Efficient Chaotic Permutations for Image

5 downloads 0 Views 2MB Size Report
2. Chaotic maps. 3. Chaotic permutation methods. 4. Conclusions and perspectives. 2 .... NPCR 79.508 87.655 99.569 76.984 80.992 98.520. UACI 19.176 ...
Efficient Chaotic Permutations for Image Encryption Algorithms

Abir AWAD, Abdelhakim Saadane [email protected] 1

Outlines of presentation 1. 2. 3. 4.

Introduction Chaotic maps Chaotic permutation methods Conclusions and perspectives

2

Outlines of presentation 1. 2. 3. 4.

Introduction Chaotic maps Chaotic permutation methods Conclusions and perspectives

3

Introduction

Introduction Eve Attack

Alice

Bob Transmission Channel

Encryption

Decryption

original data

Encrypted data

Encrypted data

Hello

%j$klnr

%j$klnr

Decrypted data

Hello 4

Introduction

Encryption chaotic algorithm: Descriptive Diagram Chaotic map

Substitution Clear information

Permutation SP box Encryption algorithm

Encrypted information

5

Outlines of presentation 1. Introduction

2. Chaotic maps    

Chaotic signal PWLCM chaotic map Finite Precision effect Proposed perturbation technique

3. Chaotic permutation methods 5. Conclusions and perspectives 6

Chaotic maps

Chaotic signal pwlcm perturbé

autocorrelation

1 0.9 0.8

0.8 0.7

0.6

0.6 0.5

0.4

0.4 0.2

0.3 0.2

0

0.1 0

0

100

200

300

400

500

600

700

800

900

1000

-0.2

-8

-6

-4

-2

0

2

4

6

8 4

x 10

Chaotic signal is a signal like noise Sensitive to initial conditions 7

Chaotic maps

PWLCM chaotic map • A piecewise linear chaotic map (PWLCM) is a map composed of multiple linear segments. 1

x  n   F [ x  n  1] 1  x n  1     p   1   x  n  1  p   0.5  p   F [1  x  n  1]  

0.9 0.8

if 0  x  n  1  p

0.7 0.6 0.5

if p  x  n  1  0.5

0.4 0.3

if 0.5  x  n  1  1

0.2 0.1 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

• where the positive control parameter p є (0; 0.5) and x(i) є (0; 1). 8

Chaotic maps

Finite Precision effect Finite precision => Finite cycle length xl 1

x1

xl

x2

xl  n

Transient branch

The perturbation increase the chaotic cycle length

cycle perturbation

x(n  1)

Chaotic map

x(n)

9

Chaotic maps

Proposed perturbation technique x(n  1)  0.x1 (n  1) x2 (n  1)...xN k (n  1) xN k 1 (n  1)...xN (n  1) Qk 1 (n)Qk 2 (n)...Q1 (n)Q0 (n)

F ( x(n 1))  0.F ( x1 (n 1))F ( x2 (n 1))...F ( xN k (n 1))F ( xN k 1 (n 1))...F ( xN (n 1))

Minimal cycle length:





Tmin    2k  1

10

Outlines of presentation 1. Introduction

2. Chaotic maps 3. Chaotic permutation methods    

Chaotic permutation -GRP Chaotic permutation- CROSS Socek permutation Permutation results

5. Conclusions and perspectives 11

Chaotic permutation methods

Chaotic bit permutation methods Bit permutation methods controlled by chaotic values R1= [ b1, b2, b3, b4, b5, b6, b7, b8] Permutation

R3= [ b4, b6, b7, b1, b3, b8, b2, b5] Inverse permutation

R1 = [ b1, b2, b3, b4, b5, b6, b7, b8] 12

Chaotic permutation methods

Chaotic permutation -GRP R3 = GRP (R1, R2) R2: Control bits

R1: Original bits

R3: Permuted bits

1

0

0

1

1

0

1

0

a

b

c

d

e

f

g

h

b

c

f

h

a

d

e

g

13

Chaotic permutation methods

Chaotic permutation - CROSS R3 =CROSS (m1, m2, R1, R2) R2: Control bits

1

0

0

1

1

0

1

0

R1: Original bits

a

b

c

d

e

f

g

h

m1=2

1

0

0

1

-

-

-

-

e

b

c

h

a

f

g

d

-

1

0

-

-

h

g

f

a

d

m2=1

1

0

-

R3: Permuted bits

c

b

e

14

Chaotic permutation methods

Socek Permutation R3= Socek (x, R1) x: chaotic value (control) Indices of R1 bits (to permute)

1

2

3

4

5

6

7

8

Permuted Indices

4

6

7

1

3

8

2

5

15

Chaotic permutation methods

Permutation Results

Original image 16

Chaotic permutation methods

Difference between the original and the permuted images PWLCM

Perturbed PWLCM

Grp

Cross

Socek

Grp

Cross

Socek

NPCR

79.508

87.655

99.569

76.984

80.992

98.520

UACI

19.176

21.685

29.106

18.216

20.025

27.139

M 1 N 1

1 D(i, j )   0

if P1 (i, j )  C1 (i, j ) else

NPCR 

 D(i, j) i 0 j 0

M N

 100 17

Chaotic permutation methods

Difference between the original and the permuted images PWLCM

Perturbed PWLCM

Grp

Cross

Socek

Grp

Cross

Socek

NPCR

79.508

87.655

99.569

76.984

80.992

98.520

UACI

19.176

21.685

29.106

18.216

20.025

27.139

1 UACI  MxN

M 1 N 1

 i 0 j 0

P1 (i, j )  C1 (i, j ) 255

x100 18

Chaotic permutation methods

Correlation coefficients of intra color - components Correlation

Mandrill image

Permuted image using PWLCM to control

Grp

Cross

Socek

Permuted image using perturbed PWLCM to control Grp Cross Socek

Red (R) component Correlation

0.1911

0.0717

0.0259 0.0171 0.0458 0.0243 0.0155

Green (G) component Correlation

0.0883

0.0308

0.0120 0.0066 0.0164 0.0110 0.0055

Blue (B) component Correlation

0.0948

0.0572

0.0196 0.0152 0.0356 0.0178 0.0138

Mean value

0,1247

0.0532

19 0.0192 0.0130 0.0326 0.0177 0.0116

Chaotic permutation methods

Correlation coefficients of inter color - components Mandrill Correlation image

Permuted image using PWLCM to control

Permuted image using perturbed PWLCM to control

Grp

Grp

Cross

Socek

Cross

Socek

Correlation between R and G

0.3565

0.2776

0.1925 0.1280 0.1621 0.1147 0.0703

Correlation between G and B

0.8074

0.3722

0.2453 0.0684 0.2490 0.1893 0.0591

Correlation between B and R

0.1237

0.0571

0.0491 0.0161 0.0506 0.0484 0.0088 20

Chaotic permutation methods

Distribution of two (vertically ) adjacent pixels Original image

Cross + PWLCM

300

300

300

250

250

200

200

200

150

150

150

100

100

100

50

50

50

250

0

0

50

100

Socek + PWLCM

150

200

250

300

0

0 0

50

100

150

300

300

250

250

200

200

150

150

100

100

50

50

0

0

50

100

150

200

250

300

0

200

250

300

Cross + perturbed map

0

50

100

150

200

250

300

Socek + perturbed map 0

50

100

150

200

250

300

21

Chaotic permutation methods

Histogram analysis Original image

Grp + perturbed map

Grp + PWLCM

2000

2000

1800

1800

1800

1600

1600

1600

1400

1400

1400

1200

1200

1200

1000

1000

1000

800

800

800

600

600

600

400

400

400

200

200

200

0 -50

0

50

Socek + PWLCM

100

150

200

250

300

2000

0 -50

0

50

100

150

2000

2000

1800

1800

1600

1600

1400

1400

250

300

0 -50

0

50

100

1000

1000

800

800

600

600

400

400

150

200

250

300

Socek + perturbed map

1200

1200

200

200 0 -50

200

0

50

100

150

200

250

300

0 -50

22 0

50

100

150

200

250

300

Chaotic permutation methods

Information entropy analysis Mandrill Correlation image

Entropy

7.762

Permuted image using PWLCM to control

Permuted image using perturbed PWLCM to control

Grp

Cross

Socek

Grp

Cross

Socek

7.862

7.881

7.888

7.906

7.913

7.950

H  m 

2 N 1

 i 0

1 p  mi  log 2 p  mi  23

Outlines of presentation 1. 2. 3. 4.

Introduction Chaotic maps Chaotic permutation methods Conclusions and perspectives

24

Conclusions Novel chaotic permutation technique Comparative study of three bit permutation methods The proposed permutation technique is more secure and suitable for chaotic image encryption schemes This study allows choosing an efficient permutation method to construct a chaotic cryptosystem with good cryptographic properties 25

perspectives Novel chaotic encryption method using this permutation technique. The measure of the impact of this permutation method of the hole encryption algorithm. Comparative study of the choosing bit permutation method and the S box of the AES encryption method. 26

Thank you 27

Suggest Documents