Fibonacci Numbers and -Lucas Numbers - Hindawi

20 downloads 124 Views 2MB Size Report
May 22, 2014 - In this paper we investigate some products of -Fibonacci and -Lucas numbers. We also present some generalized identities on.
Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2014, Article ID 505798, 4 pages http://dx.doi.org/10.1155/2014/505798

Research Article On the Products of π‘˜-Fibonacci Numbers and π‘˜-Lucas Numbers Bijendra Singh, Kiran Sisodiya, and Farooq Ahmad School of Studies in Mathematics, Vikram University Ujjain, India Correspondence should be addressed to Farooq Ahmad; [email protected] Received 3 January 2014; Accepted 22 May 2014; Published 12 June 2014 Academic Editor: Hernando Quevedo Copyright Β© 2014 Bijendra Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this paper we investigate some products of π‘˜-Fibonacci and π‘˜-Lucas numbers. We also present some generalized identities on the products of π‘˜-Fibonacci and π‘˜-Lucas numbers to establish connection formulas between them with the help of Binet’s formula.

1. Introduction Fibonacci numbers possess wonderful and amazing properties; though some are simple and known, others find broad scope in research work. Fibonacci and Lucas numbers cover a wide range of interest in modern mathematics as they appear in the comprehensive works of Koshy [1] and Vajda [2]. The Fibonacci numbers 𝐹𝑛 are the terms of the sequence {0, 1, 1, 2, 3, 5, 8 β‹… β‹… β‹… } wherein each term is the sum of the two previous terms beginning with the initial values 𝐹0 = 0 and 𝐹1 = 1. Also the ratio of two consecutive Fibonacci numbers converges to the Golden mean, 0 = (1 + √5)/2. The Fibonacci numbers and Golden mean find numerous applications in modern science and have been extensively used in number theory, applied mathematics, physics, computer science, and biology. The well-known Fibonacci sequence is defined as 𝐹0 = 0,

𝐹1 = 1,

𝐹𝑛 = πΉπ‘›βˆ’1 + πΉπ‘›βˆ’2

for 𝑛 β‰₯ 2.

for 𝑛 β‰₯ 2.

πΉπ‘˜,1 = 1,

πΉπ‘˜,𝑛+1 = π‘˜πΉπ‘˜,𝑛 + πΉπ‘˜,π‘›βˆ’1 ,

where 𝑛 β‰₯ 1, π‘˜ β‰₯ 1.

(3)

The first few terms of this sequence are {0, 1, π‘˜, π‘˜2 + 1, π‘˜2 + 2 β‹… β‹… β‹… } .

(4)

The particular cases of the π‘˜-Fibonacci sequence are as follows. If π‘˜ = 1, the classical Fibonacci sequence is obtained: 𝐹0 = 0,

𝐹1 = 1,

𝐹𝑛+1 = 𝐹𝑛 + πΉπ‘›βˆ’1

for 𝑛 β‰₯ 1,

(5)

{𝐹𝑛 }π‘›βˆˆπ‘ = {0, 1, 1, 2, 3, 5, 8 β‹… β‹… β‹… } . If π‘˜ = 2, the Pell sequence is obtained: 𝑃0 = 0,

𝐿 1 = 1,

𝐿 𝑛 = 𝐿 π‘›βˆ’1 + 𝐿 π‘›βˆ’2

πΉπ‘˜,0 = 0,

(1)

In a similar way, Lucas sequence is defined as 𝐿 0 = 2,

The π‘˜-Fibonacci sequence introduced by FalcΒ΄on and Plaza [3] depends only on one integer parameter π‘˜ and is defined as follows:

(2)

The second order Fibonacci sequence has been generalized in several ways. Some authors have preserved the recurrence relation and altered the first two terms of the sequence while others have preserved the first two terms of the sequence and altered the recurrence relation slightly.

𝑃 = 1,

𝑃𝑛+1 = 2𝑃𝑛 + π‘ƒπ‘›βˆ’1

for 𝑛 β‰₯ 1,

{𝑃𝑛 }π‘›βˆˆπ‘ = {0, 1, 2, 5, 12, 29, 70 β‹… β‹… β‹… } .

(6)

Motivated by the study of π‘˜-Fibonacci numbers in [4], the π‘˜Lucas numbers have been defined in a similar fashion as 𝐿 π‘˜,0 = 2,

𝐿 π‘˜,1 = π‘˜,

𝐿 π‘˜,𝑛+1 = π‘˜πΏ π‘˜,𝑛 + 𝐿 π‘˜,π‘›βˆ’1 ,

where 𝑛 β‰₯ 1, π‘˜ β‰₯ 1.

(7)

2

International Journal of Mathematics and Mathematical Sciences

The first few terms of this sequence are {2, π‘˜, π‘˜2 + 2, π‘˜3 + 3 β‹… β‹… β‹… } .

(8)

The particular cases of the π‘˜-Lucas sequence are as follows. If π‘˜ = 1, the classical Lucas sequence is obtained: {2, 1, 3, 4, 7, 11, 18 β‹… β‹… β‹… } .

(9)

If π‘˜ = 2, the Pell-Lucas sequence is obtained: {2, 2, 6, 14, 34, 82 β‹… β‹… β‹… } .

2. On the Products of π‘˜-Fibonacci and π‘˜-Lucas Numbers Theorem 1. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛 , where 𝑛 β‰₯ 1. Proof. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛 = [

(10)

In the 19th century, the French mathematician Binet devised two remarkable analytical formulas for the Fibonacci and Lucas numbers [2]. The same idea has been used to develop Binet formulas for other recursive sequences as well. The wellknown Binet’s formulas for π‘˜-Fibonacci numbers and π‘˜-Lucas numbers, see [3–5], are given by πΉπ‘˜,𝑛 =

π‘Ÿ1 𝑛 βˆ’ π‘Ÿ2 𝑛 , π‘Ÿ1 βˆ’ π‘Ÿ2

(11)

𝐿 π‘˜,𝑛 = π‘Ÿ1 𝑛 + π‘Ÿ2 𝑛 ,

π‘˜ βˆ’ √ π‘˜2 + 4 π‘Ÿ2 = . 2

=

1 [π‘Ÿ 4𝑛 βˆ’ π‘Ÿ2 4𝑛 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1

Theorem 2. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,4𝑛+1 βˆ’ 1, where 𝑛 β‰₯ 1.

πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+1 (12)

(13)

=[ =

π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛 ] [π‘Ÿ1 2𝑛+1 + π‘Ÿ2 2𝑛+1 ] π‘Ÿ1 βˆ’π‘Ÿ2

1 [π‘Ÿ 4𝑛+1 + π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+1 βˆ’ π‘Ÿ1 2𝑛+1 π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ2 4𝑛+1 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1

(16)

2𝑛

We also note that

=

π‘Ÿ1 + π‘Ÿ2 = π‘˜, π‘Ÿ1 π‘Ÿ2 = βˆ’ 1,

1 2𝑛 2𝑛 [π‘Ÿ 4𝑛 + (π‘Ÿ1 π‘Ÿ2 ) βˆ’ (π‘Ÿ1 π‘Ÿ2 ) βˆ’ π‘Ÿ2 4𝑛 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1 (15)

= πΉπ‘˜,4𝑛 .

which are given by π‘˜ + √ π‘˜2 + 4 , π‘Ÿ1 = 2

=

Proof.

where π‘Ÿ1 , π‘Ÿ2 are roots of characteristic equation π‘Ÿ2 βˆ’ π‘˜π‘Ÿ βˆ’ 1 = 0,

π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛 ] [π‘Ÿ1 2𝑛 + π‘Ÿ2 2𝑛 ] π‘Ÿ1 βˆ’ π‘Ÿ2

(14)

π‘Ÿ1 βˆ’ π‘Ÿ2 = βˆšπ‘˜2 + 4. There are a huge number of simple as well as generalized identities available in the Fibonacci related literature in various forms. Some properties for common factors of Fibonacci and Lucas numbers are studied by Thongmoon [6, 7]. The π‘˜-Fibonacci numbers which are of recent origin were found by studying the recursive application of two geometrical transformations used in the well-known fourtriangle longest-edge partition [3], serving as an example between geometry and numbers. Also in [8], authors established some new properties of π‘˜-Fibonacci numbers and π‘˜Lucas numbers in terms of binomial sums. FalcΒ΄on and Plaza [9] studied 3-dimensional π‘˜-Fibonacci spirals considering geometric point of view. Some identities for π‘˜-Lucas numbers may be found in [9]. In [10] many properties of π‘˜-Fibonacci numbers are obtained by easy arguments and related with so-called Pascal triangle. The aim of the present paper is to establish connection formulas between π‘˜-Fibonacci and π‘˜Lucas numbers, thereby deriving some results out of them. In the following section we investigate some products of π‘˜-Fibonacci numbers and π‘˜-Lucas numbers. Though the results can be established by induction method as well, Binet’s formula is mainly used to prove all of them.

(π‘Ÿ π‘Ÿ ) 1 [π‘Ÿ 4𝑛+1 βˆ’ π‘Ÿ2 4𝑛+1 ] + 1 2 (π‘Ÿ βˆ’ π‘Ÿ ) π‘Ÿ1 βˆ’ π‘Ÿ2 1 (π‘Ÿ1 βˆ’ π‘Ÿ2 ) 2 1

= πΉπ‘˜,4𝑛+1 βˆ’ (βˆ’1)2𝑛 = πΉπ‘˜,4𝑛+1 βˆ’ 1.

Theorem 3. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+2 = πΉπ‘˜,4𝑛+2 βˆ’ π‘˜, where 𝑛 β‰₯ 1. Proof. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+2 =[

π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛 ] [π‘Ÿ1 2𝑛+2 + π‘Ÿ2 2𝑛+2 ] π‘Ÿ1 βˆ’ π‘Ÿ2

=

1 [π‘Ÿ 4𝑛+2 + π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+2 βˆ’ π‘Ÿ1 2𝑛+2 π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ2 4𝑛+2 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1

=

(π‘Ÿ π‘Ÿ ) 1 [π‘Ÿ 4𝑛+2 βˆ’ π‘Ÿ2 4𝑛+2 ] βˆ’ 1 2 [π‘Ÿ 2 βˆ’ π‘Ÿ2 2 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1 (π‘Ÿ1 βˆ’ π‘Ÿ2 ) 1

2𝑛

2𝑛

= πΉπ‘˜,4𝑛+2 βˆ’ (π‘Ÿ1 π‘Ÿ2 ) (π‘Ÿ1 + π‘Ÿ2 ) = πΉπ‘˜,4𝑛+2 βˆ’ (βˆ’1)2𝑛 π‘˜ = πΉπ‘˜,4𝑛+2 βˆ’ π‘˜.

(17)

International Journal of Mathematics and Mathematical Sciences

3

Theorem 4. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+3 = πΉπ‘˜,4𝑛+3 βˆ’ (π‘˜2 + 1), where 𝑛 β‰₯ 1.

Theorem 7. πΉπ‘˜,2𝑛+2 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+2 + π‘˜, where 𝑛 β‰₯ 1.

Proof.

Theorem 8. πΉπ‘˜,2𝑛+2 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,4𝑛+3 βˆ’ 1, where 𝑛 β‰₯ 1.

πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+3 =[

3. Generalized Identities on the Products of π‘˜-Fibonacci and π‘˜-Lucas Numbers

π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛 ] [π‘Ÿ1 2𝑛+3 + π‘Ÿ2 2𝑛+3 ] π‘Ÿ1 βˆ’ π‘Ÿ2

Theorem 9. πΉπ‘˜,π‘š 𝐿 π‘˜,𝑛 = πΉπ‘˜,π‘š+𝑛 βˆ’ (βˆ’1)π‘š πΉπ‘˜,π‘›βˆ’π‘š , for 𝑛 β‰₯ π‘š + 1, π‘š β‰₯ 0.

1 = [π‘Ÿ 4𝑛+3 + π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+3 βˆ’ π‘Ÿ1 2𝑛+3 π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ2 4𝑛+3 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1 2𝑛

(π‘Ÿ π‘Ÿ ) 1 = [π‘Ÿ 4𝑛+3 βˆ’ π‘Ÿ2 4𝑛+3 ] + 1 2 [π‘Ÿ 3 βˆ’ π‘Ÿ1 3 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1 (π‘Ÿ1 βˆ’ π‘Ÿ2 ) 2

(18)

π‘Ÿ βˆ’π‘Ÿ = πΉπ‘˜,4𝑛+3 βˆ’ (βˆ’1) [ 1 2 ] [π‘Ÿ1 2 + π‘Ÿ2 2 + π‘Ÿ1 π‘Ÿ2 ] π‘Ÿ1 βˆ’ π‘Ÿ2 2𝑛

Proof. πΉπ‘˜,π‘š 𝐿 π‘˜,𝑛 =[

= πΉπ‘˜,4𝑛+3 βˆ’ (𝐿 π‘˜,2 βˆ’ 1) = πΉπ‘˜,4𝑛+3 βˆ’ (π‘˜2 + 1) .

Theorem 5. πΉπ‘˜,2π‘›βˆ’1 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,4𝑛 + 1, where 𝑛 β‰₯ 1.

π‘Ÿ1 π‘š βˆ’ π‘Ÿ2 π‘š ] [π‘Ÿ1 𝑛 + π‘Ÿ2 𝑛 ] π‘Ÿ1 βˆ’ π‘Ÿ2

=

1 [π‘Ÿ π‘š+𝑛 + π‘Ÿ1 π‘š π‘Ÿ2 𝑛 βˆ’ π‘Ÿ1 𝑛 π‘Ÿ2 π‘š βˆ’ π‘Ÿ2 π‘š+𝑛 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1

=

1 1 [π‘Ÿ1 π‘š+𝑛 βˆ’ π‘Ÿ2 π‘š+𝑛 ] + [π‘Ÿ π‘š π‘Ÿ 𝑛 βˆ’ π‘Ÿ1 𝑛 π‘Ÿ2 π‘š ] π‘Ÿ1 βˆ’ π‘Ÿ2 π‘Ÿ1 βˆ’ π‘Ÿ2 1 2

= πΉπ‘˜,π‘š+𝑛 βˆ’ [

Proof. πΉπ‘˜,2π‘›βˆ’1 𝐿 π‘˜,2𝑛+1 =[

π‘Ÿ1

2π‘›βˆ’1

βˆ’ π‘Ÿ2 π‘Ÿ1 βˆ’ π‘Ÿ2

2π‘›βˆ’1

π‘Ÿ1 𝑛 π‘Ÿ2 π‘š βˆ’ π‘Ÿ1 π‘š π‘Ÿ2 𝑛 ] π‘Ÿ1 βˆ’ π‘Ÿ2 π‘š

] [π‘Ÿ1 2𝑛+1 + π‘Ÿ2 2𝑛+1 ]

=

1 [π‘Ÿ 4𝑛 + π‘Ÿ1 2π‘›βˆ’1 π‘Ÿ2 2𝑛+1 βˆ’ π‘Ÿ1 2𝑛+1 π‘Ÿ2 2π‘›βˆ’1 βˆ’ π‘Ÿ2 4𝑛 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1 (19)

=

(π‘Ÿ π‘Ÿ ) π‘Ÿ π‘Ÿ 1 [π‘Ÿ1 4𝑛 βˆ’ π‘Ÿ2 4𝑛 ] + 1 2 [ 2 βˆ’ 1 ] π‘Ÿ1 βˆ’ π‘Ÿ2 π‘Ÿ2 (π‘Ÿ1 βˆ’ π‘Ÿ2 ) π‘Ÿ1

2𝑛

2π‘›βˆ’1

= πΉπ‘˜,4𝑛 βˆ’ (π‘Ÿ1 π‘Ÿ2 ) = πΉπ‘˜,4𝑛 + 1.

= πΉπ‘˜,π‘š+𝑛 βˆ’ (π‘Ÿ1 π‘Ÿ2 ) [

π‘Ÿ1 π‘›βˆ’π‘š βˆ’ π‘Ÿ2 π‘›βˆ’π‘š ] π‘Ÿ1 βˆ’ π‘Ÿ2

= πΉπ‘˜,π‘š+𝑛 βˆ’ (βˆ’1)π‘š πΉπ‘˜,π‘›βˆ’π‘š . (21) For different value of π‘š, we have different results: If π‘š = 0 then πΉπ‘˜,0 𝐿 π‘˜,𝑛 = πΉπ‘˜,𝑛 βˆ’ πΉπ‘˜,𝑛 = 0,

𝑛β‰₯1

If π‘š = 1 then πΉπ‘˜,1 𝐿 π‘˜,𝑛 = πΉπ‘˜,𝑛+1 + πΉπ‘˜,π‘›βˆ’1 ,

𝑛β‰₯2

or 𝐿 π‘˜,𝑛 = πΉπ‘˜,𝑛+1 + πΉπ‘˜,π‘›βˆ’1

Theorem 6. πΉπ‘˜,2𝑛+1 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+1 + 1, where 𝑛 β‰₯ 1.

If π‘š = 2 then πΉπ‘˜,2 𝐿 π‘˜,𝑛 = πΉπ‘˜,𝑛+2 βˆ’ πΉπ‘˜,π‘›βˆ’2 , or 𝐿 π‘˜,𝑛 =

Proof.

(22) 𝑛β‰₯3

πΉπ‘˜,𝑛+2 βˆ’ πΉπ‘˜,π‘›βˆ’2 and so on. π‘˜

πΉπ‘˜,2𝑛+1 𝐿 π‘˜,2𝑛 =[

π‘Ÿ1 2π‘›βˆ’1 βˆ’ π‘Ÿ2 2π‘›βˆ’1 ] [π‘Ÿ1 2𝑛 + π‘Ÿ2 2𝑛 ] π‘Ÿ1 βˆ’π‘Ÿ2

=

1 [π‘Ÿ 4𝑛+1 + π‘Ÿ1 2𝑛+1 π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+1 βˆ’ π‘Ÿ2 4𝑛+1 ] π‘Ÿ1 βˆ’ π‘Ÿ2 1 (20)

=

(π‘Ÿ π‘Ÿ ) 1 [π‘Ÿ1 4𝑛+1 βˆ’ π‘Ÿ2 4𝑛+1 ] + 1 2 (π‘Ÿ βˆ’ π‘Ÿ ) π‘Ÿ1 βˆ’ π‘Ÿ2 (π‘Ÿ1 βˆ’ π‘Ÿ2 ) 1 2

Theorem 10. πΉπ‘˜,𝑛 𝐿 π‘˜,2𝑛+π‘š = πΉπ‘˜,3𝑛+π‘š βˆ’ (βˆ’1)𝑛 πΉπ‘˜,𝑛+π‘š , for 𝑛 β‰₯ 1, π‘š β‰₯ 0. Proof.

2𝑛

= πΉπ‘˜,4𝑛+1 + (βˆ’1)2𝑛 = πΉπ‘˜,4𝑛+1 + 1. In the same manner, we obtain the following results.

πΉπ‘˜,𝑛 𝐿 π‘˜,2𝑛+π‘š =[ =

π‘Ÿ1 𝑛 βˆ’ π‘Ÿ2 𝑛 ] [π‘Ÿ1 2𝑛+π‘š + π‘Ÿ2 2𝑛+π‘š ] π‘Ÿ1 βˆ’ π‘Ÿ2

1 [π‘Ÿ 3𝑛+π‘š + π‘Ÿ1 𝑛 π‘Ÿ2 2𝑛+π‘š βˆ’ π‘Ÿ1 2𝑛+π‘š π‘Ÿ2 𝑛 βˆ’ π‘Ÿ2 3𝑛+π‘š ] π‘Ÿ1 βˆ’ π‘Ÿ2 1

4

International Journal of Mathematics and Mathematical Sciences =

𝑛+π‘š βˆ’ π‘Ÿ1 𝑛+π‘š 1 𝑛 π‘Ÿ [π‘Ÿ1 3𝑛+π‘š βˆ’ π‘Ÿ2 3𝑛+π‘š ] + (π‘Ÿ1 π‘Ÿ2 ) [ 2 ] π‘Ÿ1 βˆ’ π‘Ÿ2 π‘Ÿ1 βˆ’ π‘Ÿ2

= πΉπ‘˜,3𝑛+π‘š βˆ’ (βˆ’1)𝑛 πΉπ‘˜,𝑛+π‘š

=

π‘š βˆ’ π‘Ÿ2 π‘š 1 2𝑛 π‘Ÿ [π‘Ÿ1 4𝑛+π‘š βˆ’ π‘Ÿ2 4𝑛+π‘š ] + (π‘Ÿ1 π‘Ÿ2 ) [ 1 ] π‘Ÿ1 βˆ’ π‘Ÿ2 π‘Ÿ1 βˆ’ π‘Ÿ2

= πΉπ‘˜,4𝑛+π‘š + πΉπ‘˜,π‘š . (27)

= πΉπ‘˜,3𝑛+π‘š βˆ’ πΉπ‘˜,𝑛+π‘š . (23)

If π‘š = 0 then

For different values of π‘š, we have various results: If π‘š = 0 then πΉπ‘˜,𝑛 𝐿 π‘˜,2𝑛 = πΉπ‘˜,3𝑛 βˆ’ (βˆ’1)𝑛 πΉπ‘˜,𝑛 ,

𝑛β‰₯1

If π‘š = 1 then πΉπ‘˜,𝑛 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,3𝑛+1 βˆ’ (βˆ’1)𝑛 πΉπ‘˜,𝑛+1 ,

For different values of π‘š, we have various results:

𝑛β‰₯1

πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛 ,

𝑛β‰₯1

If π‘š = 1 then πΉπ‘˜,2𝑛+1 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+1 + 1,

𝑛β‰₯1

If π‘š = 2 then πΉπ‘˜,2𝑛+2 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+2 + π‘˜,

𝑛β‰₯1

(28)

and so on.

and so on. (24)

Conflict of Interests

Similarly we have the following result. Theorem 11. πΉπ‘˜,2𝑛+π‘š 𝐿 π‘˜,𝑛 = πΉπ‘˜,3𝑛+π‘š + (βˆ’1)𝑛 πΉπ‘˜,𝑛+π‘š , for 𝑛 β‰₯ 1, π‘š β‰₯ 0.

The authors declare that there is no conflict of interests regarding the publication of this paper.

Theorem 12. πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+π‘š = πΉπ‘˜,4𝑛+π‘š βˆ’ πΉπ‘˜,π‘š , for 𝑛 β‰₯ 1, π‘š β‰₯ 0.

References

Proof.

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, NY, USA, 2001. [2] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Ellis Horwood, Chichester, UK, 1989. Β΄ Plaza, β€œOn the Fibonacci π‘˜-numbers,” Chaos, [3] S. FalcΒ΄on and A. Solitons and Fractals, vol. 32, no. 5, pp. 1615–1624, 2007. [4] S. Falcon, β€œOn the π‘˜-Lucas numbers,” International Journal of Contemporary Mathematical Sciences, vol. 6, no. 21, pp. 1039– 1050, 2011. [5] C. Bolat, A. Ipeck, and H. Kose, β€œOn the sequence related to Lucas numbers and its properties,” Mathematica Aeterna, vol. 2, no. 1, pp. 63–75, 2012. [6] M. Thongmoon, β€œIdentities for the common factors of Fibonacci and Lucas numbers,” International Mathematical Forum, vol. 4, no. 7, pp. 303–308, 2009. [7] M. Thongmoon, β€œNew identities for the even and odd Fibonacci and Lucas numbers,” International Journal of Contemporary Mathematical Sciences, vol. 4, no. 14, pp. 671–676, 2009. [8] N. Yilmaz, N. Taskara, K. Uslu, and Y. Yazlik, β€œOn the binomial sums of π‘˜-Fibonacci and π‘˜-Lucas sequences,” in Proceedings of the International Conference on Numerical Analysis and Applied Mathematics (ICNAAM ’11), pp. 341–344, September 2011. Β΄ Plaza, β€œOn the 3-dimensional π‘˜-Fibonacci [9] S. FalcΒ΄on and A. spirals,” Chaos, Solitons and Fractals, vol. 38, no. 4, pp. 993–1003, 2008. Β΄ Plaza, β€œThe π‘˜-Fibonacci sequence and the [10] S. FalcΒ΄on and A. Pascal 2-triangle,” Chaos, Solitons and Fractals, vol. 33, no. 1, pp. 38–49, 2007.

πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+π‘š =[

π‘Ÿ1 2𝑛 βˆ’ π‘Ÿ2 2𝑛 ] [π‘Ÿ1 2𝑛+π‘š + π‘Ÿ2 2𝑛+π‘š ] π‘Ÿ1 βˆ’ π‘Ÿ2

=

1 [π‘Ÿ 4𝑛+π‘š + π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+π‘š βˆ’ π‘Ÿ1 2𝑛+π‘š π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ2 4𝑛+π‘š ] π‘Ÿ1 βˆ’ π‘Ÿ2 1

=

π‘š βˆ’ π‘Ÿ1 π‘š 1 2𝑛 π‘Ÿ [π‘Ÿ1 4𝑛+π‘š βˆ’ π‘Ÿ2 4𝑛+π‘š ] + (π‘Ÿ1 π‘Ÿ2 ) [ 2 ] π‘Ÿ1 βˆ’ π‘Ÿ2 π‘Ÿ1 βˆ’ π‘Ÿ2

= πΉπ‘˜,4𝑛+π‘š βˆ’ πΉπ‘˜,π‘š . (25) For different values of π‘š, we have various results: If π‘š = 0 then πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛 ,

𝑛β‰₯1

If π‘š = 1 then πΉπ‘˜,2𝑛 𝐿 π‘˜,2𝑛+1 = πΉπ‘˜,4𝑛+1 βˆ’ 1,

𝑛 β‰₯ 1 and so on. (26)

Theorem 13. πΉπ‘˜,2𝑛+π‘š 𝐿 π‘˜,2𝑛 = πΉπ‘˜,4𝑛+π‘š + πΉπ‘˜,π‘š , for 𝑛 β‰₯ 1, π‘š β‰₯ 0. Proof. πΉπ‘˜,2𝑛+π‘š 𝐿 π‘˜,2𝑛 =[ =

π‘Ÿ1 2𝑛+π‘š βˆ’ π‘Ÿ2 2𝑛+π‘š ] [π‘Ÿ1 2𝑛 + π‘Ÿ2 2𝑛 ] π‘Ÿ1 βˆ’ π‘Ÿ2

1 [π‘Ÿ 4𝑛+π‘š + π‘Ÿ1 2𝑛+π‘š π‘Ÿ2 2𝑛 βˆ’ π‘Ÿ1 2𝑛 π‘Ÿ2 2𝑛+π‘š βˆ’ π‘Ÿ2 4𝑛+π‘š ] π‘Ÿ1 βˆ’ π‘Ÿ2 1

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014