)
for all đ§ â đť. Then, the following hold: (i) đđ is single-valued;
(b) đ˝-strongly monotone if óľŠ2 óľŠ â¨đĽ â đŚ, đđĽ â đđŚâŠ ⼠đ˝óľŠóľŠóľŠđĽ â đŚóľŠóľŠóľŠ ,
(8)
We can easily see that if đ is nonexpansive, then đź â đ is monotone. It is also easy to see that a projection đđś is a 1-ism.
(a) monotone if â¨đĽ â đŚ, đđĽ â đđŚâŠ ⼠0,
âđĽ, đŚ â đˇ (đ) .
âđĽ, đŚ â đˇ (đ) ;
(7)
(ii) đđ is firmly nonexpansive, that is, for any đĽ, đŚ â đť, âđđ đĽ â đđ đŚâ2 ⤠â¨đđ đĽ â đđ đŚ, đĽ â đŚâŠ;
Abstract and Applied Analysis
3
(iii) đš(đđ ) = đ¸đ(đš); (iv) đ¸đ(đš) is closed and convex. Lemma 6 (see [32]). Let đś be a closed convex subset of a real Hilbert space đť. Let đš1 and đš2 be two mappings from đś Ă đś â R satisfying (A1)â(A4) and let đ1,đ and đ2,đ are defined as in Lemma 5 associated to đš1 and đš2 , respectively. For given đĽâ , đŚâ â đś, (đĽâ , đŚâ ) is a solution of problem (2) if and only if đĽâ is a fixed point of the mapping đş : đś â đś defined by đş (đĽ) = đ1,đ (đ2,đ đĽ) ,
âđĽ â đś,
(11)
Theorem 9. Let đś be a nonempty closed convex subset in a real Hilbert space đť. Let đ > 0, đš1 and đš2 be two bifunctions from đś Ă đś â R satisfying (A1)â(A4). Let đ be a quasinonexpansive mapping of đś into itself such that đź â đ be demiclosed at zero, that is, if {đ¤đ } â đś, đ¤đ â đ¤ and (đź â đ)đ¤đ â 0, then đ¤ â đš(đ), with đš(đ)âŠÎâŠÎŠ ≠ 0. Let {đĽđ }, {đŚđ }, {đ§đ }, and {đ¤đ } be the sequence in đś generated by the following extragradient algorithm: đĽ0 = đĽ â đś, đ¤đ â đś;
where đŚâ = đ2,đ đĽâ .
+
â â Lemma 7 (see [33]). Let {đđ }â đ=1 , {đđ }đ=1 and {đżđ }đ=1 be sequences of nonnegative real numbers satisfying the inequality
đđ+1 ⤠(1 + đżđ ) đđ + đđ ,
đš2 (đ¤đ , đ§) + đ (đ§) â đ (đ¤đ )
âđ ⼠1.
3. Weak Convergence Theorem In this section, we prove a weak convergence theorem by an extragradient methods for finding a common element of the fixed points set of quasi-nonexpansive mappings and the solution of split feasibility problems and systems of equilibrium problems in Hilbert spaces. The function đ : đť â R is a continuous differentiable function with the minimization problem given by (13)
In 2010, Xu [17] considered the following Tikhonov regularized problem: 1óľŠ óľŠ2 1 minđđź (đĽ) := óľŠóľŠóľŠđ´đĽ â đđđ´đĽóľŠóľŠóľŠ + đźâđĽâ2 , đĽâđś 2 2
(14)
where đź > 0 is the regularization parameter. The gradient given by âđđź (đĽ) = âđ (đĽ) + đźđź = đ´â (đź â đđ) đ´ + đźđź
(15)
is (đź + âđ´â2 )-Lipschitz continuous and đź-strongly monotone (see [29] for the details). Lemma 8 (see [17, 29]). The following hold: (i) Î = đš(đđś(đź â đâđ)) = đđź(đś, âđ) for any đ > 0, where đš(đđś(đź â đâđ)) and đđź(đś, âđ) denote the set of fixed points of đđś(đź â đâđ) and the solution set of VIP; (ii) đđś(đź â đâđđź ) is đ-averaged for each đ â (0, 2/(đź + âđ´â2 )), where đ = (2 + đ(đź + âđ´â2 ))/4.
âđ§ â đś,
đš1 (đ§đ , đ§) + đ (đ§) â đ (đ§đ ) +
(12)
â If ââ đ=1 đżđ < â and âđ=1 đđ < â, then limđ â â đđ exists. If, â in addition, {đđ }đ=1 has a subsequence which converges to zero, then limđ â â đđ = 0.
1óľŠ óľŠ2 minđ (đĽ) := óľŠóľŠóľŠđ´đĽ â đđđ´đĽóľŠóľŠóľŠ . đĽâđś 2
đ§đ â đś;
1 â¨đ§ â đ¤đ , đ¤đ â đĽđ ⊠⼠0, đ
1 â¨đ§ â đ§đ , đ§đ â đ¤đ ⊠⼠0, đ
(16) âđ§ â đś,
đŚđ = đđś (đź â đ đ âđđźđ ) đ§đ , đĽđ+1 = đ˝đ đĽđ + (1 â đ˝đ ) đđđś (đĽđ â đ đ âđđźđ (đŚđ )) , 2 where ââ đ=0 đźđ < â, {đ đ } â [đ, đ] for some đ, đ â (0, 1/âđ´â ) and {đ˝đ } â [đ, đ] for some đ, đ â (0, 1). Then, the sequences {đĽđ } and {đŚđ } converge weakly to an element đĽĚ â đš(đ) ⊠Π⊠Ί.
Proof. By Lemma 8, we have that đđś(đź â đâđđź ) is đ-averaged for each đ â (0, 2/(đź + âđ´â2 )), where đ = (2 + đ(đź + âđ´â2 ))/4. Hence, by Proposition 2.4 , đđś(đź â đâđđź ) is nonexpansive. From {đ đ } â [đ, đ] and đ, đ â (0, 1/âđ´â2 ), we have đ ⤠inf đâĽ0 đ đ ⤠supđâĽ0 đ đ ⤠đ < 1/âđ´â2 = limđ â â 1/(đźđ + âđ´â2 ). Without loss of generality, we assume that đ ⤠inf đâĽ0 đ đ ⤠supđâĽ0 đ đ ⤠đ < 1/(đźđ + âđ´â2 ), for all đ ⼠0. Hence, for each đ ⼠0, đđś(đź â đ đ âđđźđ ) is đđ -averaged with
đđ = =
2 2 1 đ đ (đźđ + âđ´â ) 1 đ đ (đźđ + âđ´â ) + â â
2 2 2 2
2 + đ đ (đźđ + âđ´â2 ) 4
(17)
â (0, 1) .
This implies that đđś(đź â đ đ âđđźđ ) is nonexpansive for all đ ⼠0. Next, we show that the sequence {đĽđ } is bounded. Indeed, take a fixed đ â đš(đ) ⊠Π⊠Ί arbitrarily. Let đ1,đ and đ2,đ be defined as in Lemma 5 associated to đš1 and đš2 , respectively. Thus, we get đ = đđ = đđđś(đ), for all đ ⼠0, đ = đđś(đź â đâđ)đ, for all đ â (0, 2/âđ´â2 ) and đ = đ1,đ (đ2,đ đ), for all đ > 0. Put đŚâ = đ2,đ đ, đ§đ = đ1,đ đ¤đ and đ¤đ = đ2,đ đĽđ . From (29), we have óľŠ óľŠ óľŠ óľŠóľŠ óľŠóľŠđŚđ â đóľŠóľŠóľŠ = óľŠóľŠóľŠóľŠđđś (đź â đ đ âđđźđ ) đ§đ â đđś (đź â đ đ âđ) đóľŠóľŠóľŠóľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠóľŠđđś (đź â đ đ âđđźđ ) đ§đ â đđś (đź â đ đ âđđźđ ) đóľŠóľŠóľŠóľŠ
4
Abstract and Applied Analysis óľŠ óľŠ + óľŠóľŠóľŠóľŠđđś (đź â đ đ âđđźđ ) đ â đđś (đź â đ đ âđ) đóľŠóľŠóľŠóľŠ
So, we have
óľŠ óľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđ§đ â đóľŠóľŠóľŠ + óľŠóľŠóľŠóľŠ(đź â đ đ âđđźđ ) đ â (đź â đ đ âđ) đóľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ = óľŠóľŠóľŠđ§đ â đóľŠóľŠóľŠ + óľŠóľŠóľŠóľŠđ đ đ (âđ â âđđźđ )óľŠóľŠóľŠóľŠ
óľŠ óľŠ óľŠ óľŠ = óľŠóľŠóľŠđ§đ â đóľŠóľŠóľŠ + óľŠóľŠóľŠđ đ đźđ đóľŠóľŠóľŠ
óľŠ óľŠ óľŠ óľŠ = óľŠóľŠóľŠđ§đ â đóľŠóľŠóľŠ + đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ . (18) This implies that âđ§đ â đâ = âđ1,đ đ¤đ â đ1,đ đŚâ â ⤠âđ¤đ â đŚâ â = âđ2,đ đĽđ â đ2,đ đâ ⤠âđĽđ â đâ. Thus, we obtain âđŚđ â đâ ⤠âđĽđ â đâ + đ đ đźđ âđâ. Put đđ = đđś(đĽđ â đ đ âđđźđ (đŚđ )) for each đ ⼠0. Then, by Proposition 1(ii), we have óľŠ2 óľŠóľŠ óľŠ2 óľŠ óľŠóľŠđđ â đóľŠóľŠóľŠ ⤠óľŠóľŠóľŠóľŠđĽđ â đ đ âđđźđ (đŚđ ) â đóľŠóľŠóľŠóľŠ óľŠ2 óľŠ â óľŠóľŠóľŠóľŠđĽđ â đ đ âđđźđ (đŚđ ) â đđ óľŠóľŠóľŠóľŠ óľŠ2 óľŠ óľŠ2 óľŠ = óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ â óľŠóľŠóľŠđĽđ â đđ óľŠóľŠóľŠ + 2đ đ â¨âđđźđ (đŚđ ) , đ â đđ ⊠óľŠ2 óľŠ2 óľŠ óľŠ â¤ óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ â óľŠóľŠóľŠđĽđ â đđ óľŠóľŠóľŠ + 2đ đ [â¨âđđźđ (đŚđ ) , đŚđ â đđ ⊠+ â¨âđđźđ đ, đ â đŚđ âŠ] óľŠ2 óľŠ2 óľŠ óľŠ â¤ óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ â óľŠóľŠóľŠđĽđ â đđ óľŠóľŠóľŠ + 2đ đ [đźđ â¨đ, đ â đŚđ ⊠+ â¨âđđźđ (đŚđ ) , đŚđ â đđ âŠ] óľŠ2 óľŠ2 óľŠ óľŠ â¤ óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ â óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ óľŠ2 óľŠ â 2 â¨đĽđ â đŚđ , đŚđ â đđ ⊠â óľŠóľŠóľŠđŚđ â đđ óľŠóľŠóľŠ + 2đ đ [đźđ â¨đ, đ â đŚđ ⊠+ â¨âđđźđ (đŚđ ) , đŚđ â đđ âŠ] óľŠ2 óľŠ óľŠ2 óľŠ2 óľŠ óľŠ = óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ â óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ â óľŠóľŠóľŠđŚđ â đđ óľŠóľŠóľŠ + 2 â¨đĽđ â đ đ âđđźđ (đŚđ ) â đŚđ , đđ â đŚđ ⊠(19)
óľŠ óľŠ óľŠ óľŠ óľŠ óľŠ óľŠ2 óľŠ â¤ óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + 2đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ [óľŠóľŠóľŠđ§đ â đóľŠóľŠóľŠ + đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ] óľŠ óľŠ óľŠ óľŠ óľŠ óľŠ óľŠ2 óľŠ â¤ óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + 2đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ [óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ] . (21) Then, from the last inequality we conclude that óľŠóľŠ óľŠ2 óľŠóľŠđĽđ+1 â đóľŠóľŠóľŠ óľŠ óľŠ2 = óľŠóľŠóľŠđ˝đ đĽđ + (1 â đ˝đ ) đ (đđ ) â đóľŠóľŠóľŠ óľŠ óľŠ2 óľŠ óľŠ2 ⤠đ˝đ óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + (1 â đ˝đ ) óľŠóľŠóľŠđ (đđ ) â đóľŠóľŠóľŠ óľŠ óľŠ2 â đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ óľŠ óľŠ2 óľŠ óľŠ2 ⤠đ˝đ óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + (1 â đ˝đ ) óľŠóľŠóľŠđđ â đóľŠóľŠóľŠ óľŠ óľŠ2 â đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ óľŠ óľŠ2 ⤠đ˝đ óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ
2 óľŠ2 óľŠ + [đ2đ (đźđ + âđ´â2 ) â 1] óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ ]
2 óľŠ2 óľŠ + (1 â đ˝đ ) (đ2đ (đźđ + âđ´â2 ) â 1) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ
= â¨đĽđ â đ đ âđđźđ (đĽđ ) â đŚđ , đđ â đŚđ âŠ
óľŠóľŠ óľŠ óľŠ â¤ đ đ (đźđ + âđ´â2 ) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ óľŠóľŠóľŠđđ â đŚđ óľŠóľŠóľŠ .
óľŠ óľŠóľŠ óľŠ óľŠ óľŠ2 ⤠óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + 2đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ óľŠóľŠóľŠđ â đŚđ óľŠóľŠóľŠ
óľŠ óľŠóľŠ óľŠ óľŠ óľŠ2 ⤠óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + 2đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ óľŠóľŠóľŠđ â đŚđ óľŠóľŠóľŠ
â¨đĽđ â đ đ âđđźđ (đŚđ ) â đŚđ , đđ â đŚđ âŠ
óľŠ óľŠóľŠ óľŠ â¤ đ đ óľŠóľŠóľŠóľŠâđđźđ (đĽđ ) â đ đ âđđźđ (đŚđ )óľŠóľŠóľŠóľŠ óľŠóľŠóľŠđđ â đŚđ óľŠóľŠóľŠ
2 óľŠ2 óľŠ + [đ2đ (đźđ + âđ´â2 ) â 1] óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ
óľŠ óľŠ2 â đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ
Hence, by Proposition 1(i), we have
⤠â¨đ đ âđđźđ (đĽđ ) â đ đ âđđźđ (đŚđ ) , đđ â đŚđ âŠ
2óľŠ óľŠ2 óľŠ óľŠ2 + đ2đ (đźđ + âđ´â2 ) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ + óľŠóľŠóľŠđđ â đŚđ óľŠóľŠóľŠ óľŠ óľŠóľŠ óľŠ + 2đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ óľŠóľŠóľŠđ â đŚđ óľŠóľŠóľŠ óľŠ óľŠ óľŠóľŠ óľŠ óľŠ2 = óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + 2đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ óľŠóľŠóľŠđ â đŚđ óľŠóľŠóľŠ
óľŠ óľŠóľŠ óľŠ óľŠ óľŠ2 + (1 â đ˝đ ) [óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + 2đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ óľŠóľŠóľŠđ â đŚđ óľŠóľŠóľŠ
+ 2đ đ đźđ â¨đ, đ â đŚđ ⊠.
+ â¨đ đ âđđźđ (đĽđ ) â đ đ âđđźđ (đŚđ ) , đđ â đŚđ âŠ
óľŠ2 óľŠ óľŠ2 óľŠ2 óľŠ óľŠ2 óľŠ óľŠóľŠ óľŠóľŠđđ â đóľŠóľŠóľŠ ⤠óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ â óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ â óľŠóľŠóľŠđŚđ â đđ óľŠóľŠóľŠ óľŠóľŠ óľŠ óľŠ + 2đ đ (đźđ + âđ´â2 ) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ óľŠóľŠóľŠđđ â đŚđ óľŠóľŠóľŠ óľŠ óľŠóľŠ óľŠ + 2đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ óľŠóľŠóľŠđ â đŚđ óľŠóľŠóľŠ óľŠ óľŠ2 óľŠ óľŠ2 óľŠ2 óľŠ â¤ óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ â óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ â óľŠóľŠóľŠđŚđ â đđ óľŠóľŠóľŠ
(20)
óľŠ óľŠ2 â đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ óľŠ óľŠ2 óľŠ óľŠ2 óľŠ óľŠ2 ⤠óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + đźđ (đ2đ óľŠóľŠóľŠđóľŠóľŠóľŠ + óľŠóľŠóľŠđ â đŚđ óľŠóľŠóľŠ ) 2 óľŠ2 óľŠ + (1 â đ˝đ ) (đ2đ (đźđ + âđ´â2 ) â 1) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ
óľŠ óľŠ2 â đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ
Abstract and Applied Analysis
5
óľŠ óľŠ2 ⤠óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ
Similarly, from inequality (22), we have
óľŠ óľŠ2 óľŠ óľŠ óľŠ2 óľŠ + đźđ [đ2đ óľŠóľŠóľŠđóľŠóľŠóľŠ + (óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + đ đ đźđ óľŠóľŠóľŠđóľŠóľŠóľŠ) ]
2 óľŠ óľŠ2 (1 â đ) (1 â đ2 (đźđ + âđ´â2 ) ) óľŠóľŠóľŠđĽđ â đ§đ óľŠóľŠóľŠ
2 óľŠ2 óľŠ + (1 â đ˝đ ) (đ2đ (đźđ + âđ´â2 ) â 1) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ
óľŠ óľŠ2 + đ (1 â đ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ
óľŠ óľŠ2 â đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ
2 óľŠ óľŠ2 ⤠(1 â đ˝đ ) (1 â đ2đ (đźđ + âđ´â2 ) ) óľŠóľŠóľŠđĽđ â đ§đ óľŠóľŠóľŠ
óľŠ óľŠ2 ⤠óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ
óľŠ óľŠ2 + đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ óľŠ óľŠ2 óľŠ óľŠ2 ⤠(1 + đźđ ) óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ â óľŠóľŠóľŠđĽđ+1 â đóľŠóľŠóľŠ
óľŠ óľŠ2 óľŠ óľŠ2 óľŠ óľŠ2 + đźđ [đ2đ óľŠóľŠóľŠđóľŠóľŠóľŠ + 2óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + 2đ2đ đźđ2 óľŠóľŠóľŠđóľŠóľŠóľŠ ] 2 óľŠ2 óľŠ + (1 â đ˝đ ) (đ2đ (đźđ + âđ´â2 ) â 1) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ
óľŠ óľŠ2 + đźđ đ2đ óľŠóľŠóľŠđóľŠóľŠóľŠ ,
óľŠ óľŠ2 â đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ
where {đ đ } â [đ, đ] and {đ˝đ } â [đ, đ]. Since limđ â â âđĽđ â đâ exists and đźđ â 0, we obtain
óľŠ óľŠ2 óľŠ óľŠ2 = (1 + 2đźđ ) óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + đźđ đ2đ óľŠóľŠóľŠđóľŠóľŠóľŠ (1 + 2đźđ2 ) + (1 â
đ˝đ ) (đ2đ (đźđ
óľŠóľŠ
lim óľŠđĽ đââ óľŠ đ
óľŠ2 óľŠ + âđ´â ) â 1) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ 2 2
óľŠ óľŠ2 â đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ óľŠ óľŠ2 óľŠ óľŠ2 ⤠(1 + 2đźđ ) óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + đźđ đ2đ óľŠóľŠóľŠđóľŠóľŠóľŠ (1 + 2đźđ2 ) óľŠ óľŠ2 = (1 + đżđ ) óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + đđ , (22) where đżđ = 2đźđ and đđ = đźđ đ2đ âđâ2 (1 + 2đźđ2 ). Since ââ đ=0 đźđ < â and {đ đ } â [đ, đ] for some đ, đ â (0, 1/âđ´â2 ), we conclude â that ââ đ=0 đżđ < â and âđ=0 đđ < â. Therefore, by Lemma 7, we note that limđ â â âđĽđ â đâ exists for each đ â đš(đ) ⊠Π⊠Ί and hence the sequences {đĽđ }, {đđ }, {đŚđ }, {đ§đ }, and {đ¤đ } are bounded. From (22), we also obtain 2 óľŠ óľŠ2 (1 â đ) (1 â đ2 (đźđ + âđ´â2 ) ) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ
⤠(1 â đ˝đ ) (1 â
óľŠ2 óľŠ + âđ´â ) ) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ
lim óľŠđŚ đââ óľŠ đ
2 2
óľŠ + đ˝đ (1 â đ˝đ ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠ
(23)
óľŠ óľŠ2 óľŠ óľŠ2 ⤠(1 + 2đźđ ) óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ â óľŠóľŠóľŠđĽđ+1 â đóľŠóľŠóľŠ óľŠ óľŠ2 + đźđ đ2đ óľŠóľŠóľŠđóľŠóľŠóľŠ (1 + 2đźđ2 ) , where {đ đ } â [đ, đ] and {đ˝đ } â [đ, đ]. Since limđ â â âđĽđ â đâ exists and đźđ â 0, it follows that óľŠóľŠ
óľŠ óľŠ óľŠ â đŚđ óľŠóľŠóľŠ = lim óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ đââ óľŠ óľŠ óľŠ óľŠ â¤ lim [óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + óľŠóľŠóľŠđ â đ (đđ )óľŠóľŠóľŠ] đââ óľŠ óľŠ óľŠ óľŠ â¤ lim [óľŠóľŠóľŠđĽđ â đóľŠóľŠóľŠ + óľŠóľŠóľŠđ â đđ óľŠóľŠóľŠ] = 0. đââ
(26)
Moreover, we note that óľŠ óľŠóľŠ óľŠ óľŠ óľŠóľŠđŚđ â đđ óľŠóľŠóľŠ = óľŠóľŠóľŠóľŠđđś (đ§đ â đ đ âđđźđ đ§đ ) â đđś (đĽđ â đ đ âđđźđ (đŚđ ))óľŠóľŠóľŠóľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠóľŠ(đ§đ â đ đ âđđźđ (đ§đ )) â (đĽđ â đ đ âđđźđ (đŚđ ))óľŠóľŠóľŠóľŠ óľŠ óľŠ = óľŠóľŠóľŠóľŠđ§đ â đĽđ â (đ đ âđđźđ (đ§đ ) â đ đ âđđźđ (đŚđ ))óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđ§đ â đĽđ óľŠóľŠóľŠ + óľŠóľŠóľŠóľŠđ đ âđđźđ (đ§đ ) â đ đ âđđźđ (đŚđ )óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđ§đ â đĽđ óľŠóľŠóľŠ + đ đ [óľŠóľŠóľŠóľŠâđđźđ (đ§đ ) â âđđźđ (đĽđ )óľŠóľŠóľŠóľŠ óľŠ óľŠ + óľŠóľŠóľŠóľŠâđđźđ (đĽđ ) â âđđźđ (đŚđ )óľŠóľŠóľŠóľŠ] óľŠ óľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđ§đ â đĽđ óľŠóľŠóľŠ + đ đ [(đźđ + âđ´â2 ) óľŠóľŠóľŠđĽđ â đŚđ óľŠóľŠóľŠ óľŠ óľŠ + óľŠóľŠóľŠóľŠâđđźđ (đ§đ ) â âđđźđ (đĽđ )óľŠóľŠóľŠóľŠ] . (27) óľŠóľŠ
óľŠóľŠ2
lim óľŠđĽ đââ óľŠ đ
óľŠ óľŠ óľŠ â đ§đ óľŠóľŠóľŠ = lim óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ = 0. đââ
From (26) and đźđ â 0, it is implied that
óľŠ óľŠ2 + đ (1 â đ) óľŠóľŠóľŠđĽđ â đ (đđ )óľŠóľŠóľŠ đ2đ (đźđ
(25)
(28)
Note that âđđ â đ(đđ )â ⤠âđđ â đŚđ â + âđŚđ â đĽđ â + âđĽđ â đ(đđ )â. This together with (24) and (28) implies that limđ â â âđđ â đ(đđ )â = 0. Also, from âđĽđ â đđ â ⤠âđĽđ â đŚđ â + âđŚđ â đđ â, it follows that limđ â â âđĽđ â đđ â = 0. Since âđ = đ´â (đź â đđś)đ´ is a Lipschitz condition, where đ´â is the adjoint of đ´, we have limđ â â ââđ(đŚđ ) â âđ(đđ )â = 0. Since {đĽđ } is a bounded sequence, there exists a subsequence {đĽđđ } of {đĽđ } Ě that converges weakly to some đĽ. Next, we show that đĽĚ â Î. Since âđĽđ â đđ â â 0 and âđŚđ â Ě Let đ : đť â đđ â â 0, it is known that đđđ â đĽĚ and đŚđđ â đĽ. đť 2 be a set value mappings defined by đđŁ = {
(24)
óľŠ â đđ óľŠóľŠóľŠ = 0.
âđ (đŁ) + đđśđŁ 0
if đŁ â đś, if đŁ â đś,
(29)
where đđśđŁ = {đ¤ â đť1 : â¨đŁ â đ˘, đ¤âŠ ⼠0, for all đ˘ â đś}. Hence, by [34], đ is maximal monotone and 0 â đđŁ if and
6
Abstract and Applied Analysis
only if đŁ â VI(đś, âđ). Let (đŁ, đ¤) â đş(đ). Then we have đ¤ â đđŁ = âđ(đŁ) + đđśđŁ and hence đ¤ â âđ(đŁ) â đđśđŁ. So, we obtain â¨đŁâđ˘, đ¤ââđ(đŁ)⊠⼠0, for all đ˘ â đś. On the other hand, from đđ = đđś(đĽđ â đ đ âđđźđ (đŚđ )) and đŁ â đś, we have â¨đĽđ â đ đ âđđźđ (đŚđ ) â đđ , đđ â đŁâŠ ⼠0,
(30)
and hence â¨đŁ â đđ ,
đđ â đĽđ + âđđźđ (đŚđ )⊠⼠0. đđ
(31)
Therefore, from đ¤ â âđ(đŁ) â đđśđŁ and đđđ â đś, we get
and hence óľŠ óľŠ óľŠ óľŠ óľŠ óľŠóľŠ óľŠóľŠđĽđ â đş (đĽđ )óľŠóľŠóľŠ ⤠óľŠóľŠóľŠđĽđ â đ§đ óľŠóľŠóľŠ + óľŠóľŠóľŠđ§đ â đş (đ§đ )óľŠóľŠóľŠ óľŠ óľŠ + óľŠóľŠóľŠđş (đ§đ ) â đş (đĽđ )óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđĽđ â đ§đ óľŠóľŠóľŠ + óľŠóľŠóľŠđĽđ â đ§đ óľŠóľŠóľŠ + óľŠóľŠóľŠđ§đ â đĽđ óľŠóľŠóľŠ óľŠ óľŠ = 3 óľŠóľŠóľŠđĽđ â đ§đ óľŠóľŠóľŠ .
By taking đ â â, we have âđĽđ â đş(đĽđ )â â 0. From Ě we obtain đĽđđ â đĽ. Ě limđ â â âđĽđ â đ§đ â = 0 and đ§đđ â đĽ, According to demiclosedness and Lemma 6, we have đĽĚ â Ί. Therefore, we have đĽĚ â đš(đ) ⊠Π⊠Ί. Let {đĽđđ } be another Ě We show that đĽĚ = đĽ, Ě subsequence of {đĽđ } such that đĽđđ â đĽ. Ě exists for all Ě Since limđ â â âđĽđ â đĽâ suppose that đĽĚ = đĽ. đĽĚ â đš(đ) ⊠Π⊠Ί, it follows by the Opialâs condition that óľŠóľŠ
â¨đŁ â đđđ , đ¤âŠ
lim óľŠđĽ đââ óľŠ đ
⼠â¨đŁ â đđđ , âđ (đŁ)⊠⼠â¨đŁ â đđđ , âđ (đŁ)⊠â â¨đŁ â đđđ ,
đđđ â đĽđđ đ đđ
+ âđđźđ (đŚđđ )âŠ
đđđ â đĽđđ đ đđ
(32)
+ â¨đŁ â đđđ , âđ (đđđ ) â âđ (đŚđđ )⊠đđđ â đĽđđ đ đđ
Theorem 9 extends the extragradient method according to Nadezhkina and Takahashi [35]. Corollary 10. Let đś be a nonempty closed convex subset in a real Hilbert space đť. Let đš1 and đš2 be two bifunctions from đśĂ đś â R satisfying (A1)â(A4). Let đ > 0 and let đ1,đ and đ2,đ be defined as in Lemma 5 associated to đš1 and đš2 , respectively. Let đ be a quasi-nonexpansive mapping of đś into itself such that đš(đ) ⊠Π⊠Ί ≠ 0. Let {đĽđ }, {đŚđ }, {đ§đ }, and {đ¤đ } be the sequence in đś generated by the following extragradient algorithm:
= â¨đŁ â đđđ , âđ (đŁ) â âđ (đđđ )âŠ
â â¨đŁ â đđđ ,
⊠â đźđđ â¨đŁ â đđđ , đŚđđ âŠ
⼠â¨đŁ â đđđ , âđ (đđđ ) â âđ (đŚđđ )⊠â â¨đŁ â đđđ ,
đđđ â đĽđđ đ đđ
đĽ0 = đĽ â đś,
⊠â đźđđ â¨đŁ â đđđ , đŚđđ ⊠.
Ě đ¤âŠ ⼠0. Since đ By taking đ â â, we obtain â¨đŁ â đĽ, is maximal monotone, it follows that đĽĚ â đâ1 0 and hence đĽĚ â VI(đś, âđ). Therefore, by Lemma 8, đĽĚ â Î. Next, we show that đĽĚ â đš(đ). Since đđđ â đĽĚ and âđđđ â đ(đđđ )â â 0, it follows by the demiclosed principle that đĽĚ â đš(đ). Hence, we have đĽĚ â đš(đ) ⊠Î. Next, we show that đĽĚ â Ί. Let đş be a mapping which is defined as in Lemma 6, thus we have óľŠ óľŠ óľŠ óľŠóľŠ óľŠóľŠđ§đ â đş (đ§đ )óľŠóľŠóľŠ = óľŠóľŠóľŠóľŠđ1,đ đ2,đ đĽđ â đş (đ§đ )óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ = óľŠóľŠóľŠđş (đĽđ ) â đş (đ§đ )óľŠóľŠóľŠ ⤠óľŠóľŠóľŠđĽđ â đ§đ óľŠóľŠóľŠ ,
(35)
It is a contradiction. Thus, we have đĽĚ = đĽĚ and so đĽđ â đĽĚ â đš(đ) ⊠Π⊠Ί. Further, from âđĽđ â đŚđ â â 0, it follows that đŚđ â đĽĚ and hence đ§đ , đ¤đ . This completes the proof.
+ âđ (đŚđđ )âŠ
â đźđđ â¨đŁ â đđđ , đŚđđ âŠ
óľŠ óľŠ óľŠ â đĽĚóľŠóľŠóľŠ = lim inf óľŠóľŠóľŠóľŠđĽđđ â đĽĚóľŠóľŠóľŠóľŠ đââ óľŠ óľŠ óľŠ óľŠ < lim inf óľŠóľŠóľŠóľŠđĽđđ â đĽĚóľŠóľŠóľŠóľŠ = lim óľŠóľŠóľŠđĽđ â đĽĚóľŠóľŠóľŠ đââ đââ óľŠóľŠ óľŠóľŠ = lim inf óľŠóľŠóľŠđĽđđ â đĽĚóľŠóľŠóľŠ óľŠ đââ óľŠ óľŠóľŠ óľŠóľŠ óľŠóľŠ óľŠóľŠ < lim inf óľŠóľŠóľŠđĽđđ â đĽĚóľŠóľŠóľŠ = lim óľŠóľŠóľŠđĽđ â đĽĚóľŠóľŠóľŠ . đ â â óľŠ óľŠ óľŠ óľŠ đââ
đ
= â¨đŁ â đđđ , âđ (đŁ)⊠â â¨đŁ â đđđ ,
(34)
(33)
đ¤đ â đś;
đš2 (đ¤đ , đ§) +
1 â¨đ§ â đ¤đ , đ¤đ â đĽđ ⊠⼠0, đ
đ§đ â đś;
đš1 (đ§đ , đ§) +
1 â¨đ§ â đ§đ , đ§đ â đ¤đ ⊠⼠0, đ
âđ§ â đś, âđ§ â đś,
đŚđ = đđś (đź â đ đ âđ) đ§đ , đĽđ+1 = đ˝đ đĽđ + (1 â đ˝đ ) đđđś (đĽđ â đ đ âđ (đŚđ )) , (36) 2 where ââ đ=0 đźđ < â, {đ đ } â [đ, đ] for some đ, đ â (0, 1/âđ´â ) and {đ˝đ } â [đ, đ] for some đ, đ â (0, 1). Then, the sequences {đĽđ } and {đŚđ } converge weakly to an element đĽĚ â đš(đ) ⊠Π⊠Ί.
Corollary 11. Let đś be a nonempty closed convex subset in a real Hilbert space đť. Let đš1 and đš2 be two bifunctions from đśĂ
Abstract and Applied Analysis
7
đś â R satisfying (A1)â(A4). Let đ > 0 and let đ1,đ and đ2,đ be defined as in Lemma 5 associated to đš1 and đš2 , respectively. Let đ be a quasi-nonexpansive mapping of đś into itself such that đš(đ) ⊠Π⊠Ί ≠ 0. Let {đĽđ }, {đŚđ }, and {đ§đ } be the sequence in đś generated by the following extragradient algorithm: đĽ0 = đĽ â đś, đ§đ â đś;
đš1 (đ§đ , đ§) + đ (đ§) â đ (đ§đ ) +
1 â¨đ§ â đ§đ , đ§đ â đĽđ ⊠⼠0, đ
âđ§ â đś,
(37)
đŚđ = đđś (đź â đ đ âđđźđ ) đ§đ , đĽđ+1 = đ˝đ đĽđ + (1 â đ˝đ ) đđđś (đĽđ â đ đ âđđźđ (đŚđ )) , 2 where ââ đ=0 đźđ < â, {đ đ } â [đ, đ] for some đ, đ â (0, 1/âđ´â ) and {đ˝đ } â [đ, đ] for some đ, đ â (0, 1). Then, the sequences {đĽđ } and {đŚđ } converge weakly to an element đĽĚ â đš(đ) ⊠Π⊠Ί.
Proof. Setting đš2 = 0 in Theorem 9, we obtain the desired result. Corollary 12. Let đś be a nonempty closed convex subset in a real Hilbert space đť. Let đ be a quasi-nonexpansive mapping of đś into itself such that đš(đ) ⊠Π≠ 0. Let {đĽđ }, {đŚđ }, and {đ§đ } be the sequence in đś generated by the following extragradient algorithm: đĽ0 = đĽ â đś, đŚđ = đđś (đź â đ đ âđđźđ ) đĽđ ,
(38)
đĽđ+1 = đ˝đ đĽđ + (1 â đ˝đ ) đđđś (đĽđ â đ đ âđđźđ (đŚđ )) , 2 where ââ đ=0 đźđ < â, {đ đ } â [đ, đ] for some đ, đ â (0, 1/âđ´â ) and {đ˝đ } â [đ, đ] for some đ, đ â (0, 1). Then, the sequences {đĽđ } and {đŚđ } converge weakly to an element đĽĚ â đš(đ) ⊠Î.
Proof. Setting đš1 = đš2 = 0 in Theorem 9, we obtain the desired result.
Acknowledgments The authors would like to thank The Commission on Higher Education for financial support. Moreover, K. Sombut is also supported by The Strategic Scholarships Fellowships Frontier Research Networks under Grant CHE-Ph.D-THASUP/86/2550, Thailand.
References [1] W. R. Mann, âMean value methods in iteration,â Proceedings of the American Mathematical Society, vol. 4, pp. 506â510, 1953. [2] W. G. Dotson Jr., âOn the Mann iterative process,â Transactions of the American Mathematical Society, vol. 149, pp. 65â73, 1970. [3] S. Plubtieng, R. Wangkeeree, and R. Punpaeng, âOn the convergence of modified Noor iterations with errors for asymptotically nonexpansive mappings,â Journal of Mathematical Analysis and Applications, vol. 322, no. 2, pp. 1018â1029, 2006.
[4] S. Plubtieng and R. Wangkeeree, âStrong convergence theorems for multi-step Noor iterations with errors in Banach spaces,â Journal of Mathematical Analysis and Applications, vol. 321, no. 1, pp. 10â23, 2006. [5] E. Blum and W. Oettli, âFrom optimization and variational inequalities to equilibrium problems,â The Mathematics Student, vol. 63, no. 1â4, pp. 123â145, 1994. [6] D. S. Flam and A. S. Antipin, âEquilibrium programming using proximal-like algorithms,â Mathematical Programming, vol. 78, no. 1, pp. 29â41, 1997. [7] A. Moudafi, âSecond-order differential proximal methods for equilibrium problems,â Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 18, 2003. [8] S. Takahashi and W. Takahashi, âViscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces,â Journal of Mathematical Analysis and Applications, vol. 331, no. 1, pp. 506â515, 2007. [9] W. Takahashi and K. Zembayashi, âStrong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings,â Fixed Point Theory and Applications, vol. 2008, Article ID 528476, 11 pages, 2008. [10] S. Plubtieng and W. Sriprad, âA viscosity approximation method for finding common solutions of variational inclusions, equilibrium problems, and fixed point problems in Hilbert spaces,â Fixed Point Theory and Applications, vol. 2009, Article ID 567147, 20 pages, 2009. [11] S. Plubtieng and T. Thammathiwat, âA viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities,â Journal of Global Optimization, vol. 46, no. 3, pp. 447â464, 2010. [12] A. Moudafi, âFrom alternating minimization algorithms and systems of variational inequalities to equilibrium problems,â Communications on Applied Nonlinear Analysis, vol. 16, no. 3, pp. 31â35, 2012. [13] Y. Yao, Y.-C. Liou, and J.-C. Yao, âNew relaxed hybridextragradient method for fixed point problems, a general system of variational inequality problems and generalized mixed equilibrium problems,â Optimization, vol. 60, no. 3, pp. 395â412, 2011. [14] S. Plubtieng and K. Sombut, âWeak convergence theorems for a system of mixed equilibrium problems and nonspreading mappings in a Hilbert space,â Journal of Inequalities and Applications, vol. 2010, Article ID 246237, 12 pages, 2010. [15] Y. Censor and T. Elfving, âA multiprojection algorithm using Bregman projections in a product space,â Numerical Algorithms, vol. 8, no. 2â4, pp. 221â239, 1994. [16] C. Byrne, âIterative oblique projection onto convex sets and the split feasibility problem,â Inverse Problems, vol. 18, no. 2, pp. 441â 453, 2002. [17] H.-K. Xu, âIterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,â Inverse Problems, vol. 26, no. 10, article 105018, 2010. [18] Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, âThe multiplesets split feasibility problem and its applications for inverse problems,â Inverse Problems, vol. 21, no. 6, pp. 2071â2084, 2005. [19] Y. Censor, A. Motova, and A. Segal, âPerturbed projections and subgradient projections for the multiple-sets split feasibility problem,â Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 1244â1256, 2007.
8 [20] C. Byrne, âA unified treatment of some iterative algorithms in signal processing and image reconstruction,â Inverse Problems, vol. 20, no. 1, pp. 103â120, 2004. [21] B. Qu and N. Xiu, âA note on the đśđ algorithm for the split feasibility problem,â Inverse Problems, vol. 21, no. 5, pp. 1655â 1665, 2005. [22] H.-K. Xu, âA variable KrasnoselskiiMann algorithm and the multiple-set split feasibility problem,â Inverse Problems, vol. 22, no. 6, pp. 2021â2034, 2006. [23] Q. Yang, âThe relaxed CQ algorithm solving the split feasibility problem,â Inverse Problems, vol. 20, no. 4, pp. 1261â1266, 2004. [24] J. Zhao and Q. Yang, âSeveral solution methods for the split feasibility problem,â Inverse Problems, vol. 21, no. 5, pp. 1791â 1799, 2005. [25] Y. Yao, R. Chen, G. Marino, and Y. C. Liou, âApplications of fixed-point and optimization methods to the multiple-set split feasibility problem,â Journal of Applied Mathematics, vol. 2012, Article ID 927530, 21 pages, 2012. [26] X. Yu, N. Shahzad, and Y. Yao, âImplicit and explicit algorithms for solving the split feasibility problem,â Optimization Letters, vol. 6, no. 7, pp. 1447â1462, 2012. [27] B. Eicke, âIteration methods for convexly constrained ill-posed problems in Hilbert space,â Numerical Functional Analysis and Optimization, vol. 13, no. 5-6, pp. 413â429, 1992. [28] L. Landweber, âAn iteration formula for Fredholm integral equations of the first kind,â American Journal of Mathematics, vol. 73, pp. 615â624, 1951. [29] L.-C. Ceng, Q. H. Ansari, and J.-C. Yao, âAn extragradient method for solving split feasibility and fixed point problems,â Computers & Mathematics with Applications, vol. 64, no. 4, pp. 633â642, 2012. [30] D. P. Bertsekas and E. M. Gafni, âProjection methods for variational inequalities with application to the traffic assignment problem,â Mathematical Programming Study, no. 17, pp. 139â159, 1982. [31] D. Han and H. K. Lo, âSolving non-additive traffic assignment problems: a descent method for co-coercive variational inequalities,â European Journal of Operational Research, vol. 159, no. 3, pp. 529â544, 2004. [32] J.-W. Peng and J.-C. Yao, âA new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems,â Taiwanese Journal of Mathematics, vol. 12, no. 6, pp. 1401â1432, 2008. [33] M. O. Osilike, S. C. Aniagbosor, and B. G. Akuchu, âFixed points of asymptotically demicontractive mappings in arbitrary Banach spaces,â Panamerican Mathematical Journal, vol. 12, no. 2, pp. 77â88, 2002. [34] R. T. Rockafellar, âOn the maximality of sums of nonlinear monotone operators,â Transactions of the American Mathematical Society, vol. 149, pp. 75â88, 1970. [35] N. Nadezhkina and W. Takahashi, âWeak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings,â Journal of Optimization Theory and Applications, vol. 128, no. 1, pp. 191â201, 2006.
Abstract and Applied Analysis
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014