Solver QPC/MQPC. 24. NLP. 1. 2718504. 2718504. 0. 3.737. CPLEX. 2718499. 2718499. 0. 4.102. XPRESS. 2718507. 2718507. 0.
G-SDDP GENERALIZED STOCHASTIC DUAL DYNAMIC PROGRAMMING
Ing. Jesus Velásquez Bermúdez, Eng. D. Chief Scientist, DO Analytics LLC - DecisionWare
[email protected]
Fecha Documento: 11/12/2017
Versión Actualizada:
BENDERS THEORY
JACOBUS FRANCISCUS (JACQUES) BENDERS Jacobus Franciscus (Jacques) Benders (1 June 1924 - 9 January 2017) was a Dutch mathematician and Emeritus Professor of Operations Research at the Eindhoven University of Technology. He was the first Professor in the Netherlands in the field of Operations Research and is known for his contributions to Mathematical Programming. Benders studied mathematics at the Utrecht University, where he later also received his Ph. D. in 1960 with the thesis entitled "Partitioning in Mathematical Programming" under supervision of Hans Freudenthal. Late 1940s had started his career as statistician for the Rubber Foundation. In 1955 he moved to Shell laboratory in Amsterdam, where he researched mathematical programming problems concerning the logistics of oil refinery. He developed the technique known as Benders' decomposition, and used the results in his doctoral thesis. In 1963 Benders was appointed Professor of Operations Research at the Eindhoven University of Technology, being the first Professor in the Netherlands in that field. He retired at the Eindhoven University of Technology on May 31, 1989.
This conference analyzes the theory developed by J. F. Benders (BT) applied to the solution of dynamic problems using the Dynamic Programming and the Control Theory approaches. We call this methodology Generalized Dual Dynamic Programming (GDDP) which is based on the chained (nested) application of Bender´s Theory to a dynamic multi-period optimization problem. Many previous works must be kept in mind as an initial references, the works are related with Dynamic Nested Benders, and the methodology called Dual Dynamic Programming (DDP), a class of Nested Benders approach.
BENDERS THEORY Benders consideres a problem with two types of variables: x and y
Min cTx + f(y) subject to: F0 (y) = b0 A x + F (y) = b
An example of this: x associated with the operation and y with the investments
y
x
x R+ yS
DUAL-ANGULAR STRUCTURE
BENDERS THEORY
MinY f(y) + Q(y) subject to : F0 (y) = b0 yS
Q(y) =
{
The Benders approach considers the function Q(y) that determines the optimum cost associate with x as a function of y Q(y) is determined by solving an optimization sub-problem, on the variable x, for multiple values of y
Minx cTx d
subject to: A x = b - F(y) x R+
In this case, the sub-problem must be linear programming one
BENDERS THEORY
MinY f(y) + Q(y) subject to : F0 (y) = b0 yS
Q(y) =
{
Max (b - F(y)) subject to:
A c
Q(y)
can be defined based on the dual of the subproblem
BENDERS THEORY
2
MinY f(y) + Q(y) subject to : F0 (y) = b0 yS Q(y) 1 (b - F (y)) Q(y) 2 (b - F (y)) Q(y) 3 (b - F (y)) . . . Q(y) NP (b - F (y))
3
A C
1
4
5
The dual subproblem can be formulated in terms of the extreme points of its feasible zone
A C
BENDERS THEORY
subject to :
The original problem can be formulated considering the variable y only, and all the cutting planes associated with the extreme points
F0 (y) = b0 yS
In practical terms, this problem has an infinite number of constraints
MinY f(y) + Q(y)
Q(y) 1 (b - F (y)) Q(y) 2 (b - F (y)) Q(y) 3 (b - F (y)) . . . Q(y) NP (b - F (y))
To solve it, we should have a mechanism to generate extreme points of the dual feasible zone of the sub-problem that defines Q(y)
BENDERS THEORY
subject to :
The original problem can be formulated considering the variable y only, and all the cutting planes associated with the extreme points
F0 (y) = b0 yS
In practical terms, this problem has an infinite number of constraints
MinY f(y) + Q(y)
Q(y) 1 (b - F (y)) Q(y) 2 (b - F (y)) Q(y) 3 (b - F (y)) . . . Q(y) NP (b - F (y))
To solve it, we should have a mechanism to generate extreme points of the dual feasible zone of the sub-problem that defines Q(y) Any feasible point may be used to constraint Q(y), but, it may reduce the feasible zone and it is possible that the Benders procedure don’t converge to the optimal solution
BENDERS THEORY
MinY f(y) + Q(y) subject to : F0 (y) = b0 yS
The result is an algorithm based in cutting planes, that has the form:
Q(y) k (b - F (y))
This is cutting plane is called
Q(y) k (b - F (y)) k = 1, NP
BENDERS CUTTING PLANE FOR OPTIMALITY
BENDERS THEORY MODIFIED OPTIMALITY CUT
MinY f(y) + Q(y) + × QA subject to : F0 (y) = b0 yS
The result is an algorithm based in cutting planes, that has the form:
Q(y) + QA k (b - F (y))
This is cutting plane is called
Q(y) + QA k (b - F (y)) k = 1, NP QA ≥ 0
MODIFIED BENDERS CUTTING PLANE FOR OPTIMALITY QA = Artificial Variable
This formulation ensures that the solution yk obtained in the iteration k is mathematically feasible for the cut included in the iteration k+1 (QA > 0), and it can be used as starting point of the search in the iteration k+1.
BENDERS THEORY
MinY f(y) + Q(y)
In case that feasible solution x does not exist, using the Farkas´s Theorem it should be to generate the following cutting plane:
subject to :
0 k (b - F (Y))
F0 (y) = b0 yS
where k corresponds to extreme ray of the feasible dual zone; This is cutting plane is called
Q(y) k (b - F (y)) k = 1, NP 0 k (b - F (y)) k=1,RE
BENDERS CUTTING PLANE FOR FEASIBILITY If a feasible primal solution x does not exist then the dual solution is unbounded.
BENDERS THEORY
F0 (y) = b0 yS
y Feasible Zone
BENDERS THEORY
0 k (b - F (y))
Q(Y) k (b - F (y))
Values of y that must be discarded because they can not be optimum
F0 (y) = b0 yS
y Feasible Zone
Values of y that must be discarded because they can not permitted feasible values of x
BENDERS THEORY
Miny f(y) + Q(y)
A structure of two levels is established to solve the problem
subject to: F0 (y) = b0 YS k Q(y) (b - F (y)) k=1, ITERATIONS
Primal Variables
y
Min c x subject to: A x = b - F (y) x R+
Dual Variables
The first level is the equivalent problem in terms of y, that is designated as the coordinator The second level is a subproblem for the variable x that generates extreme points for the coordinator problem The solution is obtained by exchanging information between the coordinator and the subproblem The coordinator proposes values of y and the subproblem generates dual variable
ECONOMIC INTERPRETATION OF BENDERS THEORY Exist many interpretation of Benders Theory.
PRODUCTION MANAGER Miny f(y) + Q(y) subject to: F0 (y) = b0 YS k Q(y) (b - F (y)) k=1, ITERATIONS
Primal Variables = Resources Assigments
y
Min c x subject to: A x = b - F (y) x R+ INDUSTRIAL SYSTEM
Dual Variables = Marginal Productivity
For convenience, we assume that Benders coordinator represents an authority (a manager, a system operator, … ) that assign resources for many agents in a market or in a supply chain. Then, the first level define the vector y of resources assigned to the agents (sectors, factories, departments, … ). The second level is a subproblem related with the agents that generates information about the resources marginal productivity for each resource for each agent, or the prices that can pay the agents for the resources, represented by the dual variable
ECONOMIC INTERPRETATION OF BENDERS THEORY Exist many interpretation of Benders Theory.
MARKET COORDINATOR Miny f(y) + Q(y) subject to: F0 (y) = b0 YS k Q(y) (b - F (y)) k=1, ITERATIONS
Primal Variables = Resources Assigments
y
Min c x subject to: A x = b - F (y) x R+ RESOURCES MARKET
Dual Variables = Marginal Productivity
For convenience, we assume that Benders coordinator represents an authority (a manager, a system operator, … ) that assign resources for many agents in a market or in a supply chain. Then, the first level define the vector y of resources assigned to the agents (sectors, factories, departments, … ). The second level is a subproblem related with the agents that generates information about the resources marginal productivity for each resource for each agent, or the prices that can pay the agents for the resources, represented by the dual variable
ECONOMIC INTERPRETATION OF BENDERS THEORY CORPORATIVE DECISION MAKERS Miny f(y) + Q(y) subject to: F0 (y) = b0 YS k Q(y) (b - F (y)) k=1, ITERATIONS
Primal Variables = Resources Assigments
y
Min c x subject to: A x = b - F (y) x R+ SUPPLY CHAIN
Dual Variables = Marginal Productivity
Exist many interpretation of Benders Theory. For convenience, we assume that Benders coordinator represents an authority (a manager, a system operator, … ) that assign resources for many agents in a market or in a supply chain. Then, the first level define the vector y of resources assigned to the agents (sectors, factories, departments, … ). The second level is a subproblem related with the agents that generates information about the resources marginal productivity for each resource for each agent, or the prices that can pay the agents for the resources, represented by the dual variable
CONVERGENCE OF BENDERS THEORY (MINIMIZATION)
c xk
Real Primal
cx
k Iterations
Estimated Dual Q(yk)
DYNAMIC PROGRAMMING
RICHARD ERNEST BELLMAN Richard Ernest Bellman was born in 1920 in New York City to nonpractising Jewish parents of Polish and Russian descent, Pearl (née Saffian) and John James Bellman, who ran a small grocery store on Bergen Street near Prospect Park, Brooklyn. He attended Abraham Lincoln High School, Brooklyn in 1937,[2] and studied mathematics at Brooklyn College where he earned a BA in 1941. He later earned an MA from the University of Wisconsin–Madison. During World War II he worked for a Theoretical Physics Division group in Los Alamos. In 1946 he received his Ph. D. at Princeton under the supervision of Solomon Lefschetz. Beginning 1949 Bellman worked for many years at RAND corporation and it was during this time that he developed the Dynamic Programming. Later in life, Richard Bellman's interests began to emphasize biology and medicine, which he identified as “the frontiers of contemporary science”. In 1967, he became founding editor of the Journal Mathematical Biosciences which specialized in the publication of applied mathematics research for medical and biological topics. In 1985, the Bellman Prize in Mathematical Biosciences was created in his honor, being award biannually to the journal's best research paper. Bellman was diagnosed with a brain tumor in 1973, which was removed but resulted in complications that left him severely disabled. He was a professor at the University of Southern California, a Fellow in the American Academy of Arts and Sciences (1975), a member of the National Academy of Engineering (1977), and a member of the National Academy of Sciences (1983). He was awarded the IEEE Medal of Honor in 1979, "for contributions to decision processes and control system theory, particularly the creation and application of dynamic programming“. His key work is the Bellman Equation.
LINEAR DYNAMIC PROGRAMMING
The Linear Dynamic Programming (DP) considers the solution of a dynamic problem of the form DP: = { min z = St=1,T ctTxt + dtTut | Atxt = bt - Et-1xt-1 - Btut "t=1,T Gtut = gt
"t=1,T
utR+,xtR+ "t=1,T }
LINEAR DYNAMIC PROGRAMMING
Control Variables
xt-1 State Variables
ut
Atxt = bt - Et-1xt-1 - Btut Gtut = gt utR+ xtR+
Cost Function
ctTxt + dtTut
xt State Variables
DYNAMIC PROGRAMMING
Control Variables
ut Activity Levels: Production
xt-1
xt State Variables
State Variables Stocks Storages Cost Function
ctTxt + dtTut
DYNAMIC PROGRAMMING
Control Variables
ut Activity Levels: Production
xt-1
xt State Variables
State Variables Stocks Storages Cost Function
ctTxt + dtTut
DYNAMIC PROGRAMMING
Control Variables
xt-1
ut
THERM-GENERATION, FUEL CONSUMPTION, …
xt State Variables
State Variables WATER RELEASES, VOLUME RESERVOIRS, FUEL STORAGE, REMAINING CONTRACTS,...
Cost Function
ctTxt + dtTut +at (xt)
CLASSIC DYNAMIC PROGRAMMING
The Dynamic Programinng (DP) is based on the OPTIMALITY PRINCIPLE OF BELLMAN: “An optimum path has the property of the fact that anyone that it will be the initial decision and the state, the remaining decision shoulds constitute an optimum path with respect to the resulting state of the first decision“
LINEAR DYNAMIC PROGRAMMING
The Linear Dynamic Programming (DP) considers the solution of a series of mathematical problems, one for each t, of the form DPt(xt-1): = { min zt = ctTxt + dtTut + at (xt) | Atxt = bt - Et-1xt-1 - Btut Gtut = gt utR+,xtR+ } where at (xt) is call the optimum future cost (“cost to go”) of the system for the period t+1 until T. The main idea of Bellman is that beginning in the last period, T, which does not include the future cost function aT(), it is possible to solve the problem associated with T-1 to obtain at-1 (xt-1). Then, in a backward recursive process, we can get the solution for first period, t=1, and solve the problem; finally, in a forward process, we can obtain the details of the solution.
DYNAMIC PROGRAMING
ut
xt-2
At-1xt-1 = bt-1 - Et-1xt-2
ut
xt-1
At xt = bt - Etxt-1
ut
xt
At+1 xt+1 = bt+1 – Et+1xt
ct-1Txt-1
ctTxt
ct+1Txt+1
+ dtTut
+ dtTut
+ dtTut
PHASE I - BACKWARD
xt+1
DYNAMIC PROGRAMING
PHASE II - FORWARD
ut
xt-2
At-1xt-1 = bt-1 - Et-1xt-2
ut
xt-1
At xt = bt - Etxt-1
ut
xt
At+1 xt+1 = bt+1 – Et+1xt
ct-1Txt-1
ctTxt
ct+1Txt+1
+ dtTut
+ dtTut
+ dtTut
PHASE I - BACKWARD
xt+1
The original approach of DP is based in a numerical optimization process based on tables (state variables in t combined with state variables in t-1); for models with large quantity of state variables, this generates a big problem called "CURSE OF DIMENSIONALITY PROBLEM“ that implies that real problems with multiples state variables can not be solved exactly by DP due to dimension of tables that are required. Because, it is necessary to solve (st × st-1) reduced problems for each period t, where st represents the number of state variables in t. The complexity/dimensionality is related with the number of combinations that are necessary to solve the problem with enough precision.
DUAL DYNAMIC PROGRAMMING
DUAL DYNAMIC PROGRAMMING
In 1985, Pereira and Pinto presented a methodology that made it possible to apply the approach of Dynamic Programming (DP) to problems with multiple state variables without running into the "curse of dimensionality problem”. Pereira and Pinto extended Benders' partition theory (BT) to the multiplestage problem, which allowed the replacement of the discretization of the future cost function in the classic DP approach by a set of hyperplanes that defined it near to the optimal solution. The hyperplanes are generated using BT, that limits the subproblems to be linear. Dantzig & Infanger (1993) and Velásquez and others (1999) has similar formulation for the same problem. DDP is part of the “Nested Benders” methodologies, that are used to solve dynamic stochastic optimization problems based in random scenarios. There are many works over this type of use of Benders Theory.
DUAL DYNAMIC PROGRAMMING
DDP (DUAL DYNAMIC PROGRAMMING) & SDDP (STOCHASTIC DUAL DYNAMIC PROGRAMMING) are used intensively in the electric sector in the modeling of economic dispatch problem
CONCEPTUAL FORMULATION DP
DP
Control Variables
yt-1 State Variables
ut
Atyyt = b1t - Et-1yt-1 Btyt + Gtut = b2t
Stage Cost
ctTyt + dtTut
yt State Variables
CONCEPTUAL FORMULATION DDP
DP
DDP
Control Variables
xt-1
xt Atyxt = b1t - Et-1xt-1
State Variables
Stage Cost
ctTxt
State Variables
yt-1 State Variables
ut
Atyyt = b1t - Et-1yt-1 Btyt + Gtut = b2t
Stage Cost
ctTyt + dtTut
yt State Variables
DDP: DUAL DYNAMIC PROGRAMING
xt-2
At-1xt-1 = bt-1 - Et-1xt-2
ct-1Txt-1
xt-1
At xt = bt - Etxt-1
xt
ctTxt
DYNAMIC PROGRAMMING STAGES
At+1 xt+1 = bt+1 – Et+1xt
ct+1Txt+1
xt+1
DUAL DYNAMIC PROGRAMMING (DDP)
SUB-PROBLEM
COORDINATOR
xt-2
At-1xt-1 = bt-1 - Et-1xt-2
ct-1Txt-1
xt-1
At xt = bt - Etxt-1
xt
ctTxt
DYNAMIC PROGRAMMING STAGES
At+1 xt+1 = bt+1 – Et+1xt
ct+1Txt+1
Xt+1
DUAL DINAMYC PROGRAMMING (DDP)
SUB-PROBLEM
COORDINATOR
xt-2
At-1xt-1 = bt-1 - Et-1xt-2
ct-1Txt-1
xt-1
At xt = bt - Etxt-1
xt
ctTxt
DYNAMIC PROGRAMMING STAGES
At+1 xt+1 = bt+1 – Et+1xt
ct+1Txt+1
Xt+1
DUAL DINAMYC PROGRAMMING (DDP)
COORDINATOR SUB-PROBLEM
COORDINATOR
xt-2
At-1xt-1 = bt-1 - Et-1xt-2
ct-1Txt-1
xt-1
At xt = bt - Etxt-1
SUB-PROBLEM
xt
ctTxt
COORDINATOR
At+1 xt+1 = bt+1 – Et+1xt
Xt+1
ct+1Txt+1
SUB-PROBLEM DYNAMIC PROGRAMMING STAGES
GDDP GENERALIZED DUAL DYNAMIC PROGRAMMING
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
GDDP Generalized Dual Dynamic Programming was developed based in theoretical considerations about the solution of dynamic optimization problems integrating the Benders Theory with the Dynamic Programming approach. G-SDDP Stochastic Generalized Dual Dynamic Programming is the stochastic extension of the GDDP.
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
DDP
xt-1
xt Atyxt = b1t - Et-1xt-1
State Variables
Stage Cost
ctTxt
State Variables
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
DDP
GDDP
Control Variables
xt-1
xt Atyxt = b1t - Et-1xt-1
State Variables
Stage Cost
ctTxt
State Variables
yt-1 State Variables
ut
Atyyt = b1t - Et-1yt-1 Btyt + Gtut = b2t
Stage Cost
ctTyt + dtTut
yt State Variables
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
The conceptual approach of the GDDP maintains the difference between control variables and state variables. This distinction permits a more detailed algorithm in which the sub-problems are smaller than in the DDP. Then, the application of GDDP theory solves a coordinated sum of very simple problems. The GDDP formulation may be appropriate for industrial linear systems in which the state variables vector is associated with the amount of stock held and the level of resources in the facilities, and the control vector is associated with the production and distribution of products through the supply-chain. The GDDP family of optimization problems is used in the modeling of large supply-chains to support decision making at the tactical level (S&OP) in which the nonlinear characteristics can be, or must be, linearized.
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
GDDP (Velasquez 2002) is based on chained BT application to a multiperiodo optimization problem and corresponds to a generalization of DDP. GDDP: = { Min St=1,T ctTxt + dtTut | Ft xt = ft " t=1,T Atxt = bt - Et-1xt-1 - Btut " t=1,T Gtut = gt " t=1,T utR+ " t=1,T , xtR+ " t=1,T }
donde el vector xt representa las variables de estado y el vector ut las variables de control. At, Et, Bt, y Gt son matrices de relaciones funcionales, bt y gt son vectores de recursos, ct y dt vectores de costos y T el número de períodos del horizonte de planificación.
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
Control Variables
xt-1 State Variables
ut
Atxt = bt - Et-1xt-1 – Btut G tut = g t utR+ xtR+
Return
xt State Variables
ctTxt + dtTut + at(xt) State Cost
Control Future Cost Cost
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
GDDP: = { Min St=1,T ctTxt + dtTut | Ft xt = ft " t=1,T Atxt = bt - Et-1xt-1 - Btut " t=1,T Gtut = gt " t=1,T utR+ " t=1,T , xtR+ " t=1,T } x1 x2 x3
xT-2xT-1 xT
u1 u2 u3
uT-uuT-1 uT
.. . ..
The solution using Benders considers a two stage process. First ,we define the state variables xt as the coordination variables to proceed to decoupled the problem at temporary level. It implies to included in the coordinator decoupled Benders cuts. Thereinafter, the coordinator problem may be solved following one of the following alternatives : 1. IBC: It is solved as an integrated Benders coordinator problem.
.. .
.. . ..
DUAL-ANGULAR STRUCTURE
2. DDP: It is solved using the principles developed for DDP.
ECONOMIC INTERPRETATION OF BENDERS THEORY CORPORATIVE DECISION MAKERS Miny f(y) + Q(y) subject to: F0 (y) = b0 YS k Q(y) (b - F (y)) k=1, ITERATIONS
Primal Variables = Resources Assigments
y
Min c x subject to: A x = b - F (y) x R+ INDUSTRIAL SYSTEM SUPPLY CHAIN RESOURCES MARKET
Dual Variables = Marginal Productivity
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING INTEGRATED BENDERS COORDINATOR (IBC) CORPORATIVE DECISION MAKERS
CX: = { min z = St=1,T ctTxt + Wt(xt-1,xt) | Ft xt = ft " t=1,T Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t=1,T "kIterations } tk
1k
Tk { xt-1 , xt }
{ x0 , x1 }
{ xT-1 , xT } t=T
t=1
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ } INDUSTRIAL SYSTEM SUPPLY CHAIN RESOURCES MARKET
COUPLED BENDERS CUT
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING INTEGRATED BENDERS COORDINATOR (IBC)
CX: = { min z = St=1,T ctTxt + Wt(xt-1,xt) | Ft xt = ft " t=1,T Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t=1,T "kIterations } tk
1k
Tk { xt-1 , xt }
{ x0 , x1 }
t=T
t=1
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
{ xT-1 , xT }
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
DECOUPLED BENDERS CUTS
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
CX: = { min z = St=1,T ctTxt + Wt(xt-1,xt) | Ft xt = ft " t=1,T
Wt(xt-1,xt) = { min dtTut | Btut = bt - Et-1xt-1 - Atxt G tut = g t utR+ } "t=1,T xtR+ "t=1,T }
CX: corresponds to the coordinator problem where Wt(xt-1,xt) represents the optimum operation costs in the period t as a consequence of the border condition starting in the state xt-1 and finishing in the xt
Wt(xt-1,xt) corresponds to the objective function of the static operation subproblems for each period. In techno-economic terms, Wt(xt-1,xt) represents the supply function of the industrial system (or the supply chain) for the period t.
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING
Wt(xt-1,xt) = { min dtTut | Btut = bt - Et-1xt-1 - Atxt G tut = g t utR+ } the dual problem that defines Wt(xt-1,xt) is
Wt(xt-1,xt) = { max tT[bt - Et-1xt-1 - Atxt] + dtTgt |
tTBt + dtTGt dtT } where t represents the dual variables vector of Btut=bt-Et-1xt-1-Atxt and dt is the dual variables vector of Gtut = gt.
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING DDP COORDINATOR
Considering the decoupled cuts generated by each static subproblem that defines Wt(xt-1,xt) the coordinator CX: is
CX: = { min z = St=1,T ctTxt + Wt(xt-1,xt) | Ft xt = ft " t=1,T Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t=1,T "kIU } where IU represents the number of cuts generated for each subproblem and qt(,d) is a two argument t-index function that define a constant value
qt(,d) = Tbt + dTgt
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING DDP COORDINATOR
The coordinator CX: is integrated by Benders cuts and the constraints Ft xt = ft , then it has a dynamic structure similar to the problem DDP: (only state variables) then CX: may solved it by using the DDP theory. The cuts that integrate the coordinator CX:
Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t=1,T "kIU will be called Supply Function Benders Cuts (SF-BT)
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING DDP COORDINATOR
The general coordinator can be solved based on the DDP principles. It can be demonstrated that the coordinator subproblem for each intermediate stage t (less than T) is
St=1,t
CGt: = { min z = [ ct Txt +Wt(xt-1,xt)] + at+1(xt) | Ft xt = ft "t=1,T
Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t=1,t "kIU at+1(xt) + SkI1(t+1,j) yk,jt+1 (t+1k)TEtxt ftj "jIJ(t) xtR+ "t=1,T } The cuts that define at+1(xt) will be called Future Cost Benders Cuts (FC-BT)
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING DDP COORDINATOR
The general coordinator can be solved based on the DDP principles. It can be demonstrated that the coordinator subproblem for each intermediate stage t (less than T) is
St=1,t
CGt: = { min z = [ ct Txt +Wt(xt-1,xt)] + at+1(xt) | Ft xt = ft "t=1,t
Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t=1,t "kIU Wt(xt-1,xt) = SUPPLY FUNCTION at+1(xt) + SkI1(t+1,j) yk,jt+1 (t+1k)TEtxt ftj at+1(xt) = FUTURE "jCOST IJ(t) FUNCTION xtR+ "t=1,t }
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING DDP COORDINATOR
x1
CGt: = { min z =
S t=1,t [ ct Txt +W t(xt-1,xt)] + at+1(xt) | Ft xt = ft "t=1,t W t(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + S kI1(t+1,j) y k,jt+1 (t+1k)TEtxt ftj "jIJ(t) xtR+ "t(t) }
1k
{ x0 , x1 }
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
yk,jt+1
CGt: = { min z =
S t=1,t [ ct Txt +W t(xt-1,xt)] + at+1(xt) | Ft xt = ft "t=1,t W t(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + S kI1(t+1,j) y k,jt+1 (t+1k)TEtxt ftj "jIJ(t) xtR+ "t(t) }
tk
xT-1
CGt: = { min z =
S t=1,t [ ct Txt +W t(xt-1,xt)] + at+1(xt) | Ft xt = ft "t=1,t W t(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU
yk,jt+1
"jIJ(t) xtR+ "t(t) }
{ xT-1 , xT }
{ xt-1 , xt }
Tk
t=T
t=1
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING DDP COORDINATOR
x1
CGt: = { min z =
S t=1,t [ ct Txt +W t(xt-1,xt)] + at+1(xt) | Ft xt = ft "t=1,t W t(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + S kI1(t+1,j) y k,jt+1 (t+1k)TEtxt ftj "jIJ(t) xtR+ "t(t) }
1k
{ x0 , x1 }
yk,jt+1
CGt: = { min z =
S t=1,t [ ct Txt +W t(xt-1,xt)] + at+1(xt) | Ft xt = ft "t=1,t W t(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + S kI1(t+1,j) y k,jt+1 (t+1k)TEtxt ftj "jIJ(t) xtR+ "t(t) }
tk
xT-1
CGt: = { min z =
S t=1,t [ ct Txt +W t(xt-1,xt)] + at+1(xt) | Ft xt = ft "t=1,t W t(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU
yk,jt+1
"jIJ(t) xtR+ "t(t) }
{ xT-1 , xT }
{ xt-1 , xt } t=T
t=1
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
Tk
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS
Bt , Gt, dt - TIME INDEPENDENT
Wt(xt-1,xt) = { max tT[bt-Et-1xt-1-Atxt] + dtTgt subject to
tTB + dtTG dT }
Now we consider the special case when the dual feasibility zone of the problems that defines Wt(xt-1,xt) is static, which implies that the matrices Bt and Gt and the vector dt are time independent. Then, when we solve Wt(xt-1,xt) for a specific value of t we can generate SF-BT Benders cuts for all periods and the coordinator CX: In the case of Bt , Gt, dt are time dependent the cuts will be called UNIFIED BENDERS CUTS .
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS
Bt , Gt, dt - TIME INDEPENDENT
Wt(xt-1,xt) = { max tT[bt-Et-1xt-1-Atxt] + dtTgt subject to
tTB + dtTG dT }
Now we consider the special case when the dual feasibility zone of the problems that defines Wt(xt-1,xt) is static, which implies that the matrices Bt and Gt and the vector dt are time independent. Then, when we solve Wt(xt-1,xt) for a specific value of t we can generate SF-BT Benders cuts for all periods and the coordinator CX: In the case of Bt , Gt, dt are time dependent the cuts will be called UNIFIED BENDERS CUTS .
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS
Bt , Gt, dt - TIME INDEPENDENT
Wt(xt-1,xt) = { max tT[bt-Et-1xt-1-Atxt] + dtTgt subject to
tTB + dtTG dT }
Now we consider the special case when the dual feasibility zone of the problems that defines Wt(xt-1,xt) is static, which implies that the matrices Bt and Gt and the vector dt are time independent. Then, when we solve Wt(xt-1,xt) for a specific value of t we can generate SF-BT Benders cuts for all periods and the coordinator CX: In the case of Bt , Gt, dt are time dependent the cuts will be called UNIFIED BENDERS CUTS .
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING INTEGRATED BENDERS COORDINATOR (IBC)
CX: = { min z = St=1,T ctTxt + Wt(xt-1,xt) | Ft xt = ft " t=1,T Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t=1,T "kIterations } tk
1k
Tk { xt-1 , xt }
{ x0 , x1 }
t=T
t=1
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
{ xT-1 , xT }
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
DECOUPLED BENDERS CUTS
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS – INTEGRATED COORDINATOR
CX: = { min z = St=1,T ctTxt + Wt(xt-1,xt) | Ft xt = ft " t=1,T Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t=1,T "kIterations } k { xt-1 , xt }
UNIFIED BENDERS CUTS
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS
Wt(xt-1,xt) = { max tT[bt-Et-1xt-1-Atxt] + dtTgt | tTB + dtTG dT }
When Bt , Gt are TIME INDEPENDENT ? Bt and Gt are matrices that defines the topology and the technology of the industrial system. For short term and real-time operations this matrices don’t change because the industrial system is not changing (it is static); then in this case B and G are time independent. In the medium term and in the long term it is possible that this matrices change, but, in many cases is possible to orient the modeling using B and G time independent.
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS
Wt(xt-1,xt) = { max tT[bt-Et-1xt-1-Atxt] + dtTgt | tTB + dtTG dT }
When dt is TIME INDEPENDENT ? dt is the vector that defines the cost of the production operations. For real-time operations this vector may be time independent. We think that it is the majority of cases, but exists cases in which is not it isn’t true. Then it is necessary to analyze each case and to define which is the best way.
GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS – ECONOMIC INTERPRETATION
S
{ xt-1 , xt }
k min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
COBB-DOUGLAS PRODUCTION FUNCTION Q = f (K , T, … ) Production = f (Capital , Workforce. …)
Marginal Productivity
UNIFIED BENDERS CUTS Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "kIU
GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS – ECONOMIC INTERPRETATION
S
{ xt-1 , xt }
k min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
COBB-DOUGLAS PRODUCTION FUNCTION Q = f (K , T, … ) Production = f (Capital , Workforce. …)
Marginal Productivity
UNIFIED BENDERS CUTS Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "kIU
GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS - DDP COORDINATOR
x1
CGt: = { min z = St=1,t [ ct t +Wt(xt-1,xt)] + at+1(xt) | Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + SkI1(t+1,j) yk,jt+1 (t+1k)TEtxt Tx
CGt: = { min z = St=1,t [ ct t +Wt(xt-1,xt)] + at+1(xt) | Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + SkI1(t+1,j) yk,jt+1 (t+1k)TEtxt
xT-1
Tx
ftj "jIJ(t) xtR+ "t(t) }
CGt: = { min z =
St=1,t [ ct Txt +Wt(xt-1,xt)] + at+1(xt) | Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU
ftj "jIJ(t) xtR+ "t(t) }
"jIJ(t) xtR+ "t(t) }
k x1
k
k xt
B , G, d - TIME INDEPENDENT
xT
GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS - DDP COORDINATOR
x1
CGt: = { min z = St=1,t [ ct t +Wt(xt-1,xt)] + at+1(xt) | Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + SkI1(t+1,j) yk,jt+1 (t+1k)TEtxt Tx
CGt: = { min z = St=1,t [ ct t +Wt(xt-1,xt)] + at+1(xt) | Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + SkI1(t+1,j) yk,jt+1 (t+1k)TEtxt
xT-1
Tx
ftj "jIJ(t) xtR+ "t(t) }
CGt: = { min z =
St=1,t [ ct Txt +Wt(xt-1,xt)] + at+1(xt) | Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU
ftj "jIJ(t) xtR+ "t(t) }
"jIJ(t) xtR+ "t(t) }
k x1
k
k xt
xT
The previous problem can be solved in an asynchronous parallel form.
There is not a reason to synchronize the sub problems to a level of decomposition to accomplish the same iterations for each sub problem
GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS - DDP COORDINATOR
x1
CGt: = { min z = St=1,t [ ct t +Wt(xt-1,xt)] + at+1(xt) | Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + SkI1(t+1,j) yk,jt+1 (t+1k)TEtxt Tx
CGt: = { min z = St=1,t [ ct t +Wt(xt-1,xt)] + at+1(xt) | Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU at+1(xt) + SkI1(t+1,j) yk,jt+1 (t+1k)TEtxt
xT-1
Tx
ftj "jIJ(t) xtR+ "t(t) }
CGt: = { min z =
St=1,t [ ct Txt +Wt(xt-1,xt)] + at+1(xt) | Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t(t) "kIU
ftj "jIJ(t) xtR+ "t(t) }
"jIJ(t) xtR+ "t(t) }
k x1
k
k xt
xT
Then, we have a new problem: which the best way to choose the sub-problem to solve in the next iteration ? For real cases, the amount of sequences is “infinite”.
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS
What can we do when
GDDP: = { Min St=1,T ctTxt + dtTut | Ft xt = ft " t=1,T Axt = bt - Et-1xt-1 - But " t=1,T Gut = gt " t=1,T utR+ " t=1,T xtR+ " t=1,T }
dt is TIME INDEPENDENT ? dt is the vector that defines the cost of the production operations.
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS
What can we do when
GDDP: = { Min St=1,T ctTxt + dtTut | Ft xt = ft " t=1,T Axt = bt - Et-1xt-1 - But " t=1,T Gut = gt " t=1,T utR+ " t=1,T xtR+ " t=1,T }
dt is TIME INDEPENDENT ? dt is the vector that defines the cost of the production operations. It is possible to make some reformulation oriented to have an equivalent problem that have for all period a dual feasible zone independent of t.
GDDP: GENERALIZED DUAL DYNAMIC PROGRAMMING UNIFIED BENDERS CUTS
What can we do when
GDDP: = { Min St=1,T ctTxt + dztTzt + dwTwt | Ft xt = ft " t=1,T Axt = bt - Et-1xt-1 - Bzzt - Bwwt " t=1,T Gzzt + Gwwt = gt " t=1,T {zt , wt }R+ " t=1,T , xtR+ " t=1,T }
where ut= {zt , wt } dt= {dzt , dw }
dt is TIME DEPENDENT ? dt is the vector that defines the cost of the production operations. May be possible to make a reformulation oriented to have an equivalent problem that have for all period a dual feasible zone independent of t. We can divide the vector of control variables in two type of variables: zt variables with cost dependent of t wt variables with cost independent of t. The variables zt will be part of the state variables and the control variables include wt .
DDP vs. GDDP
FULL PROBLEM
BENDERS MASTER
BENDERS SUBPROBLEM
DDP
GDDP
LP
LP
LP
YES
YES
MIP
MIP
LP
NO
YES
NLP
NLP
LP
NO
YES
MINLP
MINLP
LP
NO
YES
DDP vs. GDDP
FULL PROBLEM
BENDERS MASTER
BENDERS SUBPROBLEM
DDP
GDDP
LP
LP
LP
YES
YES
MIP
MIP
LP
NO
YES
NLP
NLP
LP
NO
YES
MINLP
MINLP
LP
NO
YES
GDDP is more robust than DDP
GDDP
IMPLEMENTATION & DETERMINISTIC EXPERIMENTS
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS
CONSUMER
RESERVOIR
~ HYDRO-ELECTRIC BUS
THERMO-ELECTRIC
12 8 6 1 24
Hydro Plants Reservoirs Thermal Plants Deficit Plant Hour Planning Horizon
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS
CONSUMER
RESERVOIR
~ HYDRO-ELECTRIC HYDRO PLANTS - CONFIGURATION BUS
THERMO-ELECTRIC
12 8 6 1 24
Hydro Plants Reservoirs Thermal Plants Deficit Plant Hour Planning Horizon
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS
CONSUMER
RESERVOIR
Actual Plants
~ HYDRO-ELECTRIC HYDRO PLANTS - CONFIGURATION BUS Actual Capacity Reservoirs (hm3) i01 17000 i02 2600 i05 200 i06 10000 i08 12500 THERMO-ELECTRIC i09 1000 i10 12400 i12 5000
Hydro Plant
Units
Capacity (MW)
Total Capacity (MW)
i01
Ui01 - Ui12
85
1020
i02
Ui01-Ui02 Ui03-Ui06 Ui07-Ui08
38 51 54
388
i03
Ui01 - Ui03
180
540
i04 i05 i06 i07 i08 i09
Ui01 Ui01-Ui02 Ui01-Ui04 Ui01-Ui02 Ui01-Ui04 Ui01-Ui03 Ui01-Ui03 Ui04-Ui06 Ui01-Ui02 Ui03-Ui05 Ui01-Ui02 Ui03-Ui04 Ui05-Ui06
40 130 200 15 300 125 380 380 20 52 150 180 280
40 260 800 30 1200 375
i10 i11
12 8 6 1 24
Hydro Plants Reservoirs Thermal Plants Deficit Plant Hour Planning Horizon
i12
Total Capacity (MW)
2280 196 1220
8349
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS LINEAR MODELS Indexes i,i1 Hydro Plants - Index j Thermal Plants - Index t Time stages - Index Sets I={1,2,3,…,12} J={1,2,…, 6, D} T={t1, t2,…, t24} Up(I)
Hydro Plants set Thermal Plants set Time stages set Upstream hydro plant
Parameters Lt Energy Load ri Generation Characteristic Vmini Reservoir lower limit Vmaxi Reservoir upper limit Qmaxi Upper turbined outflow limit At,i Natural water inflow Gtminj Lower thermal generation limit Gtmaxj Upper thermal generation limit Ctj Generation cost
Variables GHt Hydraulic generation Vt,i Reservoir operating volume Qt,i Turbined outflow SPt,i Spillage outflow GTt,i Thermal Generation
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS LINEAR MODELS Constraints Vmini ≤ Vt,i ≤ Vmaxi "t , " i Qmini ≤ 𝑸t,i ≤ 𝑸maxi " t , " i 0 ≤ 𝑺t,i " t , " i Gtmini ≤ 𝑮𝒕t,j ≤ 𝑮𝒕𝒎𝒂𝒙j " t , " jJ-{d} GHt - Si ri 𝑸t,i = 0 GHt + Sj 𝑮𝒕t,j = Lt
" t " t
Vt,i - Vt-1,i= At,i + Si1UP(i) (𝑸t,i1 + 𝑺t,i1) - (𝑸t,i + 𝑺t,i) "t , " i
Objective Function min z = St Sj 𝑪𝒕j 𝑮𝑻t,j
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS LINEAR MODELS Control Variables
ut
xt-1
xt = { Vt,i , SPt,i , Qt,i , GHt }
ut = { GTt,j }
xt
State Variables
State Variables Reservoir Level Hydro Generation Spillage Water Releases
Thermal Generation
Cost Function
ctTxt + dtTut
GENERALIZED DUAL DYNAMIC PROGRAMMING (GDDP – LP Integrated Coordinator) LP
HYDRO-POWER SYSTEM tk
1k
Tk { xt-1 , xt }
{ x0 , x1 } t=1
LP THERMO-POWER SYSTEM
{ xT-1 , xT } t=T
LP
LP THERMO-POWER SYSTEM
xt = { Vt,s , SPt,s , Qt,s , GHt } ut = { GTt,j }
THERMO-POWER SYSTEM
SEQUENCE OF THE SUBPROBLEMS
ORDER
TEM
CUB (Alternate)
Period
Energy Demand
Period
t01
26.52
t04
19.08
t02
25.50
t19
t03
23.85
t04
DEM
Energy Demand CUB -Order
Time Period
Energy Demand
DEM-Order
q01
t04
19.08
q01
41.58
q24
t03
23.85
q02
t03
23.85
q02
t06
24.96
q03
19.08
t20
38.43
q23
t02
25.50
q04
t05
26.25
t06
24.96
q03
t23
26.19
q05
t06
24.96
t18
37.62
q22
t05
26.25
q06
t07
27.63
t02
25.50
q04
t01
26.52
q07
t08
30.84
t21
36.24
q21
t24
26.88
q08
t09
30.27
t23
26.19
q05
t07
27.63
q09
t10
29.88
t13
34.11
q20
t16
28.98
q10
t11
29.28
t05
26.25
q06
t11
29.28
q11
t12
31.71
t15
32.79
q19
t22
29.55
q12
t13
34.11
t01
26.52
q07
t10
29.88
q13
t14
31.32
t12
31.71
q18
t09
30.27
q14
t15
32.79
t24
26.88
q08
t17
30.57
q15
t16
28.98
t14
31.32
q17
t08
30.84
q16
t17
30.57
t07
27.63
q09
t14
31.32
q17
t18
37.62
t08
30.84
q16
t12
31.71
q18
t19
41.58
t16
28.98
q10
t15
32.79
q19
t20
38.43
t17
30.57
q15
t13
34.11
q20
t21
36.24
t11
29.28
q11
t21
36.24
q21
t22
29.55
t09
30.27
q14
t18
37.62
q22
t23
26.19
t22
29.55
q12
t20
38.43
q23
t24
26.88
t10
29.88
q13
t19
41.58
q24
GDDP - GAMS CODE
DETERMINISTIC RESULTS LINEAR ECONOMIC DISPATCH Complexity: Real Variables: 1057 Constraints: 337 Elements no-Cero: 2245 Model
Order
Cota Dual
FULL
Cota Real 1866850.066
GAP (%)
T. Solution (secs)
Times FULL
0.0000
0.078
1.00
1.651
21.17
1.00
25.26
1.19
25.72
1.22
INTEGRATE MODEL
GDDP-UBC-O-CI
TEM
1866850.066
1866963.730
0.0061
GDDP-UBC-O-CI
DEM
1866850.066
1866963.730
0.0061
GDDP-UBC-O-CI
CUB
1866850.066
1866963.730
0.0001
GDDP-ST-CI
TEM
1866850.066 1866906.898CUTS 0.0030 2.775 DECOUPLED – INTEGRATED
DDP
TEM
1866850.066
GDDP-ST-DDP
TEM
1866850.066
1.970 UNIFIED CUTS 2.006
Times GDDP-UBC
35.58 1.68 COORDINATOR
162.77 DDP12.696 1866982.674 0.0071 42.912 550.15 DECOUPLED CUTS – DDP COORDINATOR 1866885.648
0.0019
7.69 25.99
DETERMINISTIC RESULTS LINEAR ECONOMIC DISPATCH Complexity: Real Variables: 1057 Constraints: 337 Elements no-Cero: 2245 Model
Order
Cota Dual
FULL
Cota Real
GAP (%)
T. Solution (secs)
Times FULL
1866850.066
0.0000
0.078
1.00
Times GDDP-UBC
GDDP-UBC-O-CI
TEM
1866850.066
1866963.730
0.0061
1.651
21.17
1.00
GDDP-UBC-O-CI
DEM
1866850.066
1866963.730
0.0061
1.970
25.26
1.19
GDDP-UBC-O-CI
CUB
1866850.066
1866963.730
0.0001
2.006
25.72
1.22
GDDP-ST-CI
TEM
1866850.066
1866906.898
0.0030
2.775
35.58
1.68
DDP
TEM
1866850.066
1866885.648
0.0019
12.696
162.77
7.69
GDDP-ST-DDP
TEM
1866850.066
1866982.674
0.0071
42.912
550.15
25.99
FULL corresponds to the integrate model In this case, the complexity of the case does not justified the large scale methodologies; but it is useable to compare the large scale methodologies and to prove the convergence of all of them.
DETERMINISTIC RESULTS LINEAR ECONOMIC DISPATCH Complexity: Real Variables: 1057 Constraints: 337 Elements no-Cero: 2245 Model
Order
Cota Dual
FULL
Cota Real
GAP (%)
T. Solution (secs)
Times FULL
1866850.066
0.0000
0.078
1.00
Times GDDP-UBC
GDDP-UBC-O-CI
TEM
1866850.066
1866963.730
0.0061
1.651
21.17
1.00
GDDP-UBC-O-CI
DEM
1866850.066
1866963.730
0.0061
1.970
25.26
1.19
GDDP-UBC-O-CI
CUB
1866850.066
1866963.730
0.0001
2.006
25.72
1.22
GDDP-ST-CI
TEM
1866850.066
1866906.898
0.0030
2.775
35.58
1.68
DDP
TEM
1866850.066
1866885.648
0.0019
12.696
162.77
7.69
GDDP-ST-DDP
TEM
1866850.066
1866982.674
0.0071
42.912
550.15
25.99
GDDP with UNIFIED CUTS is faster than any other large scale Benders methodology; independently of the order of selection the subproblem.
DETERMINISTIC RESULTS LINEAR ECONOMIC DISPATCH Complexity: Real Variables: 1057 Constraints: 337 Elements no-Cero: 2245 Model
Order
Cota Dual
FULL
Cota Real
GAP (%)
T. Solution (secs)
Times FULL
1866850.066
0.0000
0.078
1.00
Times GDDP-UBC
GDDP-UBC-O-CI
TEM
1866850.066
1866963.730
0.0061
1.651
21.17
1.00
GDDP-UBC-O-CI
DEM
1866850.066
1866963.730
0.0061
1.970
25.26
1.19
GDDP-UBC-O-CI
CUB
1866850.066
1866963.730
0.0001
2.006
25.72
1.22
GDDP-ST-CI
TEM
1866850.066
1866906.898
0.0030
2.775
35.58
1.68
DDP
TEM
1866850.066
1866885.648
0.0019
12.696
162.77
7.69
GDDP-ST-DDP
TEM
1866850.066
1866982.674
0.0071
42.912
550.15
25.99
GDDP with UNIFIED CUTS is faster than GDDP with DECOUPLED CUTS
DETERMINISTIC RESULTS LINEAR ECONOMIC DISPATCH Complexity: Real Variables: 1057 Constraints: 337 Elements no-Cero: 2245 Model
Order
Cota Dual
FULL
Cota Real
GAP (%)
T. Solution (secs)
Times FULL
1866850.066
0.0000
0.078
1.00
Times GDDP-UBC
GDDP-UBC-O-CI
TEM
1866850.066
1866963.730
0.0061
1.651
21.17
1.00
GDDP-UBC-O-CI
DEM
1866850.066
1866963.730
0.0061
1.970
25.26
1.19
GDDP-UBC-O-CI
CUB
1866850.066
1866963.730
0.0001
2.006
25.72
1.22
GDDP-ST-CI
TEM
1866850.066
1866906.898
0.0030
2.775
35.58
1.68
DDP
TEM
1866850.066
1866885.648
0.0019
12.696
162.77
7.69
GDDP-ST-DDP
TEM
1866850.066
1866982.674
0.0071
42.912
550.15
25.99
GDDP with UNIFIED CUTS is 8 times faster than DDP GDDP with DECOUPLED CUTS is 4.5 times faster than DDP
DETERMINISTIC RESULTS LINEAR ECONOMIC DISPATCH Complexity: Real Variables: 1057 Constraints: 337 Elements no-Cero: 2245 Model
Order
Cota Dual
FULL
Cota Real
GAP (%)
T. Solution (secs)
Times FULL
1866850.066
0.0000
0.078
1.00
Times GDDP-UBC
GDDP-UBC-O-CI
TEM
1866850.066
1866963.730
0.0061
1.651
21.17
1.00
GDDP-UBC-O-CI
DEM
1866850.066
1866963.730
0.0061
1.970
25.26
1.19
GDDP-UBC-O-CI
CUB
1866850.066
1866963.730
0.0001
2.006
25.72
1.22
GDDP-ST-CI
TEM
1866850.066
1866906.898
0.0030
2.775
35.58
1.68
DDP
TEM
1866850.066
1866885.648
0.0019
12.696
162.77
7.69
GDDP-ST-DDP
TEM
1866850.066
1866982.674
0.0071
42.912
550.15
25.99
GDDP with INTEGRATE COORDINATOR is 15.5 times faster than GDDP with DDP COORDINATOR
DETERMINISTIC RESULTS LINEAR ECONOMIC DISPATCH Complexity: Real Variables: 1057 Constraints: 337 Elements no-Cero: 2245 Model
Order
Cota Dual
FULL
Cota Real
GAP (%)
T. Solution (secs)
Times FULL
1866850.066
0.0000
0.078
1.00
Times GDDP-UBC
GDDP-UBC-O-CI
TEM
1866850.066
1866963.730
0.0061
1.651
21.17
1.00
GDDP-UBC-O-CI
DEM
1866850.066
1866963.730
0.0061
1.970
25.26
1.19
GDDP-UBC-O-CI
CUB
1866850.066
1866963.730
0.0001
2.006
25.72
1.22
GDDP-ST-CI
TEM
1866850.066
1866906.898
0.0030
2.775
35.58
1.68
DDP
TEM
1866850.066
1866885.648
0.0019
12.696
162.77
7.69
GDDP-ST-DDP
TEM
1866850.066
1866982.674
0.0071
42.912
550.15
25.99
GDDP is faster than DDP
UNIT COMMITMENT OF ELECTRIC SYSTEMS MIXED LINEAR MODEL
CONSUMER
RESERVOIR
~ HYDRO-ELECTRIC HYDRO PLANTS - CONFIGURATION BUS
THERMO-ELECTRIC
12 8 6 1 24
Hydro Plants Reservoirs Thermal Plants (Start – Stop) Deficit Plant Hour Planning Horizon
MUST RUN POWER PLANTS (COAL - NUCLEAR) START/STOP THERMO-ELECTRIC CONTINUOUS OPERATION
STt,j × GMINt,j ≤ GTt,p ≤ STt,j × GMAXt,j STt,j - STt-1,j ≤ SRt,j SRt,j {0,1} START THERMO-ELECTRIC STt,J {0,1} THERMO-ELECTRIC STATE (off, on)
COST: CVGTt,p × GTt,J + CARRJ × SRt,V
MUST RUN POWER PLANTS (COAL - NUCLEAR) START/STOP THERMO-ELECTRIC CONTINUOUS OPERATION
STt,p - STt-1,p ≤ SRt,p
STt,j
-
STt-1,j
≤
SRt,j
1 0 1 0
-
0 0 1 1
≤ ≤ ≤ ≤
1 0 0 0
COST: CVGTt,p × GTt,p + CARRp × SRt,p
UNIT COMMITMENT OF ELECTRIC SYSTEMS MIXED LINEAR MODEL Control Variables
ut
xt-1
ut = { GTt,j }
xt
State Variables
State Variables Reservoir Level Hydro Generation Spillage Water Releases Start Thermal Plants State Thermal Plants
Thermal Generation
Cost Function
xt = { Vt,i , St,i , Qt,i , GHt , SRt,j STt,j}
ctTxt + dtTut
GENERALIZED DUAL DYNAMIC PROGRAMMING (GDDP – MIP Integrated Coordinator) MIP
HYDRO-POWER SYSTEM START/STOP THERMAL PLANTS tk
1k
Tk { xt-1 , xt }
{ x0 , x1 } t=1
LP THERMO-POWER SYSTEM
{ xT-1 , xT } t=T
LP
LP THERMO-POWER SYSTEM
xt = { Vt,i , St,i , Qt,i , GHt , SRt,j STt,j} ut = { GTt,j }
THERMO-POWER SYSTEM
BENDERS – INEXACT CUTS FOR MIP COORDINATORS
INEXACT CUTS
Q(y) + ek k (b - F (y))
e1 e2 e3
… ek
... e 0
CONVERGENCE OF BENDERS THEORY (MINIMIZATION)
c xk
Real Primal
cx
k Iterations
Estimated Dual Q(yk)
CONVERGENCE OF BENDERS THEORY INEXACT SOLUTIONS - INEXACT CUTS
c xk
Real Primal
cx
k Iterations
Estimated Dual Q(yk)
e1
CONVERGENCE OF BENDERS THEORY INEXACT SOLUTIONS - INEXACT CUTS
c xk
Real Primal
cx ek
Estimated Dual Q(yk)
e1
k Iterations
CONVERGENCE OF BENDERS THEORY INEXACT SOLUTIONS - INEXACT CUTS
c xk
Real Primal
cx
e =0 ek
Estimated Dual Q(yk)
e1
k Iterations
BENDERS – VARIATIONS FOR MIP COORDINATORS
INEXACT SOLUTIONS
[ { f(yk) + Q(yk) } - { f(y*) + Q(y*) } ] [ f(y*) + Q(y*) ]
≤ qk
yk Feasible Zone of Benders Coordinator y* Optimal Solution
q1 q2 q3
… qk
... q 0
CONVERGENCE OF BENDERS THEORY (MINIMIZATION)
c xk
Real Primal
cx
k Iterations
Estimated Dual Q(yk)
CONVERGENCE OF BENDERS THEORY INEXACT SOLUTIONS
c xk
Real Primal
cx
k Iterations
Estimated Dual Q(yk)
q1
CONVERGENCE OF BENDERS THEORY INEXACT SOLUTIONS
c xk
q1
Real Primal qk
cx
k Iterations
Estimated Dual Q(yk)
CONVERGENCE OF BENDERS THEORY INEXACT SOLUTIONS - INEXACT CUTS
c xk
q1
Real Primal qk
cx q =0
Estimated Dual Q(yk)
k Iterations
DETERMINISTIC RESULTS MIP UNIT COMMITMENT
GAP
Solution Time (secs)
0.00000
0.373
0.00000
1.277
GDDP-UBC-O-CI
0.0000
1.947
FULL
0.00000
0.896
0.00000
4.673
GDDP-UBC-O-CI
0.00000
5.424
FULL
0.00000
1.309
0.00002
17.546
GDDP-UBC-O-CI
0.00000
13.126
FULL
0.00000
27.466
0.00002
44.582
GDDP-UBC-O-CI
0.00000
16.540
FULL
0.00060
1001.147
0.00007
75.094
GDDP-UBC-O-CI
0.00000
33.032
FULL
0.00020
1003.005
0.00008
185.228
0.00000
130.555
Model
Periods
FULL GDDP-ST-CI
GDDP-ST-CI
GDDP-ST-CI
GDDP-ST-CI
GDDP-ST-CI
GDDP-ST-CI GDDP-UBC-O-CI
24
48
96
192
384
768
Real Variables
Binary Variables
576
288
769
3391
2214
384
1537
6799
4225
1152
3073
13615
9217
1536
6145
27427
18433
3072
12289
54511
36865
6144
24577
109039
Constraints Non-ceroes
In all cases was stablished that maximum process time was 1000 seconds, in two cases the FULL problem don’t get a solution under the maximum time.
GDDP: CONCLUSIONS
1. In all cases, the GDDP algorithm converge to optimal solution 2. GDDP speed up the solution of mathematical optimization problems with LP & MIP Benders Coordinators. 3. GDDP approach is faster than DDP 4. GDDP-UBC (one unified problem generator of cuts for all periods) is faster than GDDP-ST (one standard generator for each period).
5. For the master problem, the integrated coordinator (IBC) is faster than the DDP coordinator. 6. GDDP-UBC detected the upper bound very rapidly, but take time to prove its optimality. 7. GDDP-UBC plus inexact solutions may be faster than optimal solutions for MIP Benders Coordinators. 8. The relation between solution time and dimensionality of the deterministic problem (amount of periods) is lineal, that implies that is possible to manage very large problems, in time.
G-SDDP GENERALIZED STOCHASTIC DUAL DYNAMIC PROGRAMMING
G-SDDP: GENERALIZED STOCHASTIC DUAL DYNAMIC PROGRAMMING
G-SDDP corresponds to a particular formulation of the linear multi-stage stochastic optimization problem lineal (MS-SLP) with the following structure. G-SDDP: = { Min Sh qh St ct,h
Ft,h xt,h = ft,h
Tx
t,h
+ dt,h
Tu
t,h
] |
" t=1,T "hN
At,h xt,h + Bt,h ut,h = bt,h - Et,hxt-1,h "t "hN
"t "nN
Gt,h ut,h = gt,h
ut,hR+ "t "hN xt,h
R+
"t "hN }
Where: xt,h ut,h
state and vector control variables
At,h , Et,h , Bt,h , and Gt,h functional matrices bt,h , gt,h resources vectors ct,h , dt,h cost vectors all of them may be dependent on the stochastic process;
qh T
probability of the scenario h amount of periods (stages)
G-SDDP: GENERALIZED STOCHASTIC DUAL DYNAMIC PROGRAMMING
G-SDDP corresponds to a particular formulation of the linear multi-stage stochastic optimization problem lineal (MS-SLP) with the following structure. G-SDDP: = { Min Sh qh St ct,h
Ft,h xt,h = ft,h
Tx
t,h
+ dt,h
Tu
t,h
] |
" t=1,T "hN
At,h xt,h + Bt,h ut,h = bt,h - Et,hxt-1,h "t "hN
"t "nN
Gt,h ut,h = gt,h
ut,hR+ "t "hN xt,h
R+
"t "hN
Where: xt,h ut,h
At,h , Et,h , Bt,h , and Gt,h functional matrices bt,h , gt,h resources vectors ct,h , dt,h cost vectors all of them may be dependent on the stochastic process;
qh T N(t)
NON-ANTICIPATIVE CONSTRAINTS uAt,n = ut,h
"t
" nN(t) "h(n)
xAt,n = xt,h
"t
" nN (t) "h(n) }
state and vector control variables
B(n)
probability of the scenario h amount of periods (stages) nodes of decision tree related with period t scenarios related with node n
G-SDDP: GENERALIZED STOCHASTIC DUAL DYNAMIC PROGRAMMING
Following the principles of GDDP, an alternative for solving G-SDDP: is based on partition and decomposition using BT to structure the coordinated solution of multiple smaller subproblems. Interpreted from the point of view of production systems, G-SDDP resolves at every stage and for each node in the decision tree, a static sub-problem oriented to produce information concerning the supply function and: i) using recursion "backward" to combine this information with the functions of future costs, or ii) solving the integrated coordinator, in order to establish the optimal strategy, The supply function and future cost functions are built from the hyperplanes that define them, which are generated using BT.
G-SDDP: GENERALIZED STOCHASTIC DUAL DYNAMIC PROGRAMMING INTEGRATED BENDERS COORDINATOR (IBC)
CX: = { min z = St=1,T ctTxt + Wt(xt-1,xt) | Ft xt = ft " t=1,T Wt(xt-1,xt) + (tk)TEt-1xt-1+(tk)TAtxt qt(tk,dtk) "t=1,T "kIterations } tk
1k
Tk { xt-1 , xt }
{ x0 , x1 } t=1
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
{ xT-1 , xT } t=T
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
DECOUPLED BENDERS CUTS
min dtTut | Btut = bt - Et-1xt-1-Atxt Gtut = gt utR+ }
G-SDDP: G-SDDP - INTEGRATED COORDINATOR (IBC) GENERALIZED STOCHASTIC DUAL DYNAMIC PROGRAMMING INTEGRATED BENDERS COORDINATOR (IBC)
CX: = { min z = St=1,T ct,hTxt,h + Wt,h(xt-1,h,xt,h ) | Ft,h xt,h = ft,h " t=1,T Wt,h(xt-1,h,xt,h)+(t,hk)TEt-1,h xt-1,h+(tk)TAt,hxt,hqt,h(t,hk,dt,hk) "t=1,T "kITE(t,h) }
tk
1k
Tk { xt-1 , xt }
{ x0 , x1 }
{ xT-1 , xT }
t=1 t=T
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
G-SDDP - INTEGRATED COORDINATOR (IBC)
NON-ANTICIPATIVE CONSTRAINTS "t " nN(t) "h(n) "t " nN (t) "h(n)
uAt,n = ut,h xAt,n = xt,h
CX: = { min z = St=1,T ct,hTxt,h + Wt,h(xt-1,h,xt,h ) | Ft,h xt,h = ft,h " t=1,T Wt,h(xt-1,h,xt,h)+(t,hk)TEt-1,h xt-1,h+(tk)TAt,hxt,hqt,h(t,hk,dt,hk) "t=1,T "kITE(t,h) }
tk
1k
Tk { xt-1 , xt }
{ x0 , x1 }
{ xT-1 , xT }
CX: = { min z = St=1,T ct,hTxt,h + Wt,h(xt-1,h,xt,h ) | Ft,h xt,h = ft,h " t=1,T Wt,h(xt-1,h,xt,h)+(t,hk)TEt-1,h xt-1,h+(tk)TAt,hxt,hqt,h(t,hk,dt,hk) "t=1,T "kITE(t,h) }
tk
1k
{ xt-1 , xt }
{ x0 , x1 }
t=1
Tk
t=1 t=T
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
{ xT-1 , xT }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
t=T
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
G-SDDP - INTEGRATED COORDINATOR (IBC)
NON-ANTICIPATIVE CONSTRAINTS "t " nN(t) "h(n) "t " nN (t) "h(n)
uAt,n = ut,h xAt,n = xt,h
CX: = { min z = St=1,T ct,hTxt,h + Wt,h(xt-1,h,xt,h ) | Ft,h xt,h = ft,h " t=1,T Wt,h(xt-1,h,xt,h)+(t,hk)TEt-1,h xt-1,h+(tk)TAt,hxt,hqt,h(t,hk,dt,hk) "t=1,T "kITE(t,h) }
tk
1k
Tk { xt-1 , xt }
{ x0 , x1 }
{ xT-1 , xT }
CX: = { min z = St=1,T ct,hTxt,h + Wt,h(xt-1,h,xt,h ) | Ft,h xt,h = ft,h " t=1,T Wt,h(xt-1,h,xt,h)+(t,hk)TEt-1,h xt-1,h+(tk)TAt,hxt,hqt,h(t,hk,dt,hk) "t=1,T "kITE(t,h) }
tk
1k
{ xt-1 , xt }
{ x0 , x1 }
t=1
Tk
t=1 t=T
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
{ xT-1 , xT }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
t=T
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
G-SDDP - INTEGRATED COORDINATOR (IBC)
tk
1k
Tk { xt-1 , xt }
{ x0 , x1 }
{ xT-1 , xT }
tk
1k
{ xt-1 , xt }
{ x0 , x1 }
t=1
Tk
t=1 t=T
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
{ xT-1 , xT }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
t=T
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
G-SDDP - INTEGRATED BENDERS COORDINATOR (IBC) UNIFIED BENDERS CUTS B , G, d - TIME INDEPENDENT
Tk
{ xt-1 , xt }
UNIFIED BENDERS CUTS
G-SDDP
IMPLEMENTATION & STOCHASTIC EXPERIMENTS
G-SDDP - INTEGRATED BENDERS COORDINATOR (IBC) DYNAMIC & STOCHASTIC
HYDRO-POWER SYSTEM SCENARIO COORDINATOR – INTERTEMPORAL COORDINATOR
tk
1k
Tk { xt-1 , xt }
{ x0 , x1 }
{ xT-1 , xT }
t=1
tk
1k
Tk { xt-1 , xt }
{ x0 , x1 }
{ xT-1 , xT }
t=1 t=T
t=T
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
G-SDDP – SCENARIO COORDINATION
NON-ANTICIPATIVE CONSTRAINTS "t " nN(t) "h(n) "t " nN (t) "h(n)
uAt,n = ut,h xAt,n = xt,h
HYDRO-POWER SYSTEM
HYDRO-POWER SYSTEM
SCENARIO 1
SCENARIO H
G-SDDP - LAGRANGEAN COORDINATOR (LC)
T
SCENARIO LAGRANGEAN COORDINATOR
k
{ xt-1 , xt }
HYDRO-POWER SYSTEM
HYDRO-POWER SYSTEM
GDDP DYNAMIC COORDINATOR
GDDP DYNAMIC COORDINATOR
SCENARIO 1
SCENARIO H
tk
1k { x0 , x1 }
Tk { xt-1 , xt }
{ xT-1 , xT }
t=T
tk
1k { x0 , x1 }
Tk { xt-1 , xt }
{ xT-1 , xT }
t=T
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
G-SDDP - INTEGRATED BENDERS COORDINATOR (IBC) UNIFIED BENDERS CUTS
CX: = { min z = Sh qh St=1,T ct,hTxt,h + Wt(xt-1,h,xt,h ) | Ft,h xt,h = ft " t=1,T "h=1,H k T Wt(xt-1,h,xt,h) + (t,h ) Et-1,h xt-1,h+(tk)Tatxt,h qt(t,hk,dt,hk) "t=1,T "h=1,H "kIterations uAt,n = ut,h "t " nN(t) "h(n) xAt,n = xt,h "t " nN (t) "h(n) } Tk
{ xt-1 , xt }
B , G, d - TIME INDEPENDENT
STOCHASTIC ECONOMIC DISPATCH LINEAR MODEL
Scena rios
Model
T. Solution (secs)
Times FULL
Times G-SDDP-UBC-O
Algorithm CO
Algorithm SP
GAMS
0.402
1.00
0.00000
4.297
10.69
1.00
Default
Dual Simplex
SLINK
0.00011
458.00
1139.30
106.59
Default
NA
SLINK+GUSS
0.00000
25.172
62.61
5.85
Default
Dual Simplex SLINK+GUSS
0.606
1.00
0.00000
7.005
11.56
1.00
Default
Dual Simplex
SLINK
0.00017
687.00
1133.66
98.07
Default
NA
SLINK+GUSS
0.00000
53.092
87.607
7.58
Default
GAP
FULL G-SDDP-UBC-O-CI SDDP
10
G-SDDP-UBC-O-DDP FULL
G-SDDP-UBC-O-CI SDDP G-SDDP-UBC-O-DDP
20
Dual Simplex SLINK+GUSS
FULL corresponds to the integrate model (equivalent deterministic)
The complexity of the case does not justified the large scale methodologies; but it is useable to compare the large scale methodologies and to prove the convergence of all of them.
STOCHASTIC ECONOMIC DISPATCH LINEAR MODEL
Model
Scena rios
T. Solution (secs)
Times FULL
Times G-SDDP-UBC-O
Algorithm CO
Algorithm SP
GAMS
0.402
1.00
0.00000
4.297
10.69
1.00
Default
Dual Simplex
SLINK
0.00011
458.00
1139.30
106.59
Default
NA
SLINK+GUSS
0.00000
25.172
62.61
5.85
Default
Dual Simplex SLINK+GUSS
0.606
1.00
0.00000
7.005
11.56
1.00
Default
Dual Simplex
SLINK
0.00017
687.00
1133.66
98.07
Default
NA
SLINK+GUSS
0.00000
53.092
87.607
7.58
Default
GAP
FULL G-SDDP-UBC-O-CI SDDP
10
G-SDDP-UBC-O-DDP FULL
G-SDDP-UBC-O-CI SDDP G-SDDP-UBC-O-DDP
20
The experiments show that G-SDDP is 100 times faster than SDDP
Dual Simplex SLINK+GUSS
BENDERS – INEXACT SOLUTIONS FOR MIP COORDINATORS
Model Scenarios FULL G-SDDP-UBC-O-CI 20 G-SDDP-UBC-O-CI FULL 50 G-SDDP-UBC-O-CI FULL 100 G-SDDP-UBC-O-CI
eps CI % 0 0 0.5
GAP
0.5
0 0.002
0.5
0 0
T. Solution (secs) 38.509 124.395 12.101 1221.176 126.837 MEM 386.657
MEM = Out of memory
Times 3.18 10.28 1.00 9.63 1.00
STOCHASTIC UNIT COMMITMENT MIXED MODEL – UNIFIED CUTS + INEXACT SOLUTIONS Time
Time/Scenario
(secs)
(secs/scenario)
20
12.01
0.601
50
127
2.537
100
387
3.867
200
1092
5.461
500
1321
2.642
1000
1570
1.570
2000
2524
1.262
4000
4634
1.159
8000
10852
1.356
Scenarios
Scenarios
Variables
V. Binaries
Constraints
NO-Ceros
20
29,924
5,760
16,221
69,521
50
67,224
14,400
40,551
173,801
100
134,444
28,800
81,101
347,601
200
268,844
57,600
162,201
695,201
500
672,044
144,000
440,501
1,738,001
1000
1,344,044
288,000
811,001
3,476,001
2000
2,688,044
576,000
1,622,001
6,952,001
4000
5,376,044
1,152,000
3,244,001
13,904,001
8000
10,752,044
2,304,000
6,488,001
27,808,001
STOCHASTIC UNIT COMMITMENT MIXED MODEL – UNIFIED CUTS + INEXACT SOLUTIONS 12000 TIME (sec)
Time
Time/Scenario
20 50 100 200 500 1000 2000 4000
(secs) 12.01 127 387 1092 1321 1570 2524 4634
(secs/scenario) 0.601 2.537 3.867 5.461 2.642 1.570 1.262 1.159
8000
10852
1.356
Scenarios 10000
8000
6000
4000
2000
SCENARIOS
0 0
1000
2000
3000
4000
5000
6000
7000
8000
STOCHASTIC UNIT COMMITMENT MIXED MODEL – UNIFIED CUTS + INEXACT SOLUTIONS
6 Scenarios
5
4
3
Solution Time
Time/Scenario
(secs)
(secs/scenario)
20
12.01
0.601
50
127
2.537
100
387
3.867
200
1092
5.461
500
1321
2.642
1000
1570
1.570
2000
2524
1.262
4000
4634
1.159
8000
10852
1.356
2
1
0 0
1000
2000
3000
4000
5000
6000
7000
8000
G-SDDP STATISTICAL CONVERGENCE STOCHASTIC UNIT COMMITMENT MIXED NON-LINEAR MODEL
G-SDDP accepts the statistical converge criterium, based in the precision of the estimator of the objective function value, or another random variable of the model.
Strategy
Scenarios
Step
Scenarios +
Mean
Deviation
SSE Goal
SSE
Formula Formula Formula Incremental Incremental
20 30 100 20 20
195 196 0 50 100
215 226 100 120 120
39716 39768 41630 41200 41200
20698 20776 19151 20534 20534
1985.79 1988.38 2081.50 2060.01 2060.01
1411.62 1381.97 1915.06 1874.53 1874.53
SEE = Standard Error Estimator
T. Solution (secs) 77.827 93.286 95.419 68.741 44.646
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS MIXED NON-LINEAR MODELS
CONSUMER
RESERVOIR
~ HYDRO-ELECTRIC HYDRO PLANTS - CONFIGURATION BUS
THERMO-ELECTRIC
1 12 8 6 1 24
Water Pumping Station Hydro Plants Reservoirs Thermal Plants Deficit Plant Hour Planning Horizon
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS MIXED NON-LINEAR MODELS Indexes i,i1 Hydro Plants - Index j Thermal Plants - Index t Time stages - Index Sets I={1,2,3,…,12} J={1,2,…, 6, D} T={t1, t2,…, t24} Up(i) BR(i) BR(i)
Hydro Plants set Thermal Plants set Time stages set Upstream hydro plant Pumping station i to i1 Pumping station i1 from i1
Parameters Lt Energy Load ri Generation Characteristic Vmini Reservoir lower limit Vmaxi Reservoir upper limit Qmaxi Upper turbined outflow limit At,i Natural water inflow Gtminj Lower thermal generation limit Gtmaxj Upper thermal generation limit Ctj Generation cost PUmini Pumping station lower limit PUmaxi Pumping station upper limit
Variables GHt Hydraulic generation Vt,i Reservoir operating volume Qt,i Turbined outflow SPt,i Spillage outflow GTt,i Thermal Generation PUt,i,i1 PWt,i
Water pumped from i to i1 Power used in pumping station i
BPt,i
Binary variable to control pumping
Cost Parameters Ctj Generation cost Cu1i Pumping cost (linear coefficient) Cu2i Pumping cost (quadratic coefficient)
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS MIXED NON-LINEAR MODEL Constraints Vmini ≤ Vt,i ≤ Vmaxi "t , " i (1 - BPt,i) × Qmini ≤ 𝑸t,i ≤ 𝑸maxi × (1 - BPt,i) " t , " i 0 ≤ 𝑺t,i Gtmini ≤ 𝑮𝒕t,j ≤ 𝑮𝒕𝒎𝒂𝒙j
" t , " i " t , " jJ-{d}
GHt - Si ri 𝑸t,i = 0 GHt + Sj 𝑮𝒕t,j = Lt
" t " t
Vt,i - Vt-1,i = At,i + Si1UP(i) [ (𝑸t,i1 + 𝑺t,i1) - (𝑸t,i + 𝑺t,i ) ] + Si1BR(i) PUt,i1,i - Si1RB(i) PUt,i,i1 PWt,i = 9.8 × 0.001 × Si1BR(i) PUt,i
"t , " iIPU
(1 - BPt,i) × PUmainxi ≤ Si1BR(i) PWt,i,i1 ≤ (1 - BPt,i) × PUmaxi
"t , " iIPU
Objective Function min z = St [ Sj 𝑪𝒕j 𝑮𝑻t,j + Si ( 𝑪u1i 𝑷𝑾t,i + 𝑪u2i 𝑷𝑾𝟐t,i ) ]
ECONOMIC DISPATCH OF ELECTRIC SYSTEMS MIXED NON-LINEAR MODEL
Periods
Model Type
Scenarios
1 NLP
20
24 50 MI NLP
1
5
Dual Bound 2718504
Primal Bound 2718504
2718499
2718499
0
4.102
XPRESS
2718507
2718507
0
4.905
MINOS
2718504
2718504
0
63.855
IPOPT
2290453
2290453
0
38.888
CPLEX
2290450
2290450
0
40.075
XPRESS
2290456
2290456
0
217.467
MINOS
NO
IPOPT
GAP 0
Solution Time Solver QPC/MQPC (secs) 3.737 CPLEX
2256641
2256641
0
95.831
CPLEX
2256620
2256620
0
102.706
XPRESS
12998260
12998260
0
9.475
CPLEX
12998260
12998260
0
24.160
XPRESS
NO
BONMIN
12302500
12302500
0
15.901
CPLEX
12302500
12302500
0
301.267
XPRESS
MODEL USED:
G-SDDP-UBC-O-CI
OPTIMAL EXPANSION OF ELECTRIC SYSTEMS
RESERVOIR
~ HYDRO-ELECTRIC HYDRO PLANTS - CONFIGURATION BUS
THERMO-ELECTRIC
12 8 6 1 24
Hydro Plants Reservoirs Thermal Plants Deficit Plant Hour Planning Horizon
CONSUMER
OPTIMAL EXPANSION OF ELECTRIC SYSTEMS
RESERVOIR
Expansion Reservoirs i14 i15
Capacity (hm3) 400 4000
~ HYDRO-ELECTRIC HYDRO PLANTS - CONFIGURATION BUS
THERMO-ELECTRIC
Expansion Plants Capacity Total Capacity Hydro Plant Units (MW) (MW) Ui01-Ui02 20 i14 144 Ui03-Ui04 52 Ui01-Ui02 20 i15 144 12Ui03-Ui04 Hydro Plants 52 + 4 Expansions 8 Ui01-Ui03 Reservoirs20+ 2 Expansions i16 216 Ui04-Ui06 52 6 Ui01-Ui02 Thermal Plants 20 i17 144 1 Ui03-Ui04 Deficit Plant 52 Total (MW) 24Capacity Hour Planning Horizon648
HYDRO PLANTS EXPANSION
CONSUMER
OPTIMAL EXPANSION OF ELECTRIC SYSTEMS
RESERVOIR Actual Units j01 j03 j06 j07 j08 j09 " Deficit"
~
Capacity (MW) 455 130 80 85 55 55 INF
Expansión Units
Capacity (MW)
j02
455
j04
130
J05
162
HYDRO-ELECTRIC HYDRO PLANTS - CONFIGURATION BUS
THERMO-ELECTRIC
12 8 6 1 24
Hydro Plants + 4 Expansions Reservoirs + 2 Expansions Thermal Plants+ 3 Expansions Deficit Plant Hour Planning Horizon
HYDRO PLANTS EXPANSION
CONSUMER
OPTIMAL EXPANSION OF ELECTRIC SYSTEMS
6900
Demand (MW)
6700 6500 6300 6100
5900 5700
Period
5500 HYDRO-ELECTRIC 0
5
HYDRO PLANTS - CONFIGURATION
10
15
BUS
THERMO-ELECTRIC
12 8 6 1 24
Hydro Plants + 4 Expansions Reservoirs + 2 Expansions Thermal Plants+ 3 Expansions Deficit Plant Hour Planning Horizon
20
25
HYDRO PLANTS EXPANSION
CONSUMER
G-SDDP – RISK MANAGEMENT ELECTRICITY SYSTEM EXPANSION Mean 387.094
Deviation Maximun Minimun 35.742
459.503
307.566
Range 151.938
Frequency
Cost
VALUE – AT – RISK & CONDITIONAL VALUE – AT – RISK EMPIRICS DISTRIBUTIONS
fb(X)
ab(X)
VALUE-AT-RISK & CONDITIONAL VALUE-AT-RISK EMPIRICS DISTRIBUTIONS jb( f(x) )
95% 5%
COSTS Mean
VaR
CVaR
jb( f(X) )
5% 95%
CVaR CVaR
VaR VaR
REVENUE Mean
CONDITIONAL VALUE – AT – RISK DISTRIBUCIONES EMPÍRICAS CVaR is commonly used in stochastic optimization models when we want to minimize the VaR or want to limit it. The basic equations included in the model are: fb(X) = ab(X) + (1-b)-1Sh=1,NE qh × wh
wh ≥ f(X|Yh) - ab(X) wh ≥ 0 where wh represents the excess loss over el VaR, ab(X) when occurs the scenario h.
The following expression is used to limit CVaR fb(X) ≤ CVaRMAX
G-SDDP – RISK MANAGEMENT CVAR – CONDITIONAL VALUE AT RISK Mean 387.094
Deviation Maximun Minimun 35.742
459.503
307.566
Range 151.938
Frequency
Cost
G-SDDP – RISK MANAGEMENT CVAR – CONDITIONAL VALUE AT RISK Mean 387.094
Deviation Maximun Minimun 35.742
459.503
307.566
Range 151.938
Frequency
MEAN RISK
MAXIMUM MINIMUM
Cost
G-SDDP – RISK MANAGEMENT CVAR – CONDITIONAL VALUE AT RISK Scenarios
Mean
100
387.09
Deviation Maximun Minimun 35.74
459.50
307.57
151.94
Range
100
392.84
36.89
486.29
307.57
178.72
CVaR Limit Probability 444
0.05
VaR
CVaR
442.94
444
MIP EXPANSION: SOLUTION TIME VS. COMPLEXITY UNIFIED BENDERS CUTS – INEXACT SOLUTIONS
25000 TIME (sec)
Periods Scenario
20000
24 15000
Time/Scenario
1 5 10 20 100 200 400 800 1000 2000 4000
2.550 1.625 1.456 1.554 6.845 9.723 4.021 2.966 2.944 4.559 6.429
T. Solution (secs) 2.550 8.123 14.561 31.073 684.515 1944.649 1608.293 2372.763 2943.815 9118.668 25716.167
10000
5000
0 0
1000
2000
3000
4000
MIP EXPANSION: SOLUTION TIME VS. COMPLEXITY UNIFIED BENDERS CUTS – INEXACT SOLUTIONS
10.000
secs/scenario
7.500
Periods Scenario
5.000
24
2.500
1 5 10 20 100 200 400 800 1000 2000 4000
Time/Scenario 2.550 1.625 1.456 1.554 6.845 9.723 4.021 2.966 2.944 4.559 6.429
T. Solution (secs) 2.550 8.123 14.561 31.073 684.515 1944.649 1608.293 2372.763 2943.815 9118.668 25716.167
0.000 0
1000
2000
3000
4000
G-SDDP – LEARNING PROCESS
“The ordinate indicates the percentage proportion of each of the three groups of motor units relative to the total number of motor units M0(t) in the muscles: ▪ MA(t) motor units in activation; ▪ MF(t) motor units fatigued; ▪ Muc(t) motor units in the rest state. The time scale has been taken as arbitrary to show clearly the details and major features of the curves.”
G-SDDP – LEARNING PROCESS
6 5 4 3 2 1 0 0
MA(t)
Motor Units in Activation
2000
4000
6000
8000
G-SDDP – LEARNING PROCESS
MA(t)
Motor Units in Activation
G-SDDP: CONCLUSIONS
1. In all cases, the G-SDDP algorithm converge to optimal solution 2. G-SDDP approach is faster than SDDP 3. G-SDDP-UBC (one cut for all periods and stochastic scenarios) is faster than G-SDDP-ST (one cut for each period and each scenario). This fact justified efforts to manage the formulation with time independent matrices in the subproblems and to study the form to manage the solution of the problems when the costs of the control variables change are time dependent.
4. For the master problem, the integrated coordinator (IBC) is faster than the DDP coordinator. 5. Including inexact cuts in G-SDDP, in the case of MIP coordinators, speed up the velocity of the algorithm.
6. The relation between solution time and dimensionality of the stochastic problem is lineal, that implies that is possible to manage very large problems, in time and/or scenarios.
G-SDDP
COMMERCIAL IMPLEMENTATION
OPTEX MATHEMATICAL MODELING SYSTEM
IS A COMMERCIAL OPTIMIZATION TECHNOLOGY PRODUCED BY DO ANALYTICS (A SPIN OFF COMPANY OF DECISIONWARE)
(AVAILABLE IN SPANISH & ENGLISH)
FREE WEB-CONFERENCE 18/12/2017 18:00 UTC (00:00, Greenwich)
THE FIRST AUTOMATIC GENERATOR OF LARGE SCALE OPTIMIZATION MODELS “Civilization advances by extending the number of important operations which we can perform without thinking of them”. Alfred North Whitehead
Web-Conference Link: https://goo.gl/jA9LJV Slides OPTEX: https://goo.gl/Kpk9Q9
FREE WEB-CONFERENCE
18/12/2017
Hour 18:00 UTC (00:00, Greenwich)
THE FIRST AUTOMATIC GENERATOR OF LARGE SCALE OPTIMIZATION MODELS MODEL IN MS-WORD
ALGEBRAIC MODEL
PARÁMETROS Parámetro CTMItd CIFA td,tr FCTDud,td CIMIud,t d
CTVBud,td,tr
FILLING TABLES
CAMItd CALT td,tr
Descripción Costo de inversión de referencia mínimo si se instala un biodigestor con tecnología td Costo de inversión asociado al tramo tr si se instala un biodigestor con tecnología td Factor de ajuste de costos de inversión para la tecnología td en el sitio ud Costo de inversión de referencia mínimo si se instala un biodigestor con tecnología td en el sitio ud. Se calcula con base en la siguiente fórmula: CIMIud,t d = FCTDud,td × CTMItd Pendiente del tramo tr para el costo de inversión variable de un biodigestor con tecnología td en el sitio ud. Se calcula con base en la siguiente fórmula: CIVBud,td,tr = FCTDud,td × (CIFA td,tr+1 – CIFA td,tr ) / (CALT td,tr+1 – CALT td,tr ) Capacidad de procesamiento mínima de un biodigestor con tecnología td. Capacidad de procesamiento asociada al tramo tr para un biodigestor con tecnología td.
Uni dad
Tabla Referencia
Campo
$
MA E_TBD
CTMI
$
TBD_TCI
CIFA
UDB_TBD
FCTD
m 3-día
MA E_TBD
CA MI
m 3-día
TBD_TCI
CA LT
$
$/m 3día
LOAD EXCEL
.CSV FILES LOAD OPTEX
MODEL IN EXCEL CODE GENERATION INCLUDING LARGE SCALE METHODOLOGIES
OPL OPTIMIZATION TECHNOLOGY MODEL IN A COMPUTER LANGUAGE
GAMS Program generated by OPTEX to use G-SDDP
OPTEX - GAMS - G-SDDP
G-SDDP-UBC-CI-P CX: = { min z = S h=1,H S t=1,T h ( ct,hTxt + Wt,h ) | At xt,h = et,h "t=1,T "h=1,H t=1,T k T Wt,h + ( ) Et-1 xt-1 + (k)T At xt,h qt,hk "t=1,T "h=1,H "k=1,ISP } X = { xm1,h, xm2,h, … , xmT,H } Qt,hA = Wt,h(xt-1,h,xt,h) O(t)=f(Dz) LB = z
m = m+1
OPTIMIZATION DATA BASE Coordinator: xmt,h , LB Sub-Problem k , DZt,h , uk LU k=k+1 DZt,h
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
k Qt,hB = dTu* = Qt,hB – Qt,hA
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
OPTEX – TYPES OF MODELS
INTEGRATED
Integrado (I): Modelo integrado por un solo problema. Corresponde a un modelo de optimización clásico. Valor por default para el tipo de modelo.
T-CHAIN
Encadenado Temporalmente (E): Define una cadena de problemas encadenados a lo largo del horizonte de planificación, se encadenarán de acuerdo con la secuencia que defina el usuario. Permite mezclar tipos de modelos a lo largo del tiempo. Por ejemplo, un modelo de MINLP para la primera semana y un modelo LP para las siguientes semanas. Se resuelve el problema integrado.
T-CHAIN-BEN Encadenado Temporal vía Benders: Igual a T-CHAIN, pero se resuelve el problema utilizando Teoría de Benders. R-LAGRANGE
Relajación Lagrangeana (R): Modelo cuyo coordinador es del tipo de Relajación Lagrangeana estándar.
SP-LAGRANGE Relajación Lagrangeana Estocástica (X): Modelo cuyo coordinador es del tipo de Relajación Lagrangeana Estocástica. El usuario debe indicar las variables que serán consideradas como noanticipativas. BENDERS
Benders (B): Modelo cuyo coordinador es del tipo de Benders Estándar, un coordinador y un subproblema. El sub-problemas deben ser un problema lineal; el coordinador puede ser lineal, mixto o no-lineal convexo.
OPTEX – TYPES OF MODELS
DDP
Dual Dynamic Programming: Modelo dinámico que se resuelve siguiendo la metodología DDP (Dual Dynamic Programming, o Nested Benders). La DDP solo es aplicable a problemas lineales.
SDDP
Stochastic Dual Dynamic Programming: Modelo dinámico estocástico que se resuelve siguiendo la metodología DDP (Stochastic Dual Dynamic Programming). La SDDP solo es aplicable a problemas lineales.
GDDP-CU-CO
Generalized Dual Dynamic Programming: Modelo dinámico que se resuelve siguiendo la metodología GDDP (Generalized Dual Dynamic Programming). Para especificar el tipo de GDDP a utilizar se deben definir: 1. CU que especifica el tipo de corte, cuyos valores válidos son: ▪ CT Cortes desacoplados para cada período, por el sub-problema estático de cada período específico. ▪ C1 Cortes desacoplados para cada período, generados por un sub-problema estático que representa a todos los períodos. 2. CO que especifica la forma de resolver el coordinador, cuyos valores válidos son: ▪ CI: el coordinador se resuelve integrado ▪ CD: el coordinador se resuelve utilizando la metodología DDP. Los sub-problemas estáticos de la GDDP deben ser problemas lineales; el coordinador puede ser lineal, mixto o no-lineal convexo.
G-SDDP-CU-CO
Generalized Stochastic Dual Dynamic Programming: Modelo dinámico de optimización estocástica que se resuelve siguiendo la metodología G-SDDP (Generalized Stochastic Dual Dynamic Programming). Para especificar el tipo de G-SDDP se deben definir el tipo de corte y la forma de resolver el problema coordinador, se sigue la misma lógica que para la GDDP.
OPTEX – TYPES OF MODELS
SP-PAR
Paralelo Estocástico (P): Define un conjunto de problemas que permiten analizar múltiples escenarios estudiados de forma paralela independientemente a cada escenario. No contiene restricciones de no-anticipatividad. Se resuelve cada problema de manera independiente.
G-SP-DDP-CU
Paralelo Estocástico GDDP: Define un conjunto de problemas que permiten analizar múltiples escenarios estudiados de forma paralela independientemente a cada escenario. No contiene restricciones de no-anticipatividad. Se resuelven todos los problemas conjuntamente, siguiendo los principios de la GDDP cada problema de manera independiente. Para especificar el tipo de G-SDDP se deben definir el tipo de corte y la forma de resolver el problema coordinador, se sigue la misma lógica que para la GDDP.
COOR-SEQ
Coordinador Secuencial (Q): Modelo con múltiples problemas los cuales serán resueltos secuencialmente de acuerdo con el orden que se especifique en el parámetro SEQ en la definición de los problemas.
COOR-SEQ-L
Coordinador Secuencial Loop (C): Modelo con múltiples problemas, donde la coordinación está definida por el usuario, similar al COOR-SEQ. Se resuelve cíclicamente hasta conseguir un determinado nivel de precisión, para ello el usuario define toda la conectividad y debe incluir en el modelo el parámetro GAP_FO el cual determina el proceso de parada, con base el error relativo del modelo definido como:
GAP_FO = | ( FO Estimación Dual – FO Valor Primal) | / | FO Estimación Dual |
OPCHAIN-E&G
IS A COMMERCIAL OPTIMIZATION SOFTWARE PRODUCED BY DECISIONWARE
(AVAILABLE IN SPANISH & ENGLISH)
OPCHAIN-E&G
MAKES USE OF G-SDDP MATHEMATICAL METHODOLOGIES & G-SDDP OPTIMIZATION TECHNOLOGIES
(AVAILABLE IN SPANISH & ENGLISH)
OPCHAIN-E&G
OPCHAIN-E&G-EDI Despacho Óptimo
OPCHAIN-E&G-NASH Despacho Óptimo Competitivo
OPCHAIN-E&G-SCD Optimización Diseño Red Generación
OPCHAIN-HID-SIN Generación Sintética MATALAS
OPCHAIN-E&G-MAN Optimización Mantenimiento
OPCHAIN-KALMAN Estimación de Estado DUAL KALMAN FILTER
COMMON
DATA MODEL
INFORMATION SYSTEM OPCHAIN-E&G-PSPOT Modelos Estadísticos ARIMA-GARCH
OPCHAIN-E&G-RDI Despacho Óptimo Regulado
OPCHAIN-E&G-ETRM Optimización Compra/Venta Electricidad
OPCHAIN-E&G-UC Optimización Operación Diaria
MATHEMATICAL MODELS OPCHAIN-E&G Model
OPCHAIN-E&G
EDI RDI
NASH UC FIN
SCD ETRM MAN
UC HID-SIM KALMAN PSPOT
Description DISPATCH SIMULATION IN POWER PLANTS The central model OPCHAIN-E&G corresponds to the clearance system generating plants which can be used by two types of agents for multiple purposes. Generically this model has been called OPCHAIN-E&G (Hydro-Thermal Simulation-Gas) and based on the same multiple models are built for specific purposes. The theoretical support of this model OPCHAIN-E&G gives rise to three variations of the model according to the economic concepts that support modeling. Economic (minimum cost): delivery of plants conventional office minimizes the cost of operation of the interconnected system Economic Regulated: Delivery of plants that minimizes the cost of operation of the interconnected system and includes representatives of regulatory aspects of the electricity market being simulated. Cournot-Nash equilibrium: Delyvery of plants oriented to the simulation of competitive electricity markets with agents that have the ability to influence their decisions on transactions occurring in the market. Unit Commitment associated with operational planning (short term) decisions related to delivery plants on a daily basis. Respect all non-linear constraints that are part of the delivery. Integrated simulation of economic dispatch plus financial modeling (ALM). Oriented to use in valuation of electric assets. UNIT STRATEGIC PLANIFICATION Associated with strategic planning (long-term) decisions related to designing the supply chain, in relation to capacity of reservoir, transfers, power plants and other elements of an electrical system. TACTICAL PLANIFICATION Energy Trading and Risk Management Oriented policy making preventive maintenance of multiple central generation plants. It can be applied to all plants in a region or a national grid. OPERATIVE PLANIFICATION Unit Commitment associated with operational planning (short term) decisions related to office plants on a daily basis. STOCHASTIC PROCESES MODELS Synthetic generation of water intake based on a model of Fiering-Matalas type. Projected short-term hydrological contributions via a Dual Kalman Filter Dual Projected electricity prices short-term competitive markets through ARMAX-GARCH models
OPCHAIN-E&G USER
MATHEMATICAL MODELER OPTIMIZATION TECHNOLOGY
OPTIMIZATION METHODOLOGIES
OPCHAIN-E&G USER
MATHEMATICAL MODELER OPTIMIZATION TECHNOLOGY
OPTIMIZATION METHODOLOGIES
OPL FINAL OPTIMIZATION TECHNOLOGY
TRANSPARENCY: ACCESS TO SOURCE CODE THE MATHEMATICAL MODELER CAN CHANGE, DELETE OR CREATE EQUATIONS OF THE MODELS, AND CAN CREATE NEW MODELS.
OPCHAIN-E&G USER
MATHEMATICAL MODELER OPTIMIZATION TECHNOLOGY
OPTIMIZATION METHODOLOGIES INTEGRATED OPL
LARGE SCALE:
FINAL OPTIMIZATION TECHNOLOGY
BENDERS THEORY GBD, DDP, GDDP, SDDP, G-SDDP
TRANSPARENCY: ACCESS TO SOURCE CODE
LAGRANGEAN RELAXATION
THE MATHEMATICAL MODELER CAN CHANGE, DELETE OR CREATE EQUATIONS OF THE MODELS, AND CAN CREATE NEW MODELS.
CROSS DECOMPOSITION
G-SDDP FUTURE RESEARCH & DEVELOPMENT
GENERALIZED DUAL DYNAMIC PROGRAMMING (GDDP)
DW-DOA are working in the implementation of the following methodologies G-NL-DDP Non-Linear Dual Dynamic Programming is the extension of the GDDP to the Non-Linear subproblems. G-DDiP Generalized Dual Dynamic Integer Programming is the extension of the GDDP to MIP subproblems. & the stochastics versions G-NL-SDDP & G-SDDiP
GDDP Extensions
FULL PROBLEM
BENDERS MASTER
BENDERS SUBPROBLEM
GDDP
NL-GDDP
GDDiP
NL-GDDiP
LP
LP
LP
YES
YES
YES
YES
MIP
NO
NO
YES
YES
NLP
NO
YES
NO
YES
MINLP
NO
NO
NO
?
MIP NLP
MINLP
LP MIP LP NLP LP MIP NLP MINLP
ASYNCHRONOUS PARALLEL OPTIMIZATION FOR MODELING MULTISECTOR INDUSTRIAL SYSTEMS (SUPPLY CHAINS)
An approach to solve large scale stochastic dynamic optimization problems using the combination of Multilevel Benders Decomposition and Lagrangian Relaxation. An analysis of how to establish families of problems in order to generate multiple cutting planes solving only one problem of the family (Unified Benders Cuts).
The families are related to zones, sectors, time, class of decisions (investments or operations), projects and/or stochastic conditions. A version of a parallel algorithm that uses a multiprocessor environment, where each processor is associated with one problem of the family.
MULTILEVEL BENDERS THEORY MinY f(Y) + Q(Y) Sujeto a:
F0 (Y) = b0 YeS
Q(Y)
qkk (b - F(Y)) + zk (bz - Fz(Y))
k=1,NP
Z
Y
k
MinZ E Z + Qz(Z) Sujeto a:
Gz Z = bz - Fz(Y) Z e R+
q k k
MULTILEVEL BENDERS THEORY MinY f(Y) + Q(Y) Sujeto a:
F0 (Y) = b0 YeS
Q(Y)
qkk (b - F(Y)) + zk (bz - Fz(Y))
k=1,NP
Z
Y
k
q k k
MinZ E Z + Qz(Z) Sujeto a:
Gz Z = bz - Fz(Y) Z e R+ h G Z + Qz(Z) h (b - F(Y) )
h=1,NPX
h
Z Y MinX C X Sujeto a:
A X = b - F(Y) - G Z X e R+
INTEGRATED MODEL INVESTMENTS OPERATIONS INTEGRATED SYSTEM
INVESTMENTS
INVESTMENTS COORDINATOR
PARTITION
OPERATIONS
INTEGRATED OPERATIONS MODEL PARTITION INVESMENTS-OPERATIONS
PARTITION
INVESTMENTS
INVESTMENTS COORDINATOR
OPERATIONS
INTERSECTOR OPERATIONS COORDINATOR
SECTOR
MULTILEVEL SYSTEM
INTEGRATED OPERATION
INTEGRATED OPERATION
SECTOR 1
SECTOR S DECOMPOSITION
PARTITION
INVESTMENTS
INVESTMENTS COORDINATOR
OPERATIONS
INTERSECTOR OPERATIONS COORDINATOR
SECTOR
ZONE
MULTILEVEL SYSTEM
INTERZONE COORDINATOR SECTOR 1
INTERZONE COORDINATOR SECTOR S
INTEGRATED OPERATION
INTEGRATED OPERATION
INTEGRATED OPERATION
INTEGRATED OPERATION
ZONE 1.1
ZONE 1.Z1
ZONE S.1
ZONE S.ZS
DECOMPOSITION
PARTITION
INVESTMENTS
INVESTMENTS COORDINATOR
OPERATIONS
INTERSECTOR OPERATIONS COORDINATOR INTERZONE COORDINATOR SECTOR 1
SECTOR
INTERZONE COORDINATOR SECTOR S
ZONE
DYNAMIC COORDINATOR ZONE 1.1
DYNAMIC COORDINATOR ZONA 1.Z1
DYNAMIC COORDINATOR ZONA S.1
TIME
1
1
1
MULTILEVEL SYSTEM
2
T-1
T
2
T-1
T
2
DECOMPOSITION
T-1
T
DYNAMIC COORDINATOR ZONA S.ZS
1
2
T-1
T
PARTITION
INVESTMENTS
INVESTMENTS COORDINATOR
OPERATIONS
INTERSECTOR OPERATIONS COORDINATOR INTERZONE COORDINATOR SECTOR 1
SECTOR
ZONE
DYNAMIC COORDINATOR ZONE 1.1
INTERZONE COORDINATOR SECTOR S
DYNAMIC COORDINATOR ZONA 1.Z1
DYNAMIC COORDINATOR ZONA S.1
DYNAMIC COORDINATOR ZONA S.ZS
GDDP TIME
MULTILEVEL SYSTEM
1
2
T-1
T
1
2
T-1
T
1
2
DECOMPOSITION
T-1
T
1
2
T-1
T
INVESTMENTS
INVESTMENTS COORDINATOR
PARTITION
RANDOM OPERATIONS
MULTILEVEL SYSTEM
MULTIPLE MODELS INTEGRATED UNDER DIFFERENT RANDOM CONDITIONS
DECOMPOSITION
INVESTMENTS
PARTITION
RANDOM OPERATIONS
MULTILEVEL SYSTEM
INVESTMENTS COORDINATOR
INTEGRATED OPERATIONS MODEL
INTEGRATED OPERATIONS MODEL
STOCHASTIC CONDITION 1
STOCHASTIC CONDITION H
DECOMPOSITION
INVESTMENTS COORDINATOR
INVESTMENTS
PARTITION
RANDOM OPERATIONS
SECTOR
ZONE
TIME
MULTILEVEL SYSTEM
INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION 1
INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION H
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H
DYNAMIC COORD. ZONE 1.1
DYNAMIC COORD. ZONA 1.Z1
1
1
2
T-1 T
2
T-1 T
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1
G-SDDP DYNAMIC COORD. ZONA S.1
1
2 T-1 T
DYNAMIC COORD. ZONA S.ZS
1
2
T-1 T
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H
DYNAMIC COORD. ZONE 1.1
DYNAMIC COORD. ZONA 1.Z1
DYNAMIC COORD. ZONA S.1
1
1
1
2
T-1 T
DECOMPOSITION
2
T-1 T
2 T-1 T
DYNAMIC COORD. ZONA S.ZS
1
2
T-1 T
INVESTMENTS COORDINATOR
Joining the Decomposition Theory and the Partition Theory can be structured complex multilevel systems
INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION 1
INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION H
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H
DYNAMIC COORD. ZONE 1.1
1
2
T-1 T
DYNAMIC COORD. ZONA 1.Z1
1
2
T-1 T
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1
DYNAMIC COORD. ZONA S.1
1
2
T-1 T
DYNAMIC COORD. ZONA S.ZS
1
2
T-1 T
DYNAMIC COORD. ZONE 1.1
1
2
T-1 T
DYNAMIC COORD. ZONA 1.Z1
1
2
T-1 T
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H
DYNAMIC COORD. ZONA S.1
1
2
T-1 T
DYNAMIC COORD. ZONA S.ZS
1
2
T-1 T
INVESTMENTS COORDINATOR
These systems are characterized by the set of problem families that they include Each color represents a type of optimization problem
INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION 1
INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION H
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H
INTERZONE COORDINATOR SECTOR S STOCHASTIC 1
INTERZONE COORDINATOR SECTOR S STOCHASTIC H
related with a physical installation and/or decision level
DYNAMIC COORD. ZONE 1.1
1
2
T-1 T
DYNAMIC COORD. ZONA 1.Z1
1
2
T-1 T
DYNAMIC COORD. ZONA S.1
1
2
T-1 T
DYNAMIC COORD. ZONA S.ZS
1
2
T-1 T
DYNAMIC COORD. ZONE 1.1
1
2
T-1 T
DYNAMIC COORD. ZONA 1.Z1
1
2
T-1 T
DYNAMIC COORD. ZONA S.1
1
2
T-1 T
DYNAMIC COORD. ZONA S.ZS
1
2
T-1 T
INVESTMENTS COORDINATOR
Making a parallel with neural nets , the concept of problem family can be assimilated to a “neuron” class;
INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION 1
INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION H
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1
INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H
DYNAMIC COORD. ZONE 1.1
and the optimization process can be defined as a complex communications system between “neurons”
1
2
T-1 T
DYNAMIC COORD. ZONA 1.Z1
1
2
T-1 T
INTERZONE COORDINATOR SECTOR S STOCHASTIC 1
DYNAMIC COORD. ZONA S.1
1
2
T-1 T
DYNAMIC COORD. ZONA S.ZS
1
2
T-1 T
DYNAMIC COORD. ZONE 1.1
1
2
T-1 T
DYNAMIC COORD. ZONA 1.Z1
1
2
T-1 T
INTERZONE COORDINATOR SECTOR S STOCHASTIC H
DYNAMIC COORD. ZONA S.1
1
2
T-1 T
DYNAMIC COORD. ZONA S.ZS
1
2
T-1 T
STRUCTURE OF A SIMPLE ARTIFICIAL NEURON SOMA RESPONSE FUNCTION
X1
Xi X3 AXOM INPUT
W1,j Wi.j
S
Uj
W3,j DENDRITAS
AXOM INPUTS
SOMA (NUCLEO)
SYNAPSIS
AXOM OUTPUTS
Yj
AXOM OUTPUT
STRUCTURE OF A SMART ARTIFICIAL NEURON SOMA RESPONSE FUNCTION
X1
Xi X3 AXOM INPUT
W1,j
min dtTut | Wi.j Bt ut,h = bUt,h j - Et-1 xS t-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ } W3,j
DENDRITAS
AXOM INPUTS
SOMA (NUCLEO)
SYNAPSIS
AXOM OUTPUTS
Yj
AXOM OUTPUT
STRUCTURE OF A SMART ARTIFICIAL NEURON SOMA RESPONSE FUNCTION
X1
Xi X3 AXOM INPUT
W1,j
min dtTut | Wi.j Bt ut,h = bUt,h j - Et-1 xS t-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ } W3,j
DENDRITAS
AXOM INPUTS
SOMA (NUCLEO)
SYNAPSIS
AXOM OUTPUTS
Yj
AXOM OUTPUT
STRUCTURE OF A SMART ARTIFICIAL NEURON SOMA RESPONSE FUNCTION
X1
Xi X3 AXOM INPUT
W1,j
min dtTut | Wi.j Bt ut,h = bUt,h j - Et-1 xS t-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ } W3,j
Yj
AXOM OUTPUT
ASYNCHRONOUS PARALLEL OPTIMIZATION CX: = { min z = S h=1,H S t=1,T h ( ct,hTxt + Wt,h ) | At xt,h = et,h "t=1,T "h=1,H t=1,T k T Wt,h + ( ) Et-1 xt-1 + (k)T At xt,h qt,hk "t=1,T "h=1,H "k=1,ISP }
X = { xm1,h, xm2,h, … , xmT,H } Qt,hA = Wt,h(xt-1,h,xt,h) O(t)=f(Dz) LB = z
A COORDINATE WORK USING m = m+1 OPTIMIZATION TO SOLVE A MULTIPLE PROCESSORS DATA BASE LARGE SCALE OPTIMIZATION PROBLEM
BASED ON
BENDERS
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
Coordinator: xmt,h ,METHODOLOGIES LB LARGE SCALE LIKE: Sub-Problem k , DZt,h , uk LU THEORY, LAGRANGEAN RELAXATION k=k+1 & CROSS DECOMPOSITION.
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
DZt,h
k Qt,hB = dTu* = Qt,hB – Qt,hA
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
PARALLEL OPTIMIZATION CX: = { min z = S h=1,H S t=1,T h ( ct,hTxt + Wt,h ) | At xt,h = et,h "t=1,T "h=1,H t=1,T k T Wt,h + ( ) Et-1 xt-1 + (k)T At xt,h qt,hk "t=1,T "h=1,H "k=1,ISP }
X = { xm1,h, xm2,h, … , xmT,H } Qt,hA = Wt,h(xt-1,h,xt,h) O(t)=f(Dz) LB = z
m = m+1
OPTIMIZATION DATA BASE Coordinator: xmt,h , LB Sub-Problem k , DZt,h , uk LU k=k+1 DZt,h
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
k Qt,hB = dTu* = Qt,hB – Qt,hA
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
PARALLEL OPTIMIZATION CX: = { min z = S h=1,H S t=1,T h ( ct,hTxt + Wt,h ) | At xt,h = et,h "t=1,T "h=1,H t=1,T k T Wt,h + ( ) Et-1 xt-1 + (k)T At xt,h qt,hk "t=1,T "h=1,H "k=1,ISP }
X = { xm1,h, xm2,h, … , xmT,H } Qt,hA = Wt,h(xt-1,h,xt,h) O(t)=f(Dz) LB = z
m = m+1
OPTIMIZATION DATA BASE Coordinator: xmt,h , LB Sub-Problem k , DZt,h , uk LU k=k+1 DZt,h
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
k Qt,hB = dTu* = Qt,hB – Qt,hA
{ min z = dT u | B u = bt,h – E xt-1,h - A xt,h G u = gt,h uR+ }
REAL-TIME DISTRIBUTED OPTIMIZATION USING SMART METERING SYSTEMS (IoT)
REAL-TIME OPTIMIZATION USING STANDARD METERING SYSTEMS (SYNCHRONIZED)
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
Weeks Days Hours Time
MOMENTS IN WHICH RUN THE FULL OPTIMIZATION MODEL
REAL-TIME DISTRIBUTED OPTIMIZATION USING SMART METERING SYSTEMS (ASYNCHRONIZED) min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
min dtTut | Bt ut,h = bt,h - Et-1 xt-1,h - At,hxt,h Gt.h ut,h = gt ut,hR+ }
Anytime
Time
MOMENTS IN WHICH RUN THE SUB-PROBLEMS MODELS EACH MODEL REPRESENT A PHYSICAL PRODUCTION SYSTEM
INVESTMENTS COORDINATOR
INTERSECTOR OPERATIONS STOCHASTIC COORDINATOR
INTERSECTOR OPERATIONS STOCHASTIC COORDINATOR
INTERZONE STOCHASTIC COORDINATOR
INTERZONE STOCHASTIC COORDINATOR
OPTIMIZATION
SECTOR 1
SECTOR 2
DATA BASE DYNAMIC COORD. ZONE 1.1
DYNAMIC COORD. ZONE 1.1
STATIC OPERATION S,Z,T,H
STATIC OPERATION STATIC OPERATION
S,Z,T,H
S,Z,T,H
"the computer-based mathematical modeling is the greatest invention of all times"
Herbert Simon Alfred Nobel Memorial Prize in Economic Sciences (1978) "for his pioneering research into the decision-making process within economic organizations
Herbert Alexander Simon (June 15, 1916 – February 9, 2001) was an American political scientist, economist, sociologist, psychologist, and computer scientist whose research ranged across the fields of cognitive psychology, cognitive science, computer science, public administration, economics, management, philosophy of science, sociology, and political science, unified by studies of decision-making. With almost a thousand highly cited publications, he was one of the most influential social scientists of the twentieth century. For many years he held the post of Richard King Mellon Professor at Carnegie Mellon University. Simon was among the pioneers of several of today's important scientific domains, including artificial intelligence, information processing, decision-making, problem-solving, organization theory, complex systems, and computer simulation of scientific discovery.