Generation of Emergent Navigation Behavior in Autonomous Agents

6 downloads 0 Views 7MB Size Report
... e sem riscos, do comportamento da multidao ao tentar evacuar urn dado .... caminho mais curto para 0 destino e armazena essa informac;ao nas celulas para ...
2014 XVI Symposium on Virtual and Augmented Reality

Gera.;ao de Comportamentos Emergentes de N avega.;ao em Agentes Autonomos utilizando Visao Artificial Generation of Emergent Navigation Behavior in Autonomous Agents using Artificial Vision Lilian de O. Carneiro I , Joaquim B. CavaIcante-Neto l , Creto A. Vidal l , Yuri L. B. Nogueira2 , Arnaldo B. Vila Nova l IDepartamento de Computac;ao, Universidade Federal do Ceara, Fortaleza, CE, Brasil Emails:{lilian. joaquimb.cvidal. barretovilanova} @lia.ufc.br 2Centro Universitario Christus, Fortaleza, CE, Brasil Email: [email protected]

Avalia~ao

Algoritmo Genetico

III(

Simula~ao

molda a Rede Neural Cerebro

R,

_. Sinais

..........

(

Motores

J

Rede Neural

Array Reduzido de pixels

Fig. 1. Vi sao geral do modelo proposto. 0 agente e capaz de se gui ar pelo ambiente utili zando sua pr6pri a visao. 0 c6rtex vi sual artificial proposto consiste de imagens capturadas por uma camera virtual. As imagens, com tamanho lO x 10 pixels no sistema de cores ROB , sao capturadas e passadas ao control ad or. Como 0 agente se desloca apenas em duas dimensoes, e suficiente enxergar a poryao central da imagem e, por isso, utili za-se apenas os dez pixel s da quinta linha como vi sao. Esses, por sua vez, sao reduzidos a cinco pixels atraves da media aritmetica de cada componente ROB de cad a doi s pixels vizinhos. As cores resultantes sao ent1io dadas como entrada a rede neural que emite sinais aos motores qu e realizam os mov imentos do agente.

Resumo Neste trabalho, aborda-se a dinamica de movimento de agentes autonomos capazes de se guiar pelo ambiente utilizando a propria visiio. Para isso, evolui-se urn cortex visual artificial empregando-se uma Rede Neural continua e a codificaryiio genetica aplicada em urn Algoritmo Genetico (AG) canonico, conforme proposto em [1] [2], porem, utilizandose uma nova descriryiio sensorial baseada em imagens capturadas por uma camera virtual. Os testes realizados mostraram que os agentes siio capazes de navegar pelo ambiente e encontrar a saida, de maneira niio programada, utilizando apenas a informaryiio visual passada a rede neural. Isso pode facilitar a aplicaryiio em diversos ambientes, sem exibir uma tendencia

978-1-4799-4261-9/14 $31.00 © 2014 IEEE DOI 10.1109/SVR.2014.19

forryada por uma possivel modelagem comportamental como ocorre em outras tecnicas.

Palavras-chave - Agentes autonomos; Algoritmo Genetico; Cortex visual artificial Abstract - In this work, we deal with the dynamics of the movements of autonomous agents, which are able to move in the environment using their own vision. For this, we apply the Continuous Time Recurrent Artificial Neural Network and the genetic encoding proposed in [1] [2]. However, we use a new sensorial description, which consists in captured images by a virtual camera, evolving an artificial visual cortex. The experiments show that the agents are able to navigate in the 323 324

trabalho, apresenta-se urn estudo da dinamica de movimento de urn agente em uma variedade de ambientes simples de simulac;ao. Para isso, utiliza-se, no estudo de evacuac;oes, a abordagem de gerac;ao de comportamentos de personagens virtuais autonomos proposta em [1] e [2]. No entanto, e apresentada urna nova descric;ao sensorial, na qual, propoe-se a evoluc;ao de urn cortex visual artificial baseado em imagens capturadas por uma camera virtual.

environment and to find the exit, in a non-programmed way, using only the visual data passed to the neural network. This has the flexibility to be applied in various environments, without displaying a forced tendency by a possible behavioral modeling as in other techniques.

Keywords - Autonomous agents; Genetic Algorithm; Artificial visual cortex

I.

INTRODUoor

:G 0,15

'8.

t-.~-A:-I-___>O'f_--L--------------

.il!

iii ~

0,1

AGRADECIMENTOS

+---------------------

Este trabalho foi apoiado pela Coordenac;ao Aperfeic;oamento de Pessoal de Nivel Superior (CAPES).

0,05 + - - - - - - - - - - - - - - - - - - - - -

o

10

30

20

40

50

R EFERENC IAS

Ge ra~o es

[I]

Y. L. B. Nogueira, C. Brito, C. A. Vidal, and J. B. Cavalcante-Neto, "Emergence of Autonomous Behaviors of Virtual Characters through Simulated Reproduction", in Advances in Artificial Life - ECAL 2013 , Taonnina. Proceedings of the Twelfth European Conference on the Synthesis and Simulation of Living Systems. Cambridge: MIT Press, 2013. vol. 12. pp. 750-757.

[2]

Y. L. B. Nogueira, C. Brito, C. A. Vidal, and 1. B. Cavalcante-Neto, "Evolving Plastic Neuromodulated Networks for Behavior Emergence of Autonomous Virtual Characters", in Advances in Artificial Life ECAL 2013, Taormina. Proceedings of the Twelfth E uropean Conference on the Synthesis and Simulation of Living Systems. Cambridge: MIT Press, 2013. vol. 12 , pp. 577-584.

[3]

L.Z. Yang, D,L. Zhao, 1. Li , and T.Y. Fang, " Simulation of the kin behavior in building occupant evacuation based on cellular automaton". Building and Environment, vol. 40, no. 3, pp. 411-415, March 2005.

[4]

J. Shi, A. Ren and C. Chen, "Agent-based evacuation model of large public buildings under fire condition" . Automation in Construction, vol. 18, no. 3, pp. 338- 347, May 2009.

[5]

S.R. Musse and D, Thalmann, "Hierarchical model for real time simulation of virtual human crowds," Visualization and Computer Graphics, IEEE Transactions on , vol.7, no.2, pp.152, 164, Apr-lun 2001 doi: 10,1109/2945,928167.

[6]

N. Pelechano, l. M. Allbeck, and N. I. Badler, "Controlling individua l agents in high-density crowd simulation", in SCA '07: Proceedings of the 2007 ACM SIGGRAPHIEurographics symposium on Computer animation. Aire-Ia-Ville, Switzerland, Switzerland: E urographics Association, pp. 99- 108,2007. ISBN 978-1-59593-624-4 ,

[7]

W, Shao and D. Terzopou los, "Autonomous pedestrians" . Graphical Models, vol. 69, no. 5-6, pp. 246 - 274 , 2007. ISSN 1524-0703.

[8]

D. Terzopoulos, "Artificial life and biomechanical simulation of humans". Digital Human Symposium 2009, pp. 8- 13, 2009.

[9]

D, Thalmann and S. R. Musse, Crowd Simulation. [S,I.]: Springer London , 2008. ISBN 978-1-84628-825-8.

Fig. 5. Evoluyao da media da avaliayao em cada gerayao considerando-se cinco execuyoes. 25 , - - - - - - - - - - - - - - - - - - - - -

E ~

~

20

+--------~~~-~~~~-~~~~

CIJ

.t: U

CIJ ~

15 +-_ _ _ _ _~~L-------------

~ ~ "

0

~ ~ 10 +-----A:~--------------­ '5

.=

~

o

'C

'5'" ' CIJ

:;;

o

30

20

10

40

50

G era~6es

Fig, 6. Media do numero de individuos que chegaram it porta em cad a gerayao considerando-se cinco execuyoes.

V.

de

CONCLUSOES

Neste trabalho, estudou-se a dinamica de movimento de urn agente em ambientes simples de simulac;ao. Foram gerados individuos capazes de se guiarem utilizando a propria visao na tarefa de encontrar a saida de uma sala. Para tal, aplicou-se a mesma Rede Neural e a me sma codificac;ao genetica aplicada sobre urn AG canonico utilizada em [1] e [2], porem, com uma nova descriC;ao sensorial, promovendo a evoluC;ao de urn cortex

331 330

[10] M . Kapadia and N. I. Badler, Navigation and steering for autonomous virtual humans. Wiley Interdi sciplinary Reviews: Cognitive Science, John Wiley & Sons, Inc. , vol. 4, no. 3, pp. 263- 272, 2013. ISSN 19395086. Disponivel em: .

[20] 1. M. Lien, S. Rodriguez, 1. P. Malric, and N. M. Amato, "Shepherding Behaviors with Multiple Shepherds", in Proc. IEEE Robotics and Automatation (ICRA), Barcelona, Spain: 3402- 3407, 2005. [21] M. Sung, L. Kovar, and M. Gleicher, "Fast and Accurate Goal-Directed Motion Synthesis for Crowds" , in. Proc. Symposium on Computer Animation: 291 - 300, 2005. doi:l 0.114511 073368.1 07341 0

[11] N. Pelechano, A. Jan, and N. 1. Badler, Virtual Crowds: Methods, Simulation, and Control. Morgan & Claypool Publi shers, 2008. [12] C. Burstedde, K. K1auck, A. Schadschneider, and J. Zittartz, " Simulation of pedestrian dynamics using a two-dimensional cellular automaton". Physica A: Statistical Mechanics and its Applications, vol. 295, no. 3-4, pp. 507- 525, June 2001.

[22] S. Teller, "Visibility Computations in Densely Occluded Polyhedral Environments", UC Berkeley, CA, USA, I992. [23] A. Lerner, Y. Chrysanthou, and D. Cohen-Or, "Efficient Cells-andPortals Partitioning". Computer Animation & Virtual Worlds. Wiley, NY, USA. 17(1): 21-40, 2006. doi:10.1002/cav.70

(13] A. Kirchner and A. Schadschneider, " Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics" . Physica A: Statistical Mechanics and its Applications, vol. 312, no. I - 2, pp. 260 - 276, Sept. 2002.

[24] N. Pelechano and N. Badler, "Modeling Crowd and Trained Leader Behavior during Building E vacuation" . IEEE Computer Graphics and Applications. 26(6): 80- 86, 2006.

[14] A. Varas, M . D. Cornejo, D. Mainemer, B. Toledo, J. Rogan, V. Munoz, and J. A. Valdivia, "Cellular automaton model for evacuation process with obstacles" . Physica A: Statistical Mechanics and its Applications, vol. 382, no. 2, pp. 631-642, 2007.

[25] A. Treuille, S. Cooper, and Z. Popovic, "Continuum Crowds", in Proc. ACM Transactions on Graphics (SIGGRAPH 2006): 1160- 1168, 2006. doi:10.114511 179352.1 142008

[15] L. O. Carneiro, J. B. Cavalcante-Neto, C. A. Vidal, and T. B. Dutra, "Crowd E vacuation using Cellular Automata: Simulation in a Soccer Stadium", in Proceedings of the 2013 XV Symposium on Virtual and Augmented Reality (SVR 2013). Los Alamitos, IEEE Computer Society. vol. 1. pp. 240-243 , 2013.

[27] C.W. Warren , "Multiple robot path coordination using artificial potential fields". Robotics and Automation, vol. 1, pp. 500-505, 1990.

[26] C. W. Warren, "Global path planning using artificial potential fields". Robotics and Automation, vol. I, pp. 316-321, 1989.

[28] R. D. Beer, "On the dynamics of small continuous-time recurrent neural networks" . Adaptive Behavior, SAGE Publications, vol. 3, no. 4, pp. 469- 509,1995.

[16] J. Dijkstra, H. J. P. Timmermans, and Jessurun, A. J., " A Multi-Agent Cellular Automata System for Visuali zing Simulated Pedestrian Activity", in Proc. Theoretical and Practical Issues on Cellular Automata. Cellular Automata for research and Industry, SpringerVerlag. Berlin: 29- 36, 2000.

[29] D. O. Hebb, The Organi zation of Behavior: A Neuropsychological Theory. [S.l.]: Wiley, 1949.ISBN 0805843000.

[17] P. E. Hart, N.J. Nilsson, and Raphael, B., " A Formal Basis for the Heuristic Determination of Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics, vol. 4, pp. 100-107, 1968.

[30] C. Mattiussi, and D. Floreano, "Analog Genetic Encoding for the Evolution of Circuits and Networks". E volutionary Computation, £EEE Transactions on, £EEE, vol. 11 , no. 5, pp. 596- 607,2007. ISSN 1089778X.

[18] L. E. Kavraki, P. Svestka, 1. C. Latombe, and M. H. Overmars, "Probabilistic roadmaps for path planning in high-dimensional configuration spaces," IEEE Transactions on Robotics and Automation , vol. 12, no. 4, pp . 566- 580, 1996.

[31] F. Mondada, E. Franzi, and A. Guignard, "The Development of Khepera", in Experiments with the Mini-Robot Khepera, Proceedings of the First International Khepera Workshop. [S.I. :s.n.J, 1999. (HNlVerlagsschriftenreihe, Heinz Nixdorfinstitut), pp. 7- 14.

[19] O. B. Bayazit, J. M. Lien, and N. M. Amato, "Road map-Based Flocking for Complex E nvironments", in Proc. Pacific Conference on Computer Graphics and Applications, Beijing, China, £EEE Computer Society Washington, DC, USA: 104- 113,2002.

332 331

Suggest Documents