Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 6427807, 11 pages https://doi.org/10.1155/2017/6427807
Research Article Dynamic Output Feedback Compensation Control for Discrete Closed-Loop Nonlinear System with Multiple Time-Delays Wei Zheng,1 Hong-bin Wang,1,2 and Zhi-ming Zhang3 1
Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China Liren Institute, Yanshan University, Qinhuangdao 066000, China 3 China National Heavy Machinery Research Institute, Xiâan 710000, China 2
Correspondence should be addressed to Wei Zheng;
[email protected] Received 27 March 2017; Revised 13 June 2017; Accepted 2 July 2017; Published 9 August 2017 Academic Editor: Asier Ibeas Copyright Š 2017 Wei Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper addresses the dynamic output feedback control problem for a class of discrete system with uncertainties and multiple time-delays. First, the system is decomposed into two subsystems based on the output matrix and input control matrix. Secondly, a dynamic compensator is employed for the first subsystem, and then, given the multiple uncertainties, the output feedback controller is designed based on the second subsystem and the dynamic compensator. Thirdly, by choosing the Lyapunov-Krasovskii function, it can be seen that the developed controller makes the closed-loop system convergent to an adjustable region, which can be rendered arbitrary small by adjusting design parameters. Compared with the previous researches, the proposed controller is not only smooth and memoryless, but also only dependent on the system output. Furthermore, with the given dynamic compensator, the controller design conditions are relaxed, while the approach is extended to the conventional nonlinear system. Finally, numerical example is given to illustrate the effectiveness of the theoretical results.
1. Introduction Many practical systems are the large nonlinear systems and consist of time-delays in the real world, such as various engineering systems, digital communication systems, urban traffic networks, and economic systems. Stability analysis for time-delay dynamic systems has been one of the focused study topics in the past decades, and many accomplishments have been made; see [1â5]. Many researches often used the Razuminkin lemma and Lyapunov functional methods for the design and analysis of time-delay systems. For a practical system, it may be a difficult mission to obtain all the state variables; thus the output feedback control approach is proposed. Compared with the state feedback control, the output feedback control problem is more challenging because of the limited information of state variables. It is well known that dynamic output feedback and static output feedback received lots of attention in various engineering systems. Compared with the previous state feedback control, the output feedback control issues are more challenging because the state variables information is limited.
Li and Jia [6] considered the nonfragile dynamic output feedback control for linear systems with time-varying delay. Lv et al. [7] proposed the adaptive output feedback consensus protocol design for linear systems with directed graphs. Wei et al. [8] proposed the robust and reliable đť-â static output feedback (SOF) control for nonlinear systems with actuator faults in a descriptor system framework. In [9, 10], the dynamic output feedback control issue and the static output feedback control issue for the linear systems were discussed; the new model and system order were presented. For the unknown nonlinear system, robust adaptive output feedback control strategy was proposed for dealing with the nonlinear uncertain issues [11]. Zhu et al. [12] considered the adaptive output feedback control issue for an uncertain linear time-delay system. Zhou [13] investigated the observerbased output feedback control problem for discrete-time linear systems with time-delays. Qiu et al. [14] considered the static output feedback đť-â control issue for continuous time systems, and a new Lyapunov functions was proposed. In the above researches, the time-delay systems are all considered as the linear form. For the nonlinear uncertain systems with
2 time-delays, a lot of investigations have been done. In [15], a network-based feedback control for time-delay systems was developed, which is based on the quantization and dropout compensation. Yao et al. [16] investigated the extendedstate-observer-based output feedback control for hydraulic systems by employing the back-stepping control technique. Xia et al. [17] designed the smooth speed controller for lowspeed high-torque permanent-magnet synchronous motor. Chen [18] considered the active magnetic bearing system and designed the delay dependent nonlinear smooth output feedback control. Aiming at the output feedback control issues, in [19], the dynamic robust fault tolerant tracking controller was investigated to estimate the unknown inputs models and unmeasurable system state variables. In [20], Toscano and Lyonnet designed the delay-independent static robust output feedback controller. Then Xian et al. [21] constructed the discontinuous output feedback controller and velocity observer for nonlinear mechanical systems. By investigating the nonlinear robust control systems, Chae and Nguang [22] and Wei et al. [23] proposed the robust đťâ dynamic output feedback control method for solving the tracking control problem. In [24], a novel smooth output feedback controller was constructed for continuous systems with time-delays by Hua and Guan. It is well known that static output feedback is frequently encountered in practical control systems, but some strict design conditions should be considered in the system. However, all the above design technique has to predetermine the feedback gains before checking the stability conditions of the closed-loop system. In various engineering systems, all of the state variables are not available. Thus, it is necessary to design dynamic output feedback controller. The dynamic output feedback technique is more flexible and the required conditions on the considered systems are less conservative. Furthermore, the previous many methods are efficient for the control design of the time-delays system, but the system controller is not continuous and the accuracy time-delays are often needed for achieving the control objectives. The topic of this study can be viewed as the discrete counterpart of the topic in [19], in which the output control issue for continuous time system with time-delays was studied. Based on the above contents, we consider the dynamic output feedback control issues for a nonlinear discrete multiple time-delays system and aim to construct the smooth and memoryless output feedback controller. In this paper, we study the issues of smooth dynamic output feedback control of discrete-time multiple time-delays system. The parametric uncertainties are assumed to be a linear fractional form which can include the norm bounded uncertainty as its special case. For the closed-loop system, a dynamic compensation controller is designed to reduce the control design requirement. And then the output feedback controller with adaptive law is constructed based on the compensation control. With the help of the proposed Lyapunov functional, the stability of the whole system is well proved. Furthermore, we have extended the results to the general nonlinear case and discussed the dynamic output feedback control issue accordingly. Finally, numerical simulations are performed to show the potential of the proposed strategy.
Mathematical Problems in Engineering
2. System Description The dynamic model in this section is characterized by discrete-time and multiple time-delays, whose relationship exhibits the uncertain characteristics to the nonlinear practical systems. Many practical systems are the large nonlinear systems and consist of multiple time-delays in the real world, such as various engineering systems and digital communication systems. Thus, let us consider a nonlinear discrete-time system with multiple time-delays as follows: đ
đĽ (đ + 1) = âđ´ đ đĽ (đ â đđ ) + đľ (đ˘ (đ) đ=0
+ đ (đĽ (đ) , đĽ (đ â đ1 ) , đĽ (đ â đ2 ) , . . . , đĽ (đ â đđ ))) ,
(1)
đŚ (đ) = đśđĽ (đ) , where đĽ(đ) â đ
đ is the state variable, đ˘(đ) â đ
đ and đŚ(đ) â đ
đ are the control input and output of the system (1), respectively, đ´ đ â đ
đĂđ , đľ â đ
đĂđ , and đś â đ
đĂđ are the state matrix, input matrix, and output matrix, respectively, and all matrices are constant matrices with appropriate dimensions. We assume đ ⼠đ > đ with the following condition: rank(CB) = đ â
đđ is the multiple time-delays that satisfies đđ (đ + 1) ⤠đđâ , đđ ⤠đđ for đ = (0, 2, . . . , đ), and đ0 = 0, where đđâ and đđ are positive scalars. The nonlinear functionđ(â
) is uncertain and contains multiple time-delays state with đ(0, 0, . . . , 0) = 0. For the nonlinear uncertain vector function đ(â
) of the system (1), there exist the following assumptions. Assumption 1. The nonlinear function vector đ satisfies đ
óľŠ óľŠ â đđđ đźđ (óľŠóľŠóľŠóľŠđĽ (đ â đđ )óľŠóľŠóľŠóľŠ)
đ=0
(2)
óľŠ óľŠ âĽ óľŠóľŠóľŠđ (đĽ (đ) , đĽ (đ â đ1 ) , đĽ (đ â đ2 ) , . . . , đĽ (đ â đđ ))óľŠóľŠóľŠ , where đđ â đ
đđ is unknown constant vector and đźđ (â
) = [đźđ1 (â
), đźđ2 (â
), . . . , đźđđ (â
)]đ with đźđđ (â
) is a known increasing function and đźđđ (0) = 0. And there exist nonlinear functions đźđđ (â
) such that đĽđźđđ (đĽ) ⼠đźđđ (đĽ) for all đ and đ. Remark 2. System (1) contains the functions with multiple time-delays and nonlinear uncertain. The sliding mode state feedback control scheme was presented in [25] and the stability was proven. For system (1), the full-order observer was designed and then the observer-based sliding mode feedback controller was designed by Chen and Fu [26]. It is generally known that some strict conditions on the control system will be imposed by the static output feedback control. Furthermore, the adaptive sliding-mode control method needs the accurate time-delays value of system state for control implementation. The static output feedback sliding-mode control scheme was discussed in [27]. In this study, the objective is to design a smooth dynamic output feedback controller for system (1) with Assumption 1 such that the designed controller makes the solutions of the system exponentially convergent to a ball.
Mathematical Problems in Engineering
3
Remark 3. With the parameters unknown, the adaptive strategy was presented to estimate the parameters of system or uncertain bound parameters. In [7], the adaptive output feedback control problem was discussed with some unknown interconnections. With these researches containing the nonlinear function in the system, it can be seen that the schemes are not enforceable to system (1). For the problem formulated, there are three challenging problems as follows: how to design a dynamic compensator with the output feedback signal; how to reduce the influence of uncertain parameters; and how to design the output feedback controller for the time-delays system. Our control objective is to solve the above three issues, and then the controller will be easy to implement in practical systems. With the above contents, we assume that đľ = đ đ [0(đâđ)Ăđ đľđĂđ ] , đś = [0(đâđ)Ăđ đˇđĂđ ] , where đľđĂđ and đˇ satisfy the following conditions: rank(đľđĂđ ) = đ and
where đ´đ11 = đ´ đ11 , đ´đ12 = đ´ đ12 đ¸â1 , đ´đ21 = đ¸đ´ đ21 , đ´đ22 = đ¸đ´ đ22 đ¸â1 . Since matrices đ¸ and đľ are nonsingular, there exist đ¸đľ which is also nonsingular. In the next section, we will consider the controller design problem for system (4).
3. Controller Design 3.1. Design the Dynamic Compensator. For subsystem-đĽ1 of system (4), an augmented dynamic system is designed by the following form: đŚ2 (đ) = đśđ đ (đ) + đˇđ đŚ1 (đ) , đ (đ + 1) = đ´ đ đ (đ) + đľđ đŚ1 (đ) ,
where đ â đ
đâđ , đŚ2 â đ
đ , đ´ đ , đľđ , đśđ , and đˇđ are designed with appropriate dimensions. With (4) and (5), one has
đĽđ
đˇđˇđ = đˇđ đˇ = đđ , đđ is the identity matrix. Let đĽ = [ đĽ1đ ]
đ
đż (đ + 1) = â đđ đż (đ â đđ ) + đźđż (đ) + đ¤,
2
with đĽ1 â đ
đâđ and đĽ2 â đ
đ ; then system (1) can be rewritten as follows: đ
đĽ1 (đ + 1) = â (đ´ đ12 đĽ2 (đ â đđ ) + đ´ đ11 đĽ1 (đ â đđ )) ,
đ=1
đ§ (đ) = đŚ2 (đ) â đŚ2 (đ) ,
đ
đĽ1 (đ) đż (đ) = [ ], đ (đ)
đŚ2 (đ + 1) = â (đ´ đ22 đĽ2 (đ â đđ ) + đ´ đ21 đĽ1 (đ â đđ )) đ=0
(3)
Ě đ´012 đśđ đ´011 + đ´012 đˇđ đś đź=[ ], Ě đ´đ đľđ đś
+ đľđ˘ (đ) ,
where đ´ đ11 , Ađ12 , đ´ đ21 , đ´ đ22 are the decomposition matrix of đŚđ
đ´ đ . With đ < đ, one has đŚ = [ đŚ1đ ], where đŚ1 â đ
đâđ and 2
đŚ2 â đ
đ . Consider the structures of matrices đľ and đś; there Ě â đ
(đâđ)(đâđ) exist the nonsingular matrices đ¸ â đ
đĂđ and đś Ě 1 and đŚ2 = đ¸đĽ2 . such that đŚ1 = đśđĽ With the above analysis, system (1) is further rewritten as follows: đ
In addition, for (6), choose the following discrete LyapunovKrasovskii function: đ
đ1 = â âŤ
đ=0
đ=1 đâđđ đ
+ââŤ
đ
đ
],
[ (đ¸đĽ2 ) ]
0
đ
âŤ
đ+đ
(8) đ(đâđ) đ Ě
đ
đż (đ) đđ đżĚ (đ) đđ đđ,
đ
Îđ1 ⤠â (đđ đżđ (đ + 1) đđ đż (đ + 1)
đ=0
+ đ¸đľđ˘ (đ) ,
đđ(đâđ) đżđ (đ) đ
đ đż (đ) đđ + đżđ (đ) đđż (đ)
đ=1 âđđ
đ
đŚ2 (đ + 1) = â (đ´đ21 đĽ1 (đ â đđ ) + đ´đ22 đŚ2 (đ â đđ )) + đ¸đľđ (đĽ (đ) , đĽ (đ â đ1 ) , . . . , đĽ (đ â đđ ))
đ
where đ, đ
đ , đđ are positive matrices and đ and đ are positive scalars. Now, taking the forward difference of (8), the following inequality holds:
đĽ1 (đ + 1) = â (đ´đ11 đĽ1 (đ â đđ ) + đ´đ12 đŚ2 (đ â đđ )) ,
Ě 1) (đśđĽ
(7)
Ě đ´đ12 đśđ đ´đ11 + đ´đ12 đˇđ đś đđ = [ ]. 0 0
đĽ1đ đŚ (đ) = đś [ đ ] , đĽ2
đŚ (đ) = [
(6)
where đ¤ = âđđ=0 đ´đ12 đ§(đ â đđ ) in which
đ=0
+ đľđ (đĽ (đ) , đĽ (đ â đ1 ) , . . . , đĽ (đ â đđ ))
(5)
đ=1
(4) ââŤ
đ
đâđđ
đ
đâđđđ đżđĚ (đ) đđ đżĚ (đ) đđ) + â (đżđ (đ) đ
đ (đ) đ=1
â (1 â đđâ ) đâđđđ đżđ (đ â đđ ) đ
đ đż (đ â đđ )) + 2đżđ (đ) â
đđż (đ + 1) â đđ1 + đđżđ (đ) đđż (đ) .
(9)
4
Mathematical Problems in Engineering with đş < 0 and đšđ < 0 in Theorem 4; the following inequalities hold:
Note that đ
đ
đ=1
đ=0
2â ( â đżđ (đ â đđ ) đđđ + đ¤đ (đ) đđ(đ+1) )
đđ đşđ ⤠0, (10)
Ă (đż (đ) â âŤ
đ
đâđđ
đĽđ (đ, đ) đšđ đĽ (đ, đ) ⤠0,
đżĚ (đ) đđ â đż (đ â đđ )) = 0,
đ
ââŤ
đ=1 đâđđ
where đđđ is weight matrix. Consider (6), (9), and (10); we have
+ ââŤ
đ
đ=1 đâđđ
đ
đĽ (đ, đ) đšđ đĽ (đ, đ) đđ,
(15)
đĽđ (đ, đ) đšđ đĽ (đ, đ) đđ ⤠0;
one has
Îđ1 ⤠đ âđ¤â2 â đđ1 + đđ đşđ đ
đ
đ
đđ đşđ + â âŤ
(11)
đ
đ=1 đâđđ
đĽđ (đ, đ) đšđ đĽ (đ, đ) đđ ⤠0;
(16)
then
đ đ where đ and đ are the positive scalars, đšđ = [ đđđ âđâđđđ đ đ ] đ đ đ đ with đđ = [đđđđ ](đ+2)Ă(đ+2) , and đđ = [âđđ0đ â
â
â
âđđ(đ+1) ] . And đş can be designed as follows: đş11 = âđđ=1 đđ đźđ đđ đź + đđź + âđđ=1 (đđ0 + đđ0 đ ) + đźđ đ + đđ â âđđ=1 đđ đđ11 + âđđ=1 đ
đ , and đş1đ = âđđ=1 đđ đźđ đđ đđâ1 + đđđâ1 â âđđ=1 đđ đđ1đ â đ(đâ1)0 + đ đ with đ + 1 ⼠đ ⼠2; đş1(đ+2) = âđđ=1 đđ(đ+1) + âđđ=1 đđ(đâ1) đ đ đ đ đ âđ=1 đđ đź đđ â âđ=1 đđ đđ1(đ+2) đ, đşđđ = âđ=1 đđ đđâ1 đđ đđâ1 â đ â đâđđđâ1 đ
đâ1 â đ(đâ1)(đâ1) with đ + âđđ=1 đđ đđđđ â đ(đâ1)(đâ1) đ 1 ⼠đ ⼠2; đşđđ = âđđ=1 đđ đđâ1 đđ đđâ1 â âđđ=1 đđ đđđđ â đ â đ(đâ1)(đâ1) with đ + 1 ⼠đ ⼠đ + 1; đşđ(đ+2) = đ(đâ1)(đâ1) đ đ đ â âđ=1 đđ đđđ(đ+2) â đ(đâ1)(đ+1) + âđđ=1 đđ đđâ1 đđ with đ + 1 > đ đ > 2; đş(đ+2)(đ+2) = âđ=1 đđ đđ â đđđ â âđđ=1 đđ đđ(đ+2)(đ+2) đ and đ = [đżđ (đ) đżđ (đ â đ1 ) â
â
â
đżđ (đ â đđ ) đ¤đ ] , đĽ(đ, đ) = đ [đđ đżđĚ (đ)] , đş = [đşđđ ](đ+2)Ă(đ+2) .
With the above analysis, the new results arise. Theorem 4. â positive scalar đ, if there exist positive matrices đ, đ
đ , đđ , đđđ , and đđđđ , the following inequalities hold: đş < 0 and đšđ < 0 for any đ = [1, 2, . . . , đ]. Based on Theorem 4 and (11), the forward difference of đ1 along (6) satisfies Îđ1 ⤠đ âđ¤â2 â đđ1 .
đ
đ âđ¤â2 â đđ1 + đđ đşđ + â âŤ
đ=1 đâđđ
With the above analysis, we can obtain (12) immediately from (11). The Second Case. If there exist đ < 0,
then the transpose matrices đđ and đĽđ (đ, đ) satisfy đđ < 0,
With đş < 0 and đšđ < 0 in Theorem 4, the following inequalities hold: đđ đşđ < 0, đĽđ (đ, đ) đšđ đĽ (đ, đ) < 0, đ
đ
ââŤ
đ=1 đâđđ
(20)
đĽđ (đ, đ) đšđ đĽ (đ, đ) đđ < 0;
one has đ
đđ đşđ + â âŤ
đ
đĽđ (đ, đ) đšđ đĽ (đ, đ) đđ < 0;
(21)
then (13)
đ
đ âđ¤â2 â đđ1 + đđ đşđ + â âŤ
đ
đ=1 đâđđ
then the transpose matrices đđ and đĽđ (đ, đ) satisfy
đĽđ (đ, đ) ⼠0
(19)
đĽđ (đ, đ) < 0.
The First Case. If there exist
đđ ⼠0,
(18)
đĽ (đ, đ) < 0
đ=1 đâđđ
đĽ (đ, đ) ⼠0
(17)
⤠đ âđ¤â â đđ1 .
đ đ
đ ⼠0,
đĽđ (đ, đ) đšđ đĽ (đ, đ) đđ
2
(12)
Proof. With đ = [đżđ (đ) đżđ (đ â đ1 ) â
â
â
đżđ (đ â đđ ) đ¤ ] , đ and đĽ(đ, đ) = [đđ đżđĚ (đ)] , we can see that đ and đĽ(đ, đ) are both nonnegative or negative. Then there exist two cases.
đ
đĽđ (đ, đ) đšđ đĽ (đ, đ) đđ
(22)
2
< đ âđ¤â â đđ1 . (14)
With the above analysis, we obtain (12) immediately from (11).
Mathematical Problems in Engineering
5
Remark 5. The matrix đđđ in (10) is used to derive the conservative condition. The detailed usage of weight matrix đđđ is shown in [28, 29]. The matrix inequality conditions in Theorem 4 are not in the strict LMI form. There are many methods reported on how to change the matrix inequalities to strict LMIs. The compensator (đ â đ order) is designed for subsystem-đĽ1 . In fact, we can use the reduced-order compensator instead of the full one. Obviously Theorem 4 uses the upper bound delay information of state variables. This result is looser than the delay-independent conditions. It is well known that the dynamic compensator provides more freedom for the system design. It can be seen from (5) that matrices đ´ đ , đľđ , đśđ , đˇđ are designed. By setting đśđ = 0, it is a static compensator. According to the above contents, it can be seen that the static compensator is more conservative than dynamic compensator.
With (4), we have đ§ (đ + 1) đ
= â (đ´đ22 đŚ2 (đ â đđ ) + đ´đ21 đĽ1 (đ â đđ )) đ=0
+ đ¸đľđ˘ (đ) â đśđ (đ´ đ đ (đ) + đľđ đŚ1 (đ)) Ě 1 (đ + 1) â đˇđ đśđĽ + đ¸đľđ (đĽ (đ) , đĽ (đ â đ1 ) , . . . , đĽ (đ â đđ )) .
For subsystem-đ§(đ), choose the discrete LyapunovKrasovskii function as follows:
Choose a new Lyapunov-Krasovskii function: đ
đ2 =
â1
đ1 = đ1 + ( â (1 â đđâ ) đđđđ ) đ=1
đ
Ă (âŤ
đâđđ
(23) đ(đżâđ)
đ
óľŠ óľŠ2 đ (1 + đ) óľŠóľŠóľŠóľŠđ´đ12 đ§ (đ)óľŠóľŠóľŠóľŠ đđ) ;
1 2 (đ (đ) â đâ ) + đ§đ (đ) đ§ (đ) 2đ đ
đ
Ă (âŤ
đâđđ
đ óľŠ2 óľŠ Îđ1 ⤠â đ (1 + đ) óľŠóľŠóľŠóľŠđ´đ12 đ§ (đ â đđ )óľŠóľŠóľŠóľŠ â đđ1 . đ=1
(24)
By verification, one obtains Îđ1 ⤠đâđ§(đ)â2 â đđ1 with đ ⼠đ(1 + đ)âđ´012 â2 + âđđ=1 đ(1 â đđâ )â1 (1 + đ)đđđđ âđ´đ12 â2 . With the above analysis and compensator (5), the adaptive controller for (4) is designed as follows.
đ đ óľŠ óľŠóľŠ óľŠóľŠđ¸đľđ (đĽ (đ) , đĽ (đ â đ1 ) , . . . , đĽ (đ â đđ ))óľŠóľŠóľŠ ⤠âđđ đźđ óľŠ óľŠ đ đ óľŠ óľŠ óľŠ óľŠ â
(óľŠóľŠóľŠóľŠđ¸â1 đŚ2 (đ â đđ )óľŠóľŠóľŠóľŠ + óľŠóľŠóľŠóľŠđĽ1 (đ â đđ )óľŠóľŠóľŠóľŠ) ⤠âđđ đźđ đ=0
đ
đ óľŠóľŠ óľŠ óľŠ + óľŠóľŠóľŠóľŠđ¸â1 ÎóľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠđż (đ â đđ )óľŠóľŠóľŠóľŠ) ⤠âđđ đ=0
óľŠ óľŠ óľŠ óľŠóľŠ óľŠ â
(đźđ (3 óľŠóľŠóľŠóľŠđĽ1 (đ â đđ )óľŠóľŠóľŠóľŠ) + đźđ (3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠđ§ (đ â đđ )óľŠóľŠóľŠóľŠ)
đđ(đâđ) đšđ (đĽ1 (đ) , đż (đ) , đ§ (đ)) đđ) ,
đ
with đâ = âđđ=0 3ÎĽâ1 đđ đđ , and đšđ (â
) can be defined as follows: đšđ (đĽ1 (đ) , đż (đ) , đ§ (đ)) óľŠ2 óľŠ óľŠ óľŠ = ÎĽ óľŠóľŠóľŠóľŠđźđ (3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ âđ§ (đ)â)óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ2 + ÎĽ óľŠóľŠóľŠóľŠđźđ (3 óľŠóľŠóľŠóľŠđ¸â1 ÎóľŠóľŠóľŠóľŠ âđż (đ)â)óľŠóľŠóľŠóľŠ
(28)
óľŠ óľŠ2 óľŠ2 óľŠ óľŠ óľŠ + ÎĽ óľŠóľŠóľŠđź (3 óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ)óľŠóľŠóľŠ + đ1â1 óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ óľŠ óľŠ2 óľŠ óľŠ2 + đ2â1 âđ§ (đ)â2 + đ2â1 óľŠóľŠóľŠđśđ óľŠóľŠóľŠ óľŠóľŠóľŠđ (đ)óľŠóľŠóľŠ with đ1 , đ2 , and ÎĽ being positive scalars. Now, taking the forward difference of (27), one has
đ=0
óľŠ óľŠ óľŠ óľŠóľŠ óľŠ â
(óľŠóľŠóľŠóľŠđĽ1 (đ â đđ )óľŠóľŠóľŠóľŠ + óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠđ§ (đ â đđ )óľŠóľŠóľŠóľŠ
(27)
Ě where đ§(đ) = đŚ2 (đ) â đŚ2 (đ) = đŚ2 â Îđż(đ) with Î = [đśđ đˇđ đś]. đ and đ are all scalars, đ(đ) is defined as adaptive parameter
3.2. Adaptive Controller Design. Now, with compensator (5), the adaptive controller is presented for (4) as follows. Ě one has đ§(đ) = đŚ2 (đ) â đŚ2 (đ) = đŚ2 â Let Î = [đśđ đˇđ đś]; Îđż(đ). Since đźđđ (â
) is classâđ function, with Assumption 1, we obtain the unknown vector đđ that satisfies
óľŠ óľŠóľŠ óľŠ + đźđ (3 óľŠóľŠóľŠóľŠđ¸â1 ÎóľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠđż (đ â đđ )óľŠóľŠóľŠóľŠ)) .
â1
+ ( â đđđđ (1 â đđâ ) ) đ=1
with (12), it is relatively easy to prove that
(26)
Îđ2 ⤠âđđ2 + đđ§đ (đ) đ§ (đ) + (25) +
đ 2 (đ (đ) â đâ ) 2đ
1 (đ (đ) â đâ ) đ (đ + 1) + 2đ§đ (đ) đ§ (đ + 1) đ đ
+ â ((1 â đ=1
â1 đđâ ) đđđđ đšđ
(đĽ1 (đ) , đż (đ) , đ§ (đ))
â đšđ (đĽ1 (đ â đđ ) , đż (đ â đđ ) , đ§ (đ â đđ ))) .
(29)
6
Mathematical Problems in Engineering For đ â [0, đ], one has
With (26), one has
đ
2đ§đ (đ) đ§ (đ + 1) = 2đ§đ (đ) (đ¸đľđ˘ (đ) + đ¸đľđ
óľŠ2 óľŠ đ1â1 óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ + (1 + đ) đ1 đ 1 âđ§ (đ)â2 + â đ1â1 đ=1
â Cđ (đ´ đ đ (đ) + đľđ đŚ1 (đ))) + 2đ§đ (đ) đ
Ě đ11 ) đĽ1 (đ â đđ ) â
â ((đ´đ21 â đˇđ đśđ´
óľŠ óľŠ2 â
óľŠóľŠóľŠóľŠđĽ1 (đ â đđ )óľŠóľŠóľŠóľŠ ⼠2đ§đ (đ)
(30)
đ
Ě đ11 + (đ´đ22 â đˇđ đśđ´ Ě đ12 ) đˇđ đś) Ě â
â (đ´đ21 â đˇđ đśđ´
đ=0
đ=0
Ě đ12 ) đŚ2 (đ â đđ )) . + (đ´đ22 â đˇđ đśđ´
â
đĽ1 (đ â đđ ) .
(33)
đ óľŠ2 óľŠ2 óľŠ óľŠ óľŠ2 óľŠ â (đ2â1 óľŠóľŠóľŠóľŠđ§ (đ â đđ )óľŠóľŠóľŠóľŠ + đ2â1 óľŠóľŠóľŠđśđ óľŠóľŠóľŠ óľŠóľŠóľŠóľŠđ (đ â đđ )óľŠóľŠóľŠóľŠ )
By applying (25) such that
đ=1
đ
2đ§đ (đ) đ¸đľđ (đĽ (đ) , đĽ (đ â đ1 ) , . . . , đĽ (đ â đđ ))
Ě đ12 ) + 2đđ2 đ 2 âđ§ (đ)â2 ⼠2đ§đ (đ) â (đ´đ22 â đˇđ đśđ´ đ=1
đ đ óľŠ óľŠ â¤ 2 âđ§ (đ)â â đđ (đźđ (3 óľŠóľŠóľŠóľŠđĽ1 (đ â đđ )óľŠóľŠóľŠóľŠ)
â
(đśđ đ (đ â đđ ) + đ§ (đ â đđ ))
đ=0
óľŠ óľŠóľŠ óľŠ + đźđ (3 óľŠóľŠóľŠóľŠđ¸â1 ÎóľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠđż (đ â đđ )óľŠóľŠóľŠóľŠ)
Design the controller đ˘(đ) = (đ¸đľ)â1 đ˘(đ) for system (1), where
óľŠ óľŠóľŠ óľŠ + đźđ (3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠđ§ (đ â đđ )óľŠóľŠóľŠóľŠ)) â¤
đ
đ â (3ÎĽâ1 đđ đđ đ=0
âđ§ (đ)â
2
(31)
Ě đ˘ (đ) = (đˇđ đśđ´ 012 â đ´022 ) (đ§ (đ) + đśđ đ (đ)) 1 1 + đśđ (đ´ đ đ (đ) + đľđ đŚ1 (đ)) â đ (đ§ (đ)) â đ (đ) 2 2
óľŠ óľŠ óľŠ óľŠ2 + ÎĽ óľŠóľŠóľŠóľŠđźđ (3 óľŠóľŠóľŠóľŠđĽ1 (đ â đđ )óľŠóľŠóľŠóľŠ)óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠóľŠ óľŠ óľŠ2 + ÎĽ óľŠóľŠóľŠóľŠđźđ (3 óľŠóľŠóľŠóľŠđ¸â1 ÎóľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠđż (đ â đđ )óľŠóľŠóľŠóľŠ)óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠóľŠ óľŠ óľŠ2 + ÎĽ óľŠóľŠóľŠóľŠđźđ (3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠz (đ â đđ )óľŠóľŠóľŠóľŠ)óľŠóľŠóľŠóľŠ ) ,
â
đ§ (đ) â
1 ((đ + 1) đ1 đ 1 + đ + 2đđ2 đ 2 2
đ â1 óľŠ óľŠ (34) + â (1 â đđâ ) đđđđ đ2â1 ) đ§ (đ) â 4.5ÎĽ óľŠóľŠóľŠóľŠđ¸â2 óľŠóľŠóľŠóľŠ đ§ (đ) đ=1
Ě 1 (đ) gives applying đŚ2 (đ) = đśđ đ(đ) + đ§(đ) + đˇđ đśđĽ
óľŠ2 óľŠ óľŠ óľŠ â
(óľŠóľŠóľŠóľŠđź0 (3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ âđ§ (đ)â)óľŠóľŠóľŠóľŠ
đ
Ě đ11 ) đĽ1 (đ â đđ ) 2đ§đ (đ) â ((đ´đ21 â đˇđ đśđ´
đ â1 óľŠ óľŠ2 óľŠ óľŠ + â (1 â đđâ ) đđđđ óľŠóľŠóľŠóľŠđźđ (3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ âđ§ (đ)â)óľŠóľŠóľŠóľŠ ) ,
đ=0
đ=1
Ě đ12 ) đŚ2 (đ â đđ )) = 2đ§đ (đ) + (đ´đ22 â đˇđ đśđ´ đ
Ě đ11 + (đ´đ22 â đˇđ đśđ´ Ě đ12 ) đˇđ đś) Ě â
â (đ´đ21 â đˇđ đśđ´ đ=0
(32)
đ
Ě đ12 ) â
đĽ1 (đ â đđ ) + 2đ§đ (đ) â (đ´đ22 â đˇđ đśđ´
in which đ(đ§(đ)) determines function vector, which is employed to reduce the influences from parameter đż in subsystem (6). Substituting (30)â(34) into (29) yields
đ=0
Ă (đ§ (đ â đđ ) + đśđ đ (đ â đđ )) .
Îđ2 â¤
1 (đ (đ) â đâ ) đ (đ + 1) â đđ2 đ + (đâ â đ (đ)) đ§đ (đ) đ§ (đ) â đ§đ (đ) đ (đ§ (đ))
Ě đ12 )đˇđ đś Ěâ And define đ 1 and đ 2 satisfying âđ´đ21 + (đ´đ22 â đˇđ đśđ´ 2 2 Ě đ11 â ⤠đ 1 , âđ´đ22 â đˇđ đśđ´ Ě đ12 â ⤠đ 2 . đˇđ đśđ´
+ ÎŚ (đż (đ)) +
đ 2 (đ (đ) â đâ ) , 2đ
(35)
Mathematical Problems in Engineering
7
where ÎŚ(đż(đ)) is given by
With (39), one has ÎŚ (đż (đ)) + đ (đ1 ) (âđđ1 + đ âđ§ (đ)â2 )
óľŠ2 óľŠ óľŠ2 óľŠ óľŠ óľŠ ÎŚ (đż (đ)) = đ1â1 óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ + ÎĽ óľŠóľŠóľŠđź0 (3 óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ)óľŠóľŠóľŠ
⤠âđđ1 đ (đ1 ) + đ (đ1 ) (đ â đ + đ) đ1
â1 óľŠ óľŠóľŠ óľŠ óľŠ óľŠ2 đ + ÎĽ óľŠóľŠóľŠóľŠđź0 (3 óľŠóľŠóľŠóľŠóľŠóľŠóľŠóľŠđ¸â1 ÎóľŠóľŠóľŠóľŠ âđż (đ)âóľŠóľŠóľŠóľŠ)óľŠóľŠóľŠóľŠ + â (1 â đđâ )
+ đ âđ§ (đ)â2
đ=1
óľŠ óľŠ óľŠ2 óľŠ â
đđđđ ÎĽ (óľŠóľŠóľŠóľŠđźđ (3 óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ)óľŠóľŠóľŠóľŠ
⤠âđđ1 đ (đ1 )
(36)
đ â1 óľŠ óľŠ óľŠ óľŠ2 + óľŠóľŠóľŠóľŠđźđ (3 óľŠóľŠóľŠóľŠđ¸â1 ÎóľŠóľŠóľŠóľŠ âđż (đ)â)óľŠóľŠóľŠóľŠ ) + â (1 â đđâ )
+ đđ (
đ=1
đđđ
â
đ
(đ2â1
óľŠ2 óľŠóľŠ óľŠóľŠ2 óľŠóľŠ óľŠ2 â1 óľŠ óľŠóľŠđśđ óľŠóľŠ óľŠóľŠđ (đ)óľŠóľŠóľŠ + đ1 óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ ) .
With the above discussions, Theorem 6 is given. Theorem 6. For system (1), with đ˘(đ) defined in (34) and đ˘(đ) = (đ¸đľ)â1 đ˘(đ), let đ(đ§(đ)) = đđ((đ/(đ â đ â đ))âđ§(đ)â2 )đ§(đ). For prescribed scalars đ + đ < đ, there exists increasing positive function đ(â
) satisfying (39). The adaptive law is designed as follows: đ (đ + 1) = âđđđ (đ) + đ âđ§ (đ)â2 ,
Proof. Choose a discrete Lyapunov-Krasovskii function (38) for system (4) with compensator (5):
0
đ (đ) đđ,
(38)
where đ(â
) is an increasing positive functional, such that ÎŚ (đż (đ)) ⤠đđżđ (đ) đđż (đ) đ (đżđ (đ) đđż (đ)) .
(39)
đ
âŤ0 1 đ(đ)đđ in (38) is employed to deal with the nonlinear function ÎŚ(đż(đ)). Then, taking the forward difference of đ yields
+ (đ â đ (đ)) đ§ (đ) đ§ (đ) +
1 (đ (đ) â đâ ) đ (đ + 1) + ÎŚ (đż (đ)) đ
+ đ (đ1 ) Îđ1 .
đ 2 (đ (đ) â đâ ) 2đ
đ đ 2 2 â (đâ â đ (đ)) + (đâ ) , 2 2
(42)
where âŤ0 1 đ(đ)đđ and đđ > đ, such that Îđ ⤠âđđ + (đ/2)(đâ )2 with đ = min{đ, đ}; we further have đ 2đ
2
(đâ ) .
(43)
đ
1 Since đ(0)đ1 ⤠âđ=0 đ(đ), combining (8), (27), (38),
and (43), we have âđż(đ)â2 ⤠(đ(0)/đmin (đ)đ(0))đâđđ + (đ/ 2đmin (đ)đ(0)đ)(đâ )2 , and âđ§(đ)â2 ⤠đâđđ đ(0) + (đ/2đ)(đâ )2 . With the inequality, óľŠ2 óľŠ óľŠ2 óľŠ âđĽ (đ)â2 = óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ + óľŠóľŠóľŠđĽ2 (đ)óľŠóľŠóľŠ óľŠ2 óľŠ â¤ óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ óľŠ óľŠ2 óľŠ óľŠ2 + óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ óľŠóľŠóľŠđ§ (đ) + đśđ đ (đ) + đˇđ đŚ1 (đ)óľŠóľŠóľŠ óľŠ óľŠ2 óľŠ2 óľŠ â¤ óľŠóľŠóľŠđĽ1 (đ)óľŠóľŠóľŠ + 3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ âđ§ (đ)â2
(44)
óľŠ óľŠ2 óľŠ óľŠ óľŠ óľŠ2 + 3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ óľŠóľŠóľŠđśđ óľŠóľŠóľŠ óľŠóľŠóľŠđ (đ)óľŠóľŠóľŠ óľŠ óľŠ2 óľŠ ĚóľŠóľŠ2 óľŠóľŠ óľŠóľŠ óľŠóľŠđĽ1 (đ)óľŠóľŠóľŠóľŠ2 + 3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠđˇđ đś óľŠ
Ě 2 + 1}, one has: where đ = max{3âđ¸â1 â2 âđśđ â, 3âđ¸â1 â2 âđˇđ đśâ
đ 2 ⤠âđđ2 â đ§ (đ) đ (đ§ (đ)) + (đ (đ) â đâ ) 2đ đ
đ
Îđ ⤠âđđ2 â đđ1 đ (đ1 ) +
óľŠ óľŠ2 ⤠3 óľŠóľŠóľŠóľŠđ¸â1 óľŠóľŠóľŠóľŠ âđ§ (đ)â2 + đ âđż (đ)â2 ,
Îđ = đ (đ1 ) Îđ1 + Îđ2
â
One knows, if đ1 ⤠(đ/(đ â đ â đ))âđ§(đ)â2 , we use (đ/(đ â đ â đ))âđ§(đ)â2 instead of đ1 in (41), and if đ1 > (đ/(đ â đ â đ))âđ§(đ)â2 , (41) also holds. Then, substituting (41) into (40) with âđ(đ(đ) â đâ )đ(đ) ⤠â(đ/2)(đâ â đ(đ))2 + (đ/2)(đâ )2 , one has
đ (đ) ⤠đâđđ đ (0) +
With the above contents, the solutions of the closed-loop system are exponentially convergent to a ball.
đ = đ2 + âŤ
đ âđ§ (đ)â2 ) âđ§ (đ)â2 . đâđâđ
đ
(37)
where đ and đ are positive scalars and satisfy đđ â đ > 0.
đ1
(41)
âđĽ (đ)â2 ⤠đ2 + đ1 đâđđ , (40)
(45)
where đ1 = 3âđ¸â1 â2 đ(0) + đđ(0)/đmin (đ)đ(0), đ2 = 3âđ¸â1 â2 đ(đâ )2 /2đ + đđ(đâ )2 /2đmin (đ)đ(0)đ. Considering the above analysis, we get that đĽ(đ) asymptotically converge to bounded region such that ΨđĽ = {đĽ | âđĽâ2 ⤠đ2 }. Then the proof is completed.
8
Mathematical Problems in Engineering
Remark 7. For (45), we know that the transient capability of system (1) is confirmed by đ/2 as đ â â. In order to get better transient capability, choose proper parameters đ, đ, and đ to get big đ. As đ â â, ΨđĽ converges to bounded; we can choose small value đ to achieve small region ΨđĽ ; then the better steady characteristics are obtained. In particular, if we select đ = 0 in (37), it can be easily proved that the system state đĽ(đ) converges to the bounded region 0.
4. Case Expansion
đŚ (đ) = â (đĽ) ,
(46)
where đĽ(đ) â đ
đ is state vector; đ˘(đ) â đ
đ and đŚ(đ) â đ
đ are the input and output of the nonlinear system with đ ⤠đ ⤠đ; đ(â
), đ(â
), and â(â
) are nonlinear functions with đ(0) = 0, đ(0) = 0, and â(0) = 0; rank[đ(đĽ)] = đ; đĽđđ = đĽ(đ â đđ ) for đ â [0, đ]; and the time-delays parameter satisfying đđ ⤠đđ and đđ (đ + 1) ⤠đđâ . For the general system (46), one knows that there exists a state transformation relation đ(đĽ) = [đ§, đŚ] which is written as đ§ (đ + 1)
(47)
đŚ1đ ],
where đ§óľą° = [đ§ đ1 (â
), đ2 (â
), đ3 (â
), and đ(â
) are resultant functions in state transformation. With the above analysis, system (47) is rewritten as đ§óľą° (đ + 1) = đ (óľą°đ§, đŚ2 , đ§óľą°đ1 , đ§óľą°đ2 , . . . , đ§óľą°đđ , đŚ2đ1 , đŚ2đ2 , . . . , đŚ2đđ ) ,
= đ3 (óľą°đ§, đŚ2 , đ§óľą°đ1 , đ§óľą°đ2 , . . . , đ§óľą°đđ , đŚ2đ1 , đŚ2đ2 , . . . , đŚ2đđ ) + đ (đŚ) đ˘ (đ) , đŚđ = [đŚ1đ đŚ2đ ] , đ
where đ = [đ1đ đ2đ ].
where đ§Ěđ = [óľą°đ§đ đżđ ] and đ = đŚ2 â đŚ2â and đđ (â
) and đź(â
) are nonlinear functions with ÎĽ being a positive scalar. Then, from đ = đŚ2 â đŚ2â , one has Îđ = Î (đŚ2 â đŚ2â ) = đ3 â ÎÎ (đż, đŚ1 ) + đ (đŚ) đ˘ (đ) .
(51)
For (51), Assumption 9 holds.
đ óľŠ óľŠ óľŠ óľŠ óľŠóľŠ óľŠóľŠ đ đ óľŠóľŠđ3 óľŠóľŠ ⤠â (đ1đ đź1đ (đđ (óľŠóľŠóľŠóľŠđ§Ěđđ óľŠóľŠóľŠóľŠ)) + đ2đ đź2đ (óľŠóľŠóľŠóľŠđđđ óľŠóľŠóľŠóľŠ)) ,
(52)
where đ1đ â đ
đ1đ and đ2đ â đ
đ2đ are constant vectors and Ί1đ (â
) and Ί2đ (â
) are nonlinear functions. [đźđđ (â
)]đ = [đźđđ1 (â
), đźđđ2 (â
), . . . , đźđđđđđ (â
)] with đ = 1, 2, and there exist nonlinear
đŚđ = [đŚ1đ đŚ2đ ] ,
đŚ2 (đ + 1)
(50)
đź (âđâ2 ) â ÎĽđ ⼠Îđ,
đ=0
+ đ (đŚ) đ˘ (đ) ,
đ
đđ (âĚđ§â) ⤠đ,
đ=0
= đ3 (óľą°đ§, đŚ2 , đ§óľą°đ1 , đ§óľą°đ2 , . . . , đ§óľą°đđ , đŚ2đ1 , đŚ2đ2 , . . . , đŚ2đđ )
đ
where đŚ2â (đ) is the subsidiary variable and Ί(â
) and Î(â
) are the nonlinear functions. For the dynamic compensator (49) with subsystem-óľą°đ§ (48), we assume that there exists a discrete Lyapunov-Krasovskii function đ such that
đ óľŠ óľŠ óľŠ óľŠ óľŠ óľŠóľŠ óľŠóľŠÎÎđ2 óľŠóľŠóľŠ ⤠â (Ί1đ (đđ (óľŠóľŠóľŠóľŠđ§Ěđđ óľŠóľŠóľŠóľŠ)) + Ί2đ (óľŠóľŠóľŠóľŠđđđ óľŠóľŠóľŠóľŠ)) ,
đŚ1 (đ + 1)
đŚ2 (đ + 1)
(49)
đŚ2â (đ) = Î (đ, đŚ1 ) ,
Assumption 9. The following nonlinear function inequality holds:
= đ1 (óľą°đ§, đŚ2 , đ§óľą°đ1 , đ§óľą°đ2 , . . . , đ§óľą°đđ , đŚ2đ1 , đŚ2đ2 , . . . , đŚ2đđ ) ,
= đ2 (óľą°đ§, đŚ2 , đ§óľą°đ1 , đ§óľą°đ2 , . . . , đ§óľą°đđ , đŚ2đ1 , đŚ2đ2 , . . . , đŚ2đđ ) ,
Design the dynamic compensator for system (48) as follows: đż (đ + 1) = Ί (đ, đŚ1 ) ,
Consider a nonlinear uncertain system with multiple timedelays given by the following model: đĽ (đ + 1) = đ (đĽ, đĽđ1 đĽđ2 , . . . , đĽđđ ) + đ (đĽ) đ˘ (đ) ,
Remark 8. The state transformation is employed for system (46), and đ(đĽ) = [đ§, đŚ] is employed to decompose đĽ(đ) â đ
đ into the signal đŚ(đ) â đ
đ and signal đ§(đ) â đ
đâđ with đŚ(đ) being available and đ§(đ) being unavailable. In addition, with the input matrix đ(đĽ), the output đŚ â đ
đ is transformed into đŚ1 â đ
đâđ and đŚ2 â đ
đ . With the above contents, the dynamic output feedback controller is designed.
2 functions đź1đđ (â
), đź2đđ (â
), and Ί2đ (â
) satisfying đź1đđ (đ)
đ2 đź21đđ (đ),
2 đź2đđ (đ)
â¤
đ2 đź22đđ (đ),
and
Ί22đ (đ)
â¤đ
2
2 Ί2đ (đ).
â¤
Theorem 10. For system (47), there exists a nonlinear dynamic compensator (49) satisfying (50); then design the control law đ˘(đ) = đ â1 (đŚ)đ˘(đ) where đ˘ (đ)
(48)
1 óľŠ óľŠ2 1 2 = ÎÎΊ (đż, đŚ1 ) â đ óľŠóľŠóľŠđź20 (âđâ)óľŠóľŠóľŠ â đΊ2đ (âđâ) 2 2 â1 2 1 đ óľŠ2 óľŠ â đ â (1 â đđâ ) đđđđ (óľŠóľŠóľŠóľŠđź2đ (âđâ)óľŠóľŠóľŠóľŠ + Ί2đ (âđâ)) (53) 2 đ=1
đź (âđâ2 ) 1 1 2 â đđź (âđâ ) đ ( ) â (c + đ (đ)) đ 2 ÎĽâđâđ 2
Mathematical Problems in Engineering
9
in which đ and đ are positive scalars, such that 0 < ÎĽ â đ â đ holds. đ(â
) is a positive increasing function, satisfying inequality (39). And the adaptive law can be designed as đ(đ + 1) = đâđ(đ)â2 â đđđ(đ) with đ > 0, đ > 0, and đđ > đ, and then the solutions of the control system can converge to a bounded region. Proof. Considering the following Lyapunov functional đđš = đ đđš1 + đđš2 with đđš1 = đđ đ + âŤ0 đ(đ¤)đđ¤ + (1/2đ)(đ(đ) â đâ )2 ,
0 0 [ ] [0 0] ] đľđ = [ [0 1] , [ ] [1 0] 0 0 0 1 [0 0 1 0] đśđ = [ ], [0 1 0 0]
đ
đđš2 = (âđđ=1 (1âđđâ )â1 đđđđ ) âŤđâđ đđ(đżâđ) Ă(âđź1đ (đđ (âĚđ§(đ¤)â))â2 +
(56)
đ
âđź2đ (âđ(đ¤)â)â2 + Ί21đ (đđ (âĚđ§(đ¤)â)) + Ί22đ (âđ(đ¤)â))đđ¤. đ đ đ1đ + đ2đ đ2đ + 2), with Where đ is a scalar, đâ = âđđ=0 (đ1đ the same way, one has
Îđđš â¤
đ â 2 (đ ) â đđđš2 â đđđš1 ⤠đ â đđđš 2
(54)
with đ = (đ/2)(đâ )2 , and the solutions of the closedloop system are exponentially convergent to a bounded region.
5. Simulations
where đđ = [đ2 , đ2 ], in which đ1 = đ1 đĽđ (đ)đĽ(đ â đ1 ) + đ2 đĽđ (đâđ1 )đĽ(đâđ2 ), đ2 = đ2 đĽđ (đâđ1 )đĽ(đâđ2 )+đ3 đĽđ (đ)đĽ(đâ đ2 ), đđ is an unknown scalar, and đ1 and đ2 are the time-delays. Now, we employ the proposed method to construct the dynamic output feedback controller. Based on Theorem 4, parameters đ´ đ , đľđ , đśđ , and đˇđ are constructed as follows: [đľđ , đ´ đ ] = [ [đˇđ , đśđ ] = [
0.1895 â15.6235 â0.5663
0.1150
0.2078 â13.7249
0.2487 0.2873 0.0427 â0.5616 0.5422 0.2736
], (57)
].
Using Theorems 4 and 6, the following inequalities hold:
In this section, a numerical example is given to show the validity of the controllers designed in this study. Consider the nonlinear time-delays system as follows:
+
đĽ (đ + 1) = đ´ đ đĽ (đ) + đˇđ1 đĽ (đ â đ1 ) + đˇđ2 đĽ (đ â đ2 ) + đľđ (đ˘ (đ) + đ) ,
(55)
đŚ (đ) = đśđ đĽ (đ) ,
1 óľŠ óľŠ2 óľ¨óľ¨ óľ¨óľ¨ 1 2 óľ¨óľ¨đ1 óľ¨óľ¨ ⤠đ1 âđĽ (đ)â + đ2 óľŠóľŠóľŠđĽ (đ â đ2 )óľŠóľŠóľŠ 2 2 1 óľŠ óľŠ2 (đ1 + đ2 ) óľŠóľŠóľŠđĽ (đ â đ1 )óľŠóľŠóľŠ , 2
1 óľŠ óľ¨óľ¨ óľ¨óľ¨ 1 óľŠ2 2 óľ¨óľ¨đ2 óľ¨óľ¨ ⤠đ3 âđĽ (đ)â + đ2 óľŠóľŠóľŠđĽ (đ â đ1 )óľŠóľŠóľŠ 2 2 +
(58)
1 óľŠ óľŠ2 (đ + đ3 ) óľŠóľŠóľŠđĽ (đ â đ2 )óľŠóľŠóľŠ . 2 2
Based on Theorems 6 and 10, the control law is designed as follows:
where 0 1
0
1
[ ] [1 1 0 0.3] ] đ´đ = [ [2 0.5 1 1 ] , [ ] [1 2 0.5 3 ]
đˇđ1
0.5 0.5 1 0 [ ] [ 0 0 1 1] ] =[ [ 2 3 1 2] , [ ] [1
đˇđ2
2 1 2]
0.5 0.5 1 0 [ ] [ 0 0 1 1] [ ], =[ ] [ 2 3 1 2] [1
2 1 2]
Ě 012 ) đ˘ (đ) = đśđ (đ´ đ đ (đ) + đľđ đŚ1 (đ)) â (đ´022 â đˇđ đśđ´ 1 Ă (đ§ (đ) + đśđ đ (đ)) â đ (đ) đ§ (đ) â 16đ§ (đ) 2
(59)
â 6 âđ§ (đ)â2 đ§ (đ) with the adaptive law being designed as follows: đ (đ + 1) = â4đ (đ) + âđ§ (đ)â2 .
(60)
In this study, the state initial value of the system is đĽ = đ [â2.5 2.4 â17.5 2.4] for đ(0) = 0. The multiple timedelays are selected as đ1 and đ2 . Figure 1 shows the responses of the control inputs. Figures 2 and 3 show the responses of đĽ1 , đĽ2 , đĽ3 , and đĽ4 with multiple time-delays đ1 and đ2 . From the three figures, we can see that the proposed method is effective and can stabilize the closed-loop system quickly.
10
Mathematical Problems in Engineering 240
20
160
10
80
0
0
â10
â80
â20
â160
0
2
4
6 Time (s)
8
10
12
u1 u2
â30
0
2
4
6 Time (s)
8
10
12
x3 x4
Figure 3: The response curves of state variables đĽ3 and đĽ4 .
Figure 1: The response curves of control input. 20
state property (converge exponentially). Furthermore, we have extended the results to the general nonlinear case. Finally, the simulation results illustrate the effectiveness of the main results. As further work, the proposed methodology will be extended to more complex control problems, such as đť-â control of fuzzy affine systems with actuator faults.
10
0
â10
Conflicts of Interest
â20
The authors declare that there are no conflicts of interest regarding the publication of this paper.
â30
Acknowledgments 0
2
4
6 Time (s)
8
10
12
x1 x2
Figure 2: The response curves of state variables đĽ1 and đĽ2 .
This research was financially supported by National Natural Science Foundation of China (Project no. 61473248); Natural Science Foundation of Hebei Province of China (Project no. F2016203496); National Intellectual Property Office of China (Grant nos. ZL-2012-1-0052200.2, Zl-2012-1-0052199.3, and Zl-2014-2-0411083.9); and China National Heavy Machinery Research Institute.
6. Conclusions
References
This paper addresses the dynamic output feedback compensation control problem for a class of discrete system with multiple time-delays and uncertainties. The dynamic compensation controller is constructed and the control design conditions are relaxed, while the difficulty of the system design is decreased, it is easy to implement the system performance. With the developed nonlinear Lyapunov-Krasovskii functional, we have obtained sufficient conditions for the existence of output feedback controller such that the closedloop system is globally exponentially stable and achieves a prescribed level. The adaptive control law is designed such that the closed-loop systems have better stable state property (arbitrary small region of convergence) and better transient
[1] C. Hwang and Y.-C. Cheng, âA note on the use of the Lambert đ function in the stability analysis of time-delay systems,â Automatica, vol. 41, no. 11, pp. 1979â1985, 2005. [2] K. Eunro, I. Yang, and D. Lee, âTime-delay robust nonlinear dynamic inversion for chaos synchronization with application to secure communications,â Automatica, pp. 1â9, 2015. [3] U. Munz, C. Ebenbauer, T. Haag, and F. Allgower, âStability analysis of time-delay systems with incommensurate delays using positive polynomials,â IEEE Transactions on Automatic Control, vol. 54, no. 5, pp. 1019â1024, 2009. [4] Z. Wang and H. Hu, âRobust stability test for dynamic systems with short delays by using Pade approximation,â Nonlinear Dynamics, vol. 18, no. 3, pp. 275â287, 1999.
Mathematical Problems in Engineering [5] Y. Wei, J. Qiu, and S. Fu, âMode-dependent nonrational output feedback control for continuous-time semi-Markovian jump systems with time-varying delay,â Nonlinear Analysis. Hybrid Systems, vol. 16, pp. 52â71, 2015. [6] L. Li and Y. Jia, âNon-fragile dynamic output feedback control for linear systems with time-varying delay,â IET Control Theory & Applications, vol. 3, no. 8, pp. 995â1005, 2009. [7] Y. Lv, Z. Li, and Z. Duan, âAdaptive output-feedback consensus protocol design for linear multi-agent systems with directed graphs,â in Proceedings of the 27th Chinese Control and Decision Conference, CCDC 2015, pp. 150â155, chn, May 2015. [8] Y. Wei, J. Qiu, and H. R. Karimi, âReliable output feedback control of discrete-time fuzzy affine systems with actuator faults,â IEEE Transactions on Circuits Systems-I Regular Papers, vol. 64, no. 1, pp. 170â181, 2017. [9] H. Feng and B.-Z. Guo, âOn stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems,â SIAM Journal on Control and Optimization, vol. 53, no. 4, pp. 1934â1955, 2015. [10] J. Qiu, G. Feng, and H. Gao, âFuzzy-model-based piecewise đťâ static-output-feedback controller design for networked nonlinear systems,â IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 919â934, 2010. [11] Q. Wang and C. Wei, âDecentralized robust adaptive output feedback control of stochastic nonlinear interconnected systems with dynamic interactions,â Automatica, vol. 54, pp. 124â 134, 2015. [12] Y. Zhu, M. Krstic, and H. Su, âAdaptive output feedback control for uncertain linear time-delay systems,â IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 545â560, 2016. [13] B. Zhou, âObserver-based output feedback control of discretetime linear systems with input and output delays,â International Journal of Control, vol. 87, no. 11, pp. 2252â2272, 2014. [14] J. Qiu, G. Feng, and H. Gao, âStatic-output-feedback Hâ control of continuous-time T-S fuzzy affine systems via piecewise lyapunov functions,â IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 245â261, 2013. [15] R. Yang, P. Shi, G.-P. Liu, and H. Gao, âNetwork-based feedback control for systems with mixed delays based on quantization and dropout compensation,â Automatica, vol. 47, no. 12, pp. 2805â2809, 2011. [16] J. Yao, Z. Jiao, and D. Ma, âExtended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping,â IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6285â6293, 2014. [17] C. Xia, B. Ji, and Y. Yan, âSmooth speed control for lowspeed high-torque permanent-magnet synchronous motor using proportional-integral-resonant controller,â IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2123â2134, 2015. [18] S.-L. Chen, âNonlinear smooth feedback control of a three-pole active magnetic bearing system,â IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 615â621, 2011. [19] S. Aouaouda, M. Chadli, M. T. Khadir, and T. Bouarar, âRobust fault tolerant tracking controller design for unknown inputs T-S models with unmeasurable premise variables,â Journal of Process Control, vol. 22, no. 5, pp. 861â872, 2012. [20] R. Toscano and P. Lyonnet, âRobust static output feedback controller synthesis using Kharitonovâs theorem and evolutionary algorithms,â Information Sciences. An International Journal, vol. 180, no. 10, pp. 2023â2028, 2010.
11 [21] B. Xian, M. S. de Queiroz, D. M. Dawson, and M. L. McIntyre, âA discontinuous output feedback controller and velocity observer for nonlinear mechanical systems,â Automatica, vol. 40, no. 4, pp. 695â700 (2005), 2004. [22] S. Chae and S. K. Nguang, âSOS based robust H fuzzy dynamic output feedback control of nonlinear networked control systems,â IEEE Transactions on Cybernetics, vol. 44, no. 7, pp. 1204â 1213, 2014. [23] Y. Wei, J. Qiu, H. R. Karimi, and M. Wang, âNew results on dynamic output feedback control for Markovian jump systems with time-varying delay and defective mode information,â Optimal Control Applications and Methods, vol. 35, no. 6, pp. 656â675, 2014. [24] C.-C. Hua and X.-P. Guan, âSmooth dynamic output feedback control for multiple time-delay systems with nonlinear uncertainties,â Automatica, vol. 68, pp. 1â8, 2016. [25] X. Yuan, Z. Chen, Y. Yuan, and Y. Huang, âDesign of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method,â Energy, vol. 93, pp. 173â187, 2015. [26] S.-H. Chen and L.-C. Fu, âOutput feedback sliding mode control for a stewart platform with a nonlinear observer-based forward kinematics solution,â IEEE Transactions on Control Systems Technology, vol. 21, no. 1, pp. 176â185, 2013. [27] C.-C. Hua, Q.-G. Wang, and X.-P. Guan, âMemoryless state feedback controller design for time delay systems with matched uncertain nonlinearities,â IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 801â807, 2008. [28] Y. He, G. P. Liu, D. Rees, and M. Wu, âImproved stabilisation method for networked control systems,â IET Control Theory and Applications, vol. 1, no. 6, pp. 1580â1585, 2007. [29] Y. He, M. Wu, G.-P. Liu, and J.-H. She, âOutput feedback stabilization for a discrete-time system with a time-varying delay,â IEEE Transactions on Automatic Control, vol. 53, no. 10, pp. 2372â2377, 2008.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at https://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
#HRBQDSDÄŽ,@SGDL@SHBR
Journal of
Volume 201
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014