Width of the QCD transition in a Polyakov-loop DSE model

8 downloads 26930 Views 167KB Size Report
May 20, 2011 ... DSE model. D. Horvatica, D. Blaschkeb, D. Klabucara, O. Kaczmarekc. aTheoretical Physics Department, University of Zagreb, Croatia.
Width of the QCD transition in a Polyakov-loop DSE model D. Horvati´ ca , D. Blaschkeb , D. Klabuˇcara , O. Kaczmarekc a Theoretical

Physics Department, University of Zagreb, Croatia for Theoretical Physics, University of Wroclaw, Poland c Department of Physics, Bielefeld University, Germany

b Institute

Three Days on Quarkyonic Island, Wroclaw, Poland May 20, 2011

Dyson-Schwinger approach to quark-hadron physics ◮



the bound state approach which is nopertubative, covariant and chirally well behaved (e.g., GMOR Gell-Mann-Oakes-Renner relation: 2 e q = −h¯ q qi/fπ2 ) limm e q →0 Mq q¯/2m direct contact with QCD through ab initio calculations



phenomenological modeling of hadrons as quark bound states



coupled system of integral equations for Green functions of QCD



... but ... equation for n-point function calls (n+1)-point function ... → cannot solve in full the growing tower of DS equations



→ various degrees of truncations, approximations and modeling is unavoidable (more so in phenomenological modeling of hadrons, as here)

Dyson-Schwinger approach to quark-hadron physics ◮

Gap equation for propagator Sq of dressed quark q



Homogeneous Bethe-Salpeter (BS) equation for a meson q q¯ bound state vertex Γqq¯

M Γqq¯

=

K

M Γqq¯ Sq

Gap and BS equations in RLA truncation

Sf (p)

−1

→ Sf (p) =

4 = iγ · p + m ef + 3

Z

d4 q 2 eff g Dµν (p − q)γµ Sf (q)γν (2π)4

−ip Af (p2 ) + Bf (p2 ) −ip  + mf (p2 ) 1 = 2 = 2 ip Af (p2 ) + Bf (p2 ) p Af (p2 )2 + Bf (p2 )2 p + mf (p2 )2

λ(P 2 )Γff¯′ (p, P ) = −

4 3

Z

d4 q D eff (p − q)γµ Sf (q + (2π)4 µν

P 2

)Γff¯′ (q, P )Sf (q −

P4



Euclidean space: {γµ ,γν} = 2δµν , 㵆 = γµ , a·b =



P is the total momentum



meson mass is identified from λ(P 2 = −M 2 ) = 1



eff (k) an “effective gluon propagator” - modeled ! Dµν

P )γν 2

i=1 ai bi

Separable model eff : ◮ To simplify calculations, take the separable form for Dµν

eff Dµν (p − q) → δµν D(p2 , q 2 , p · q)

D(p2 , q 2 , p · q) = D0 f0 (p2 )f0 (q 2 ) + D1 f1 (p2 )(p · q)f1 (q 2 ) ◮ two strength parameters D0 , D1 , and corresponding form factors fi (p2 ). In the separable model, gap equation yields



Bf (p2 )

=

 Af (p2 ) − 1 p2

=

m ef + 8 3

Z

16 3

Z

Bf (q 2 ) d4 q D(p2 , q 2 , p · q) 2 2 2 4 (2π) q Af (q ) + Bf2 (q 2 )

(p · q)Af (q 2 ) d4 q D(p2 , q 2 , p · q) 2 2 2 . (2π)4 q Af (q ) + Bf2 (q 2 )

◮ This gives Bf (p2 ) = m e f + bf f0 (p2 ) and Af (p2 ) = 1 + af f1 (p2 ), reducing to nonlinear equations for constants bf and af .

Separable model





for separable interaction allowed form of the solution for the pseudoscalar BS amplitude is   P P S (P 2 ) f0 (q 2 ) ΓP S (q; P ) = γ5 iEP S (P 2 ) +F

this becomes a 2 × 2 matrix eigenvalue problem K(P 2 )f = λ(P 2 )f where the eigenvector is f = (EP S , FP S ), and the kernel is Z  d4 q 2 2  ˆ 4D0 tr f0 (q ) ti Sf (q+ ) tj Sf ′ (q− ) Kij (P 2 ) = − 4 3 (2π) t = (iγ5 , γ5 Pˆ ), tˆ = (iγ5 , −γ5 Pˆ /2P 2 ), q± = q ± P/2

Extension to T 6= 0





At T 6= 0, the quark 4-momentum p −→ pn = (ωn , p~), where ωn = (2n + 1)πT are the discrete ( n = 0, ±1, ±2, ±3, ... ) Matsubara frequencies, so that p2n = ωn2 + p~ 2 . Dressed quark propagator Sf (pn , T ) = [i~γ · p~ Af (p2n , T ) + iγ4 ωn Cf (p2n , T ) + Bf (p2n , T )]−1

=

−i~γ · p~ Af (p2n , T ) − iγ4 ωn Cf (p2n , T ) + Bf (p2n , T ) . p~ 2 A2f (p2n , T ) + ωn2 Cf2 (p2n , T ) + Bf2 (p2n , T )

Extension to T 6= 0 ◮



The solutions have the form Bf = m e f + bf (T )f0 (p2n ), 2 Af = 1 + af (T )f1 (pn ), and Cf = 1 + cf (T )f1 (p2n ) af (T )

=

cf (T )

=

bf (T )

=

Z d3 p 8D1 X 2 T f1 (p2n ) p ~ 2 [1 + af (T )f1 (p2n )] d−1 f (pn , T ) 9 (2π)3 n Z d3 p 8D1 X 2 2 T f (p2 ) ωn [1 + cf (T )f1 (p2n )] d−1 f (pn , T ) 3 1 n 3 (2π) n Z 16D0 X d3 p 2 e f + bf (T )f0 (p2n )] d−1 T f (p2 ) [m f (pn , T ) 3 0 n 3 (2π) n

where df (p2n , T ) is given by 2 2 2 df (p2n , T ) = p ~ 2 A2f (p2n , T ) + ωn Cf (pn , T ) + Bf2 (p2n , T )

Chiral restoration temperature ◮

Chiral restoration critical temperature TCh is TCh = 128 MeV



M. Blank and A. Krassnigg, Phys. Rev. D 82, 034006 (2010) ω [GeV] Model Tc Model Tc Model Tc Model Tc



(145 MeV in rank − 1)

N/A MN 169

0.3

0.4

0.5

AWW1 82 MT1 82 MR1 120

AWW2 94 MT2 94 MR2 133

AWW3 101 MT3 96 MR3 144

C. S. Fischer, J. Luecker, J. A. Mueller, [arXiv: 1104.1564], backreaction of the quarks onto the Yang-Mills sector

Chiral symmetry restoration at T = TCh mq H0L@GeVD

0.6

TCh =128MeV

ms H0L

0.5 0.4 0.3

mu H0L m0 H0L

0.2 0.1 T@GeVD 0.05

0.1

0.15

0.2

0.25

0.3

DSE + Polyakov loop ◮

Consider DSE model for quark dynamics and generalize it by coupling to the Polyakov loop potential



Use rank-2 separable form of the effective gluon propagator with the same form factors fixed by phenomenology Central quantity for the analysis of the thermodynamical behavior is the thermodynamical potential



Ω(T )

= −

¯ − U (Φ, Φ) T Trp~,n,α,f,D



Sf−1 (pα n, T )

=

ln{Sf−1 (pα n , T )}

1 α − Σf (pα n , T ) · Sf (pn , T ) 2

−1 α α Sf,0 (pn , T ) − Σ−1 f (pn , T )



DSE + Polyakov loop



Polyakov loop in a case of a constant background field: Φ=

Rβ 1 1 a Trc Tτ ei 0 dτ λa A4 (~x,τ ) = Trc eiφ/T Nc Nc

φ = φ 3 λ3 + φ 8 λ8 ◮



Here φ is related to Euclidean background field and diagonal in color space ¯ to be real which sets φ8 = 0 We require Φ = Φ     φ φ 1  1 φ3 −i T3 i T3 ¯ Φ=Φ= +e = . 1+e 1 + 2 cos Nc Nc T

DSE + Polyakov loop ◮

Polyakov-loop potential h i ¯ U (Φ, Φ) 1 = − a(T )Φ∗ Φ+b(T ) ln 1 − 6 + 4(Φ∗ 3 + Φ3 ) − 3(Φ∗ Φ)2 4 T 2

with a(t) = a0 + a1



T0 T



+ a2



T0 T

2

,

b(T ) = b3



T0 T

3

.

Corresponding parameters are a0 = 3.51,

a1 = −2.47,

a2 = 15.22,

b3 = −1.75.

T0 = 270 MeV ◮

Due to the coupling to the Polyakov loop the fermionic Matsubara frequencies ωn are shifted (pαn )2 = (ωnα )2 + p~ 2 ,

ωnα = ωn + αφ3 ,

α = −1, 0, +1

Polyakov loop parametrization



we can also consider polynomial ansatz for the Polyakov-loop potential   b2 (T ) ¯ b3 U ¯ 3 + b4 ΦΦ ¯ 2 Φ3 + Φ =− ΦΦ − 4 T 2 6 4    3  2 T0 T0 T0 b2 (T ) = a0 + a1 + a3 . + a2 T T T a0 = 6.75 , a1 = −1.95 , a2 = 2.625 , a3 = −7.44 b3 = 0.75 ,

b4 = 7.5

DSE + Polyakov loop ◮

Thermodynamic potential with Polyakov loop Ω(T )

=



¯ + U (Φ, Φ)

au (T )2

4T

X

+ C1u Z 3 X d p

2T

X

X

(2π)3

n α=0,±



n α=0,±



Z

d3 p (2π)3

C2u h

2

+

bu (T )2 C3u

+

as (T )2 C1s

α 2

2

α 2

+

cs (T )2

2

C2s α 2

+

bs (T )2 C3s 2

α 2

ln p ~ Au ((pn ) , T ) + (ωn ) Cu ((pn ) , T ) + Bu ((pn ) , T )

u

s

C1 =

2D1 27 4D1 27

i

h i 2 2 α 2 α 2 2 α 2 2 α 2 ln p ~ As ((pn ) , T ) + (ωn ) Cs ((pn ) , T ) + Bs ((pn ) , T )

Where Cfi (f = u, d, s and i = 1, 2, 3) are: C1 =



cu (T )2

u

,

C2 =

,

C2 =

s

2D1 9 4D1 9

u

,

C3 =

,

C3 =

s

4D0 9 8D0 9

Thermodynamic potential still suffers from the divergency due to the zero-point energy. We employ a substraction scheme.

DSE + Polyakov loop Ωreg (T ) = Ω(T ) − Ωfree (T ) + Ωreg free (T ) + Ω(0) ◮

where Ωfree (T ) = −4T

X X Z n α=0,±

−2T

X X Z n α=0,±



  2 d3 p 2 α 2 , ) + m e ln p ~ + (ω s n (2π)3

and Ωreg free (T ) = −4T

X

X

f =u,d,s α=0,± ◮

 2  d3 p α 2 2 ln p ~ + (ω ) + m e − n u (2π)3

with Eq =

q p~ 2 + m e 2q

   Ef − αφ3 d3 p ln 1 + exp − (2π)3 T

DSE + Polyakov loop



Obtain gap equations by minimizing the thermodynamic potential with respect to Aq , Bq , Cq and φ3



For Nf flavors we have 3Nf + 1 coupled gap equations



Bernd-Jochen Schaefer, Jan M. Pawlowski, Jochen Wambach, Phys.Rev.D76:074023,(2007) Nf T0 [MeV]

0 270

1 240

2 208

2+1 187

3 178

Results



The critical temperatures for chiral symmetry restoration (TCh ) and deconfinement (Td ) which differ by a factor of two when the quark and gluon sectors are considered separately get synchronized and become coincident when the coupling is switched on Tc = TCh = Td .



For T0 = 270 MeV, the critical temperatures are Tc = 195 MeV for Nf = 2 + 1 and Tc = 198 MeV for Nf = 2



For T0 = 187 MeV → Tc = 164 MeV for Nf = 2 + 1, but ...

Results

w Polyakov loop

w/o Polyakov loop

40

dΦ(Τ)/dT dmu,d(T)/dT

susceptibilities

Nf=2+1

dms(T)/dT

30

20

Nf=2+1

10

0.8 0.9

1 1.1 1.2 1.3 0.8 0.9 T/Tc

1 1.1 1.2 1.3 T/Tc

Results 200

Tc [MeV]

190 180 170 st

1 order transition crossover crossover

160 150 180

200

220 240 T0 [MeV]

260

280

Results

m(T)/m(0) , Φ(T)

1 0.8 0.6

T0=187 MeV T0=210 MeV T0=270 MeV

0.4 0.2 0 0.1

0.15 T [GeV]

0.2

Results qs

M [GeV]

1 0.8 0.6 0.4 0.2

2q

σ K 2π π

0

M [GeV]

1 0.8

σ

0.6

K

0.4

π

0.2 0 0

qs



0.2

2q 0.4

0.6 0.8 T / Tc

1

1.2

Outlook



Investigate effects of PL potential parametrization



Investigate effects of changing form factors



Include hadronic fluctuations beyond the mean field



A.E. Radzhabov, D. Blaschke, M. Buballa, M.K. Volkov, [arXiv:1012.0664]

Suggest Documents