for the Requirements of the Degree of Master of Science in Architecture. Prepared ... Associate Professor of Architecture â Faculty of Engineering â Ain Shams. University ... the development of Building Information Modeling (BIM) technology.
Ain Shams University Faculty of Engineering Department of Architecture
Implementation of Building Information Modeling Technology in the Design Process
A Thesis Submitted to the Faculty of Engineering in Partial Fulfillment for the Requirements of the Degree of Master of Science in Architecture
Prepared By
Mohammed Refaat Mekawy Mohammed B.Sc. Architecture Ain Shams University, 2007
Under Supervision of
Associate Prof. Dr. Ahmed Atef El Desouky Associate Professor of Architecture Faculty of Engineering – Ain Shams University
Dr. Hazem Talaat El-Daly Lecturer of Architecture Faculty of Engineering – Ain Shams University
Cairo, Egypt 2013
Ain Shams univeristy Faculty of Engineering Department of Architecture
Name: Mohammed Refaat Mekawy Mohammed Title: Implementation of Building Information Modeling Technology in the Design Process Degree: Master of Science in Architecture.
Examining Committee Prof. Dr. Ahmed Reda Abdeen
Sig:
Professor of Architecture – Faculty of Engineering – Cairo University
Prof. Dr. Sayed Madbouly Ali
Sig:
Professor of Architecture – Faculty of Engineering – Ain Shams University
Associate Prof. Ahmed Atef El Desouky
Sig:
Associate Professor of Architecture – Faculty of Engineering – Ain Shams University
Post Graduate studies Approval /
/ 2013
Faculty Council Approval /
Approval stamp
/ 2013
University Council Approval / / 2013
Statement
This thesis is submitted to Ain Shams University for the degree of Master in Architecture. The work included in this thesis was accomplished by the author at the Department of Architecture, Faculty of Engineering, Ain shams University from 2010 to 2013. No part of this thesis has been submitted for a degree or a qualification at any other university or institute.
Date:
/
/
Signature: Name: Mohammed Refaat Mekawy Mohammed Faculty: Faculty of Engineering – Ain Shams University
Acknowledgement All praises due to God, the most gracious. I thank God for all what I have achieved, and for the patience he inspired me to endure the hardships encountered along the way. I would like to express my deep gratitude to everyone who helped me accomplish this work, starting with my mother, my father and my siblings. I would like to thank them for their unmatched patience and support as well as their love and care throughout the years. I would like to thank my advisors, who through their knowledge and guidance helped me complete such an honorable degree. I hereby thank Professor Ahmed Atef for his guidance, support and confidence in my abilities, Dr. Hazem El-Daly for his unmatched dedication and consistent help and guidance. Special acknowledgement to my M.Sc. committee members; Professor Sayed Madbouly and Professor Ahmed Reda Abdeen. Their valuable comments and insightful guidance were crucial to improve upon the presented research. There are many others to sincerely thank, including those who gave of their time for interviews and valuable discussions, and generously shared their valuable academic and professional knowledge with me; Professor Hanan Sabry, Dr. Sherif Morad, Dr. Magdy Ibrahim, Eng. Mohammed Hussein, Eng. Adel Saleh, Eng. Hamoda Youssef. Lastly, while I can't count or mention all of them, my thanks will extend to my fellow graduate students for their help, enthusiasm and encouragement; Ayman Farid, Ayman Raees, Dawlat El-Mossalamy, Mahmoud El-Nably, Manar Mohammed, Mohammed Eid, Mostafa Mahdy, Walid El Shamy. I am truly honored and blessed to have you by my side as friends and companions.
Abstract Title: Implementation of Building Information Modeling technology in the design process Description: Building design process involves dealing with a lot of information. With the advent of computers, many improvements were made to this process and many of the manual processes associated with it were automated. But this progress has been constrained by the limited intelligence of computer applications in representing buildings and the capability to extract the relevant information needed for design, causing problems with conveying design intent, speed and accuracy. That led to the development of Building Information Modeling (BIM) technology. BIM involves the use of information rich models to simulate the design, construction and operation of a facility in a more convenient way. This research aims to explore the new and changed methods and activities of design as affected by BIM. It presents a new theoretical framework of dealing with design activities in the new BIM-enabled environment. This was done through discussing traditional computer aids for design, highlighting the limitations and inefficiencies in the design process under a pre-BIM design environment. Next the main principles of BIM were discussed highlighting the problems it addresses and what changes it may cause in traditional projects' duration and staff configuration. Then the research deduced eleven BIM applications in architectural practice, varying from academic experimentation phases to established professional practice. Next the nature of the design process, the activities it involves and the stages it goes through were investigated to produce a map of design activities. Then the eleven BIM applications were superimposed on the map of identified design activities, highlighting the areas of change and improvement, producing a theoretical framework of dealing with design activities in the a BIM-enabled design environment. Finally three case studies were presented to illustrate the practical implementation of the technology in the design process. Keywords: Computer aided design (CAD), Parametric Design, Building Information Modeling (BIM), Architectural Technology.
i
List of contents Abstract -------------------------------------------------------------------------- i List of contents ---------------------------------------------------------------- iii List of figures ------------------------------------------------------------------ ix List of tables ------------------------------------------------------------------ xiii List of Acronyms-------------------------------------------------------------- xv Introduction ------------------------------------------------------------------- xix 1. Chapter 1: Introduction to Computer Aided Architectural Design
3
1.1. Conventional CAD usage in architecture ------------------------------ 3 1.1.1. History of CAD ............................................................................ 4 1.1.2. Methods of conventional CAD usage in architecture .................... 6
1.2. Problems with conventional CAD tools ------------------------------- 9 1.2.1. 1.2.2. 1.2.3. 1.2.4.
Designing with drawings only ...................................................... 9 Inadequate interoperability ......................................................... 10 The Current project execution model Design-Bid-Build ............. 12 How the conventional CAD tools could be improved ................. 13
1.3. Parametric modeling ---------------------------------------------------- 15 1.3.1. Definition and elements of parametric modeling ......................... 16 1.3.2. Example..................................................................................... 18
1.4. Building Information Modeling (BIM) ------------------------------- 20 1.4.1. BIM as an extension of parametric modeling .............................. 20 1.4.2. What problems does BIM address?............................................. 20
1.5. Conclusion --------------------------------------------------------------- 23 2. Chapter 2: Building Information Modeling concepts
27
2.1. History of BIM ---------------------------------------------------------- 27 2.2. Definition and meaning of BIM --------------------------------------- 28 iii
2.3. Characteristics of Building Information Models --------------------- 30 2.3.1. BIM operates on digital databases .............................................. 30 2.3.2. BIM is object based ................................................................... 33 2.3.3. BIM provides more enhanced parametric modeling .................... 35
2.4. Data exchange in a BIM environment -------------------------------- 38 2.4.1. 2.4.2. 2.4.3. 2.4.4.
Roots of interoperability ............................................................ 38 Interoperability in a BIM environment ....................................... 40 Public data exchange formats ..................................................... 41 Modeling standards and data exchange protocols ....................... 47
2.5. BIM in Integrated project delivery ------------------------------------ 52 2.5.1. Impact of BIM and IPD on AEC projects ................................... 52 2.5.2. Example .................................................................................... 54
2.6. Change in process ------------------------------------------------------- 56 2.6.1. Change of staffing within design firms ....................................... 56 2.6.2. Change of project phases' duration ............................................. 58
2.7. Current status of BIM --------------------------------------------------- 59 2.7.1. BIM adoption percentage ........................................................... 59 2.7.2. BIM software adoption .............................................................. 60
2.8. Conclusion --------------------------------------------------------------- 63 3. Chapter 3: Building information modeling applications in architecture
67
3.1. Programming and space planning ------------------------------------- 67 3.1.1. Definition and meaning .............................................................. 67 3.1.2. Traditional practice .................................................................... 68 3.1.3. BIM implementation .................................................................. 69
3.2. Form exploration -------------------------------------------------------- 72 3.2.1. Definition and meaning .............................................................. 72 3.2.2. Traditional practice .................................................................... 73 3.2.3. BIM implementation .................................................................. 75
3.3. Documents production -------------------------------------------------- 82 3.3.1. Definition and meaning .............................................................. 82 3.3.2. Traditional practice .................................................................... 83 3.3.3. BIM implementation .................................................................. 83 iv
3.4. Design Coordination ---------------------------------------------------- 86 3.4.1. Definition and meaning .............................................................. 86 3.4.2. Traditional practice .................................................................... 86 3.4.3. BIM implementation .................................................................. 88
3.5. Design review and visualization --------------------------------------- 92 3.5.1. Definition and meaning .............................................................. 92 3.5.2. Traditional practice .................................................................... 92 3.5.3. BIM implementation .................................................................. 93
3.6. Sustainable design ------------------------------------------------------- 97 3.6.1. Definition and meaning .............................................................. 97 3.6.2. Traditional practice .................................................................. 102 3.6.3. BIM implementation ................................................................ 104
3.7. Scheduling (4D Modeling) ------------------------------------------- 115 3.7.1. Definition and meaning ............................................................ 115 3.7.2. Traditional practice .................................................................. 115 3.7.3. BIM implementation ................................................................ 117
3.8. Cost estimation -------------------------------------------------------- 121 3.8.1. Definition and meaning ............................................................ 121 3.8.2. Traditional practice .................................................................. 122 3.8.3. BIM implementation ................................................................ 123
3.9. Design and code checking -------------------------------------------- 128 3.9.1. Definition and meaning ............................................................ 128 3.9.2. Traditional practice .................................................................. 128 3.9.3. BIM implementation ................................................................ 129
3.10.
Modeling existing conditions ----------------------------------- 133
3.10.1. Definition and meaning ............................................................ 133 3.10.2. Traditional practice .................................................................. 133 3.10.3. BIM implementation ................................................................ 135
3.11.
Prefabrication ----------------------------------------------------- 139
3.11.1. Definition and meaning ............................................................ 139 3.11.2. Traditional practice .................................................................. 140 3.11.3. BIM implementation ................................................................ 141
3.12.
Conclusion--------------------------------------------------------- 146 v
4. Chapter 4: New methods of design based on Building Information Modeling implementation.
151
4.1. Definition and nature of (Design) ----------------------------------- 151 4.2. Design maps ----------------------------------------------------------- 155 4.2.1. 4.2.2. 4.2.3. 4.2.4.
RIBA design map .................................................................... 157 Markus/Maver Map ................................................................. 158 AIA's design process ................................................................ 160 The unified design process map ............................................... 168
4.3. BIM applications map ------------------------------------------------ 170 4.4. The proposed framework for dealing with design activities in a BIM-enabled environment ------------------------------------------------- 172 4.5. Case studies ------------------------------------------------------------ 175 4.5.1. 4.5.2. 4.5.3. 4.5.4. 4.5.5.
Methodology ........................................................................... 175 Case 1: Veterans Affairs Medical Center campus ..................... 176 Case 2: D.C. Consolidated Forensic Lab .................................. 181 Case 3: Barwa New Cairo Town center .................................... 187 Comparative analysis between the presented case studies ......... 191
4.6. Conclusion ------------------------------------------------------------- 194 Conclusions and Recommendations
199
A. Conclusions ------------------------------------------------------------ 199 B. Recommendations ----------------------------------------------------- 203 References
209
A. Published books ------------------------------------------------------- 209 B. Theses and dissertations ---------------------------------------------- 210 C. Journal articles --------------------------------------------------------- 210 D. Conference papers ----------------------------------------------------- 211 E.
Reports and white papers --------------------------------------------- 212
F.
Worldwide Web resources ------------------------------------------- 215 vi
G. Video recordings ------------------------------------------------------ 218 H. Interviews -------------------------------------------------------------- 218
vii
List of figures
Figure 1-1IvanSutherland’sSketchpadconsole,1962.Sketchpadisoperatedwitha light pen and a command button box --------------------------------------------- 4 Figure 1-2 Three generations of architectural communication------------------------------- 6 Figure 1-3 Indexes of labor productivity for construction and non-farm industries------ 12 Figure 1-4 Dimensional and Geometric constraints and types of geometric elements to which these apply ------------------------------------------------------------------ 17 Figure 1-5 The infinity tower paramteric model rules --------------------------------------- 19 Figure 1-6 The three designed options generated by the design team --------------------- 19 Figure 1-7 MacLeamy curve -------------------------------------------------------------------- 22 Figure 2-1 Major participants in a Building Information Model --------------------------- 29 Figure 2-2 The integrated design model as a central database ------------------------------ 31 Figure 2-3 CAD elevation showing drawing entities created on separate layers --------- 33 Figure 2-4 In a BIM model, building elements are classified ccording to their real nature not a symbolic one ----------------------------------------------------------------- 34 Figure 2-5 Snapshot of the properties of a door element created in Autodesk Revit ---- 36 Figure 2-6 showing the original section detail of a curtain wall created in Autodesk Revit on the left, and the annotated, detailed view of it on the right --------------- 37 Figure 2-7 The complete U.S. NCS layer name format, showing the Discipline Designator, the Major Group, two Minor Groups, and the Status fields. --- 39 Figure 2-8 Specifications for drawing block title --------------------------------------------- 39 Figure 2-9 Summary of IFC releases ----------------------------------------------------------- 42 Figure 2-10 The IFc structure for defining a wall -------------------------------------------- 43 Figure 2-11 A delimited text file exported from Revit (Top) and then imported and formatted in Excel ( Bottom) ----------------------------------------------------- 46 Figure 2-12 Part of the NATSPEC worksheet that defines the modeling requirements of exterior walls at different stages ------------------------------------------------- 51 Figure 2-13 Differences between the traditional process and an integrated process. ---- 53 Figure 2-14 view of the wood panel ceiling --------------------------------------------------- 55 Figure 2-15 Overall project cost and schedule changes because of the use of BIM------ 58 Figure 2-16 Changes in project phase durations because of BIM use --------------------- 59 Figure 2-17 Number of users as a percentage of the industry ------------------------------- 60 Figure 2-18 BIM applications usage percentage---------------------------------------------- 61
ix
Figure 2-19 BIM solutions currently being used or evaluated ------------------------------62 Figure 3-1 A spacing plan drawn in Autocad with attributes carrying information about enclosed spaces ---------------------------------------------------------------------68 Figure 3-2 Attributes could be static like space name, or dynamic like area that changes with the boundary ------------------------------------------------------------------69 Figure 3-3 Information could extracted in the form of tables to present and analyze the data -----------------------------------------------------------------------------------69 Figure 3-4 A space program with various groups and spaces of specific types and properties. in Affinity. -------------------------------------------------------------70 Figure 3-5 A Space Program report in Affinity highlighting in red the spaces that are not compliant with program requirements -------------------------------------------71 Figure 3-6 (Top) showing the spaces plan in Affinity which is then imported and walls are automatically created into Revit (bottom) ----------------------------------72 Figure 3-7 The Guggenheim Museum in Bilbao, Spain--------------------------------------74 Figure 3-8 Two alternatives of the designed shade with different blocks------------------76 Figure 3-9 Multiple options can be generated for paneling ----------------------------------77 Figure 3-10 Two variations of a "Bookcase" Revit family created by varying predefined parameters in the same family ----------------------------------------------------78 Figure 3-11 The formula used to derive the relation among the form's components -----78 Figure 3-12 Sets of parameters derived three different forms through predefined equation ----------------------------------------------------------------------------------------79 Figure 3-13 Glazing panel's design was grouped into similar sets --------------------------81 Figure 3-14 Parameters controling floor permiter shapes ------------------------------------81 Figure 3-15 A Building Information Model automates the production of traditional abstract drawings -------------------------------------------------------------------84 Figure 3-16 Objects are linked to checklists within e-Specs that is in turn linked to the relevent sections in the specification documents -------------------------------85 Figure 3-17 A traditional light table for drawing coordination ------------------------------87 Figure 3-18 Different layers and colors in a 2D CAD drawing represents diffferent systems that can be checked on top of each other ------------------------------87 Figure 3-19 snapshot of a plan view exported from Revit as a DWF file and viewed in Design Review----------------------------------------------------------------------88 Figure 3-20 Structural columns against doors and windows is defined as the criteriafor interference checking in Navisworks --------------------------------------------90 Figure 3-21 Based on the criteria determined in the last figure, Navisworks determined interferences between a column and a door -------------------------------------90 Figure 3-22 ArchiCAD – Revit Structure exchange. Only load bearing elements are exchanged. --------------------------------------------------------------------------91
x
Figure 3-23 A rendering generated using 3DS MAX, showing how that building look like in terms of lighting, textures and context. --------------------------------- 93 Figure 3-24 A snapshot of an animation generated in Navisworks in a 3rd person point of view ------------------------------------------------------------------------------ 94 Figure 3-25 A screenshot for Autodesk 360glue app for ios mobile devices------------- 95 Figure 3-26 Exterior and Interior views generated using Revit with its native "Mental Ray" rendering engine------------------------------------------------------------- 96 Figure 3-27 The 3 pillars of sustainability ----------------------------------------------------- 97 Figure 3-28 The solar analysis model used in the project ----------------------------------103 Figure 3-29 The digital design model used in the project ----------------------------------103 Figure 3-30 The design options available in Vasari -----------------------------------------105 Figure 3-31 The estimated energy usage summary viewed in the browser --------------107 Figure 3-32 Illuminance levels overlayed as a grid on a rendering , donethrough daylighting analysis in 3DS MAX ----------------------------------------------108 Figure 3-33 A plumbing schedule generated in Revit, conatining data that can be used to calculate water comsumption and reuse----------------------------------------109 Figure 3-34 Analysis of usage of Fly Ash in Revit ------------------------------------------111 Figure 3-35 Template for materials and resources credit 4---------------------------------112 Figure 3-36 Sequence of information transfer in BIM based analysis --------------------113 Figure 3-37 Sample Gantt chart for the construction schedule of a project --------------116 Figure 3-38 Phase of an exterior wall is pecified in it's properties in Revit --------------118 Figure 3-39 A model exported from Revit linked with a schedule from Microsoft project inside Navisworks ----------------------------------------------------------------119 Figure 3-40 A Revit BIM model integrated with Primavera project plan inside Innovaya Visual Simulation -----------------------------------------------------------------120 Figure 3-41 Role of the estimator in the traditional construction process ----------------121 Figure 3-42 The QTO list generated by Autodesk QTO ------------------------------------124 Figure 3-43 A conceptual model developed in Dprofiler -----------------------------------126 Figure 3-44 Total project costs in the Estimate View tab inside Dprofiler --------------127 Figure 3-45 Three types of security zones: public, restricted in courts design according to US court design requirements ---------------------------------------------------129 Figure 3-46 One of the space validation reports, assesing a candidate design. ----------131 Figure 3-47 Circulation assessments based on security level; spaces are represented as ‘‘startspace’’and‘‘targetspace’’. ---------------------------------------------132 Figure 3-48 A laser range finder device used to scan buildings ---------------------------134 Figure 3-49 Actual image of masonry block (Left), returned point cloud over fitted CAD object (middle), point cloud with masonry block images overlaid (right) -139
xi
Figure 3-50 (Left) general view of 100 11th Avenue project (Right) A close-up at the panel system for the facade ----------------------------------------------------- 145 Figure 3-51 The Powercopy of the Mega-panel in Digital Project ----------------------- 146 Figure 4-1 Subset of the complex array of players in building design and construction -------------------------------------------------------------------------------------- 152 Figure 4-2 Schemata mapping from the individual tools into the data repository and vice versa -------------------------------------------------------------------------------- 154 Figure 4-3 Map of the design process according to RIBA plan of work ----------------- 158 Figure 4-4 The Markus/Maver map for the design process -------------------------------- 159 Figure 4-5 A more accurate generalized representation of the design process ---------- 160 Figure 4-6 The process is interactive, it is not sequential; The Doing/Reflecting go on the same time. ------------------------------------------------------------------------- 162 Figure 4-7 The merged design map ----------------------------------------------------------- 169 Figure 4-8 BIM applications map ------------------------------------------------------------- 171 Figure 4-9 The final diagram showing the theoritical framework of a BIM-enabled design activities------------------------------------------------------------------- 173 Figure 4-10 Main perspective of the project ------------------------------------------------- 176 Figure 4-11 A table generated to compare given area requirements to accomplished ones -------------------------------------------------------------------------------------- 178 Figure 4-12 Model elements are aggregated in NavisWorks to perform clash detection analysis to detect inconsistencies----------------------------------------------- 179 Figure 4-13 Model of cable connection for a lighting connection inside the BIM model -------------------------------------------------------------------------------------- 179 Figure 4-14 Main perspective of the project ------------------------------------------------- 181 Figure 4-15 Different design schemes developed for the project ------------------------- 184 Figure 4-16 Louver BIM studies (right), louver mock-up (left)--------------------------- 185 Figure 4-17 Main perspective of the project ------------------------------------------------- 187
xii
List of tables
Table 1-1 Costs of inadequate interoperability by participant group----------------------- 11 Table 1-2 Difference between traditional and integrated delivery project models ------- 15 Table 2-1 List of exsting BIM stanards -------------------------------------------------------- 48 Table 2-2 Examples of Information Delivery Manuals currently in progress ------------- 50 Table 2-3 Shifting demand for design skills on a typical project --------------------------- 56 Table 3-1 The space requirements for a typical courtroom---------------------------------128 Table 3-2 Experimental data for 3 projects using BIM as opposed to using 2D CAD--142 Table 4-1 A part of the list of deliverables as defined by AIA document B101-2007 --166 Table 4-2 Providing explanation of BIM application status in each design activity ----174 Table 4-3 Comparative analysis between the presented case studies ---------------------192
xiii
List of Acronyms 2D
Two-Dimensional
3D
Three-Dimensional
4D
Four-Dimensional
5D
Five-Dimensional
AEC
Architecture, Engineering, Construction
AIA
American Institute of Architects
API
Application Programming Interface
BIM
Building Information Modeling
BOM
Building Object Model
BOQ
Bill Of Quantities
BREEAM
Building Research Assessment Method
CAD
Computer Aided Design
CADD
Computer Aided Design and Drafting
CASBEE
Comprehensive Assessment Environmental Efficiency
CD
Construction Detailing
CEO
Chief Executive Officer
CIFE
Center for Integrated Facilities Engineering
CNC
Computer Numerical Controlled
DBB
Design-Bid-Build
DD
Design Development
DOE
Department Of Energy xv
Establishment’s
System
Environmental
for
Building
GBS
Green Building Studio
gbXML
Green Building Extensible Markup Language
GSA
General Services Administration
GUI
Graphical User Interface
HVAC
Heating, Ventilation, and Air Conditioning
IDM
Information Delivery Manual
IFC
Industry Foundation Classes
IPD
Integrated Project Delivery
ISO
International Standards Organization
LEED
Leadership in Energy and Environmental Design
LIDAR
Light Detection And Ranging
LOD
Level Of Detail
MEP
Mechanical, Electrical, Plumbing
MVD
Model View Definition
NBIMS
National Building Information Modeling Standard
NCS
National CAD Standard
nD
Unspecified number (n) of Dimensions
NIBS
National Institute of Building Sciences
NIST
National Institute for Standards & Technology
ODBC
Open DataBase Connectivity
POC
Power Copy
QTO
Quantity Take-Off
RFI
Request For Information xvi
RIBA
Royal Institute of British Architects
SD
Schematic Design
STEP
Standard for Exchange of Product Data
USBGC
U.S. Green Building Council
XML
Extensible Markup Language
xvii
Introduction Most design situations offer potentially infinite sources of information, requirements, client demands, needs, limitations and opportunities, accordingly the designer has to make all kinds of decisions and judgments, such as, how to frame the situation, what to pay attention to, what to dismiss, and how to explore, extract, recognize, and choose useful information from all of these potential sources harnessing all the tools available to him, or even developing new tools. In the world of architecture, the emergent digital tools have taken a significant role in how we create, collaborate, design and produce. The increasing use of advanced 3D parametric/generative tools is already enabling radically new ways of designing and coordinating among the many actors in architectural design. Architectural and engineering design is becoming more and more a digitally networked practice. This has led to more distributed activities within and across disciplines. Innovation in design is no longer recognized as the creation of a single product by a single designer, but as the outcome of an iterative and dynamic coordination of a cross-disciplinary intelligence that is distributed across various digital tools, people and organizations in a social context. While automating many complex design tasks, the developed design models remained limited to dimensional properties; they didn't include the information necessary to manage the design activities in one integrated data repository and the data remained scattered among a multitude of domains. Also the essential nature of documentation did not change. The same drawings and documents describing the project are still used; causing significant problems with data interoperability, conveying design intent and drawings accuracy, so there is a true need for innovative design practice and software solutions to address these problems. Many efforts were made during the last decade by academia and commercial software companies that led to the evolution of the "Building information modeling" technology. A Building Information Model is an innovative approach to project data integration; it replaces electronic and paper-based documents with a knowledge database describing the entire project. Participants have real-time access to the model throughout the lifecycle of the project, contributing their own knowledge and data, and using information contributed by others. The key change from present xix
conventional CAD practice is that all discipline specific software can exchange information with the shared building model; a potential to improve interoperability within Architecture/Engineering/Construction (AEC) practice, and to automate the production of project requirements including 2D documentation, schedules, analysis, reports, 3D renderings and animations. If changes and alterations are made, they are automatically reflected in all individual views and documents within the model environment, therefore eliminating inconsistencies. It is still an evolving technology and has a lot of potential to expand and improve. It also still faces challenges to fulfill its promise to revolutionize the AEC industry.
Problem definition
Building design process is a complicated multi-dimensional activity that involves dealing with a lot of information across multiple disciplines. Available tools proved to have a lot of deficiencies and weakness points when dealing design activities and design information. AEC professionals and architects need to possess more robust and flexible tools to handle design tasks and design data. Among the tools currently available, BIM appears to possess extraordinary potential to fulfill the needs of designer to this end. There is a need to investigate the use of BIM as the potential technological solution to many of the problems of present day's building design practice, through studying the range of applications that BIM can apply to and eventually to reflect on the changed design activities and tasks as affected by this technology.
Research objectives
This research aims to explore the new and changed methods and activities of the design process in a BIM enabled environment, through the development of a theoretical framework of design activities to study the design process as affected by BIM implementation, highlighting the technology's areas of strengths, weaknesses, and potential to expand in the design process activities. This research problem is rather broad and more precise research objectives should be formed from this wider problem. These objectives could be detailed as follows: xx
o Objective 1 : Describing the current state of conventional CAD applications in design environments that don't use BIM related applications, pointing to challenges and inefficiencies facing design processes associated with these applications, and how that design practice can be improved. o Objective 2 : Explaining the main principles of BIM, what concepts it operates on, highlighting what problems it addresses and what changes it may cause in traditional projects' duration and staff configuration and its current adoption status. o Objective 3 : Investigating the range of applications of the available BIM technology, and their detailed procedures. o Objective 4 : Investigating the building design process; its definition, nature, phases and design maps with detailed activities related to them. Deduction of a comprehensive map of building design activities. o Objective 5 : Developing the theoretical framework of managing design activities in a BIM-enabled environment, highlighting enhancements to individual design tasks and areas of weaknesses and/or lack of BIM implementation.
xxi
Research methodology
The methodology of the study follows: A. Literature review of the conventional CAD systems, their inefficiencies, and how they can be improved. B. Analytical study of BIM concepts, process improvements, possible changes to the projects' execution process and current status of the technology. C. Deduction of the range of BIM applications in architectural practice and their detailed methods of usage. D. Literature review for design definitions, activities and maps developed by researchers to study the nature of design process. E. Deduction and synthesis of a comprehensive map of building design activities. F. Development of a map of design activities as affected by BIM implementation representing a theoretical framework of managing design activities in a BIM-enabled environment, through the superimposition of the deduced BIM applications on the synthesized activities map. G. Comparative analysis between selected case studies to examine the practical BIM implementation in the aforementioned design activities in real life scenarios.
Scope of work
The scope of research is limited to the implementation of BIM technology within architectural design process. It will not discuss in depth the application and adoption of BIM in construction and operation/facility management phases, though it will highlight the key points that link these phases to the design phase in a BIM workflow.
xxii
Significance of the study
BIM technology has been described to be the answer to many of the common problems in traditional practice, because it operates on intelligent parametric engines that also provide a central depository of information required in building design and construction. It is vital to understand the range of applications and design activities that the available BIM technology supports and the technology limitations, to get a realistic view of its capabilities and develop well-informed custom strategies for adopting and implementing BIM in AEC projects.
Research structure
The thesis consists of four chapters as follows: Chapter 1: Introduction to Computer Aided Architectural Design. Chapter 2: Building Information Modeling concepts. Chapter 3: Building Information Modeling applications in architecture. Chapter 4: New methods of design based on Building Information Modeling implementation.
xxiii
xxiv
References
References
References
A. Published books 1. AIA, American Institute of Architects, The Architect’s Handbook of Professional Practice (John Wiley & Sons, 2011) 2. Chiara, Joseph De, and Michael J. Crosbie, Time-saver Standards for Building Types (McGraw-Hill, 2001) 3. Deutsch, Randy, Bim and Integrated Design: Strategies for Architectural Practice (New Jersey: John Wiley & Sons, 2011) 4. Eastman, Chuck, Paul Teicholz, Rafael Sacks, and Kathleen Liston, BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors (New Jersey: John Wiley & Sons, 2011) 5. Garber, Richard, Closing the Gap: Information Models in Contemporary Design Practice (John Wiley & Sons, 2009) 6. Green, Robert, Expert CAD Management: The Complete Guide (John Wiley & Sons, 2007) 7. Hackos, JoAnn T., Content Management for Dynamic Web Delivery, 1st edn (Wiley, 2002) 8. Kocatürk, Tuba, and Benachir Medjdoub, eds., Distributed Intelligence in Design (Blackwell Publishing Ltd, 2011) 9. Krygiel, Eddy, and Brad Nies, Green BIM: Successful Sustainable Design with Building Information Modeling (Indiana: John Wiley & Sons, 2008) 10. Krygiel, Eddy, Phil Read, and James Vandezande, Mastering Autodesk Revit Architecture 2011 (John Wiley & Sons, 2010) 11. Kymmell, Willem, Building Information Modeling: Planning and Managing Construction Projects With 4d CAD and Simulations (McGraw-Hill, 2008) 209
References
12. Lawson, Bryan, How Designers Think: The Design Process Demystified (London: Architectural press, 2005) 13. Lawson, Bryan, What Designers Know (london: Architectural Press, 2004) 14. Pratt, David J., Fundamentals of Construction Estimating (New York: Cengage Learning, 2004) 15. Reynolds, R. A., Computing for Architects (Oxford: ButterworthHeinemann, 1987) 16. Smith, Ryan E., Prefab Architecture: A Guide to Modular Design and Construction (John Wiley & Sons, 2011) 17. Tunstall, Gavin, Managing the Building Design Process (Oxford: Butterworth-Heinemann, 2006)
B. Theses and dissertations 1. ElDaly, Hazem, ‘Architecture in the Age of Information Technology’ (M.Sc., Cairo, Egypt: Ain Shams University, 2005) 2. Ibrahim, Magdy, ‘An Xml Initiative of Transferring Architectural Information to the Construction Site Based on the BIM Object Concept’ (Ph.D, Chicago, United States: Illinois Institute of Technology, 2005) 3. Jiang, Xinan, ‘Developments in Cost Estimating and Scheduling in Bim Technology’ (M.Sc., Massachusetts, USA: Northeastern University Boston, 2011) 4. Zhao, Xin, ‘An Investigation on Using BIM for Sustainability Analysis Using the LEED Rating System’ (M.Sc., Los Angeles, united states: University of Southern California, 2011)
C. Journal articles 1. Azhar, Salman, Wade A. Carlton, Darren Olsen, and Irtishad Ahmad, ‘Building Information Modeling for Sustainable Design and LEED® Rating Analysis’, Automation in Construction, 20 (2011)
210
References
2. Becerik-Gerber B, Rice S, ‘The Perceived Value of Building Information Modeling in the U.S. Building Industry’, ITcon Vol. 15, 2010 3. Brilakis, Ioannis, Manolis Lourakis, Rafael Sacks, Silvio Savarese, Symeon Christodoulou, Jochen Teizer, and others, ‘Toward Automated Generation of Parametric BIMs Based on Hybrid Video and Laser Scanning Data’, Advanced Engineering Informatics, 24 (2010) 4. Sacks, Rafael, Charles M. Eastman, and Ghang Lee, ‘Parametric 3D Modeling in Building Construction with Examples from Precast Concrete’, Automation in Construction, 13 (2004) 5. Sanguinetti, Paola, Sherif Abdelmohsen, JaeMin Lee, JinKook Lee, Hugo Sheward, and Chuck Eastman, ‘General System Architecture for BIM: An Integrated Approach for Design and Analysis’, Advanced Engineering Informatics, 26 (2012) 6. Succar, Bilal, ‘Building Information Modelling Framework: A Research and Delivery Foundation for Industry Stakeholders’, Automation in Construction, 18 (2009) 7. Tang, Pingbo, Daniel Huber, Burcu Akinci, Robert Lipman, and Alan Lytle, ‘Automatic Reconstruction of As-built Building Information Models from Laser-scanned Point Clouds: A Review of Related Techniques’, Automation in Construction, 19 (2010) 8. Tse T K, Wong K A and Wong K F, ‘The Utilisation of Building Information Models in nD Modelling: A Study of Data Interfacing and Adoption Barriers’, ITcon Vol. 10, 2005
D. Conference papers 1. Azhar, S., J. Brown, and R. Farooqui, ‘BIM-based Sustainability Analysis: An Evaluation of Building Performance Analysis Software’, in Proceedings of the 45th ASC Annual Conference, 2009
211
References
2. Gane, Victor; Haymaker, ‘Conceptual Design of High-rises with Parametric Methods’, in Predicting the Future [25th eCAADe Conference Proceedings], 2007 3. Ibrahim, M., ‘CAD Smart Objects: Potentials and Limitations’, in 21th eCAADe Conference Proceedings, 2003 4. Katz, Neil C, ‘Algorithmic Modeling; Parametric Thinking: Computational Solutions to Design Problems’, in 5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD ), 2010 5. Lyon, Eduardo, ‘Autopoiesis and Digital Design Theory: CAD Systems as Cognitive Instruments’, in International Journal of Architectural Computing vol. 3, 2005 6. Robert M. Leicht, John I. Messner, ‘Comparing Traditional Schematic Design Documentation to a Schematic Building Information Model’, in Proceedings from the 24th International Conference on Information Technology in Construction, 2007
E. Reports and white papers 1. 2010 AIA TAP BIM Awards - Veterans Affairs Medical Center Campus (AIA, 2010) [accessed 25 August 2012] 2. 2011 AIA TAP BIM Awards - D.C Consolidated Forensic Lab (AIA, 2011) [accessed 25 August 2012] 3. A Working Definition : Integrated Project Delivery (IPD AIA/CC council, 2007) 4. Barriers to the Adoption of Building Information Modeling in the Building Industry (Autodesk whitepaper, 2004) 5. BIM and Cost Estimating (Autodesk white paper, 2007) 212
References
6. BIM and the Autodesk Green Building Studio (Autodesk white paper, 2008) 7. BIM Project Execution Planning Guide (CIC Research Group, Department of Architectural Engineering,The Pennsylvania State University, 2010) 8. Building Information Modeling (Autodesk white paper, 2002) 9. Building Information Modeling for Sustainable Design (Autodesk whitepaper, 2005) 10. Conceptual Design Modeling in Autodesk Revit Architecture 2010 (Autodesk white paper) [accessed 30 April 2012] 11. Constructing the Business Case: Building Information Modeling (BuildingSmart, 2010) 12. Cost Analysis of Inadequate Interoperability in the US Capital Facilities Industry (National Institute of Standards and Technology, 2004) 13. Data Integration Glossary (U.S. department of transportation, office of asset management, 2001) 14. Daylight Simulation in 3ds Max Design 2009 (Autodesk, 2008) [accessed 5 December 2012] 15. eSPECS for Revit: Integrating Building Information Models and Construction Specifications (InterSpec) [accessed 5 March 2012] 16. GSA BIM Guide for Energy Performance (U.S. General Services Administration, 2007) 17. GSA BIM Guide Overview (U.S. General Services Administration, 2007)
213
References
18. IFC (Bentley whitepaper, 2010) [accessed 17 May 2012] 19. Improving Building Industry Results Through Integrated Project Delivery and Building Information Modeling (Autodesk white paper) [accessed 15 February 2012] 20. Integrated Project Delivery - A Working Definition (McGraw-Hill Construction and The American Institute of Architects, 2007) [accessed 22 April 2012] 21. Integrated Project Delivery - Case Studies (McGraw-Hill Construction and The American Institute of Architects, 2010) [accessed 22 April 2012] 22. Khemlani, Lachmi, Top Criteria for BIM Solutions: AECbytes Survey Results (AECbytes, 2007) [accessed 20 March 2012] 23. LEED 2009 for New Construction and Major Rennovations (USGBC, 2009) 24. MVD Process (buildingSMART international, 2010) [accessed 18 May 2012] 25. National BIM Standard Version 2 (National Institute of Building Sciences, 2012) 26. National CAD Standard Version 3.1 (National Institute of Building Sciences, 2005) 27. Parametric Building Modeling: BIM’s Foundation (Autodesk white paper, 2007) 28. Smart Market Report: Interoperability in the Construction Industry (McGraw-Hill Construction, 2007)
214
References
29. Tapping BIM Using ODBC (Autodesk white paper, 2005) 30. The Business Value of BIM in North America (McGraw-Hill Construction, 2013).
F. Worldwide Web resources 1. ‘100 11th Avenue by Jean Nouvel - Dezeen’, Dezeen [accessed 20 November 2012] 2. ‘About CityGML’, [accessed 20 November 2012] 3. ‘BIM 360 Glue On The Go - Beyond Design’ [accessed 21 November 2012] 4. ‘BIM and Project Planning’ [accessed 13 May 2012] 5. Cassidy, Robert, and Tim Gregorski, ‘BIM Finally Starting to Pay Off for AEC Firms’, “BuildingDesign+Construction”magazine, 2012 [accessed 18 September 2012] 6. ‘Bim Journal, Issue 11: BIM Based Quantity Surveying’ [accessed 13 May 2012] 7. ‘Bim Journal, Issue 14: Integrating the Schedule’ [accessed 13 May 2012] 8. ‘Bim Journal, Issue 4: Model Based Estimating’ [accessed 13 May 2012] 9. ‘buildingSMART Middle East Market Survey’ [accessed 24 April 2012]
215
References
10. ‘Computer-aided Architectural Design’, Wikipedia [accessed 18 March 2013]. 11. ‘Computer-aided Design’, Wikipedia [accessed 15 February 2012] 12. ‘ECG Firm Information’ [accessed 18 September 2012] 13. ‘Frank Gehry’, Wikipedia [accessed 30 April 2012] 14. ‘Frequently Asked Questions General Questions About buildingSMART, IAI, and IFC’ [accessed 13 December 2010] 15. ‘Frequently Asked Questions General Understanding of the IFC Specification’ [accessed 13 December 2010] 16. ‘Green Building XML Schema’ [accessed 17 January 2012] 17. ‘Hellmuth, Obata and Kassabaum’, Wikipedia [accessed 18 September 2012] 18. ‘LIDAR’, Wikipedia [accessed 1 September 2012] 19. ‘List of Existing BIM Standards’, CAD addict, [accessed 20 November 2012]. 20. ‘National BIM Guide’, NATSPEC Building Information Modeling Portal, [accessed 20 November 2012].
216
References
21. ‘Overview of Information Delivery Manuals’ (buildingSMART international, 2012) [accessed 19 May 2012] 22. ‘RLF History’ [accessed 17 September 2012] 23. ‘The Dubai Mall’, Wikipedia [accessed 30 April 2012] 24. ‘Unveiling IFC2x4’ (buildingSMART International, 2010) [accessed 18 May 2012] 31. Khemlani, Lachmi, ‘DProfiler: A “Macro” BIM Solution’ (AECbytes Viewpoint, 2008) [accessed 14 May 2012] 25. Khemlani, Lachmi, ‘Solibri Model Checker V7’ (AECbytes Viewpoint, 2011) [accessed 5 May 2012] 26. Khemlani, Lachmi, ‘Trelligence Affinity: Extending BIM to Space Programming and Planning’ (AECbytes Viewpoint, 2010) [accessed 11 April 2011] 27. Várkonyi, Viktor, ‘“Thou Shalt Collaborate”; Interdisciplinary Collaboration Strategies in the Age of BIM’ (AECbytes Viewpoint, 2009) [accessed 20 April 2012]
217
References
G. Video recordings 1) Affinity 6.0 Schematic Design Tools [accessed 29 April 2012] 2) Affinity Design to Revit [accessed 29 April 2012] 3) Autodesk Navisworks: Tour of TimeLiner [accessed 20 January 2012]
H. Interviews 1) Hussein, Mohammed, ‘Interview on BIM Implementation Strategies with General Manager of “Virtual Projects”’,2012 2) Saleh,Adel,‘Interview on BIM Implementation with Project Manager of “Barwa Town center-New Cairo”’,2012 3) Youssef, Hamoda, ‘Interview on BIM Project Experience with Former Project Manager at “ECG”’,2012
218
Arabic Summary
References
جامعة عين شمس كلية الهندسة قسم الهندسة المعمارية
تطبيق تكنولوجيا نماذج معلومات المبانى فى العملية التصميمية
رسالة مقدمة من
محمد رفعت مكاوى محمد بكالوريوس الهندسة المعمارية عام – 7002جامعة عين شمس للحصول على درجة الماجيستير فى العلوم الهندسية
تحت إشراف
أ.م.د /أحمد عاطف الدسوقى أستاذ مساعد بقسم الهندسة المعمارية – كلية الهندسة -جامعة عين شمس
د /حازم طلعت الدالى مدرس بقسم الهندسة المعمارية – كلية الهندسة -جامعة عين شمس
القاهرة 7002
جامعة عين شمس كلية الهندسة قسم الهندسة المعمارية
االسم:
محمد رفعت مكاوى محمد
العنوان :تطبيق تكنولوجيا نماذج معلومات المبانى فى العملية التصميمية الدرجة :درجة الماجيستير فى العلوم الهندسية
لجنة الحكم: أ.د .أحمد رضا عابدين
التوقيع:
أستاذ الهندسة المعمارية بكلية الهندسة جامعة القاهرة
أ.د .سيد مدبولى على
التوقيع:
أستاذ الهندسة المعمارية بكلية الهندسة جامعة عين شمس
أ.م.د .أحمد عاطف الدسوقى
التوقيع:
أستاذ مساعد الهندسة المعمارية بكلية الهندسة جامعة عين شمس
الدراسات العليا: الموافقة
الختم
التاريخ3102/ / :
موافقة مجلس الكلية
موافقة مجلس الجامعة
التاريخ3102/ / :
التاريخ3102/ / :
إقـــرار هذا البحث مقدم إلى جامعة عين شمس للحصول على درجة الماجستير في العلوم الهندسية ،تم إنجاز هذا البحث بقسم الهندسة المعمارية ،بكلية الهندسة -جامعة عين شمس من عام 7000إلى .7002 هذا ولم يتم تقديم أي جزء من هذا البحث لنيل أي مؤهل أو درجة علمية ألي معهد علمي آخر. و هذا إقرار مني بذلك ،،،
االسم :محمد رفعت مكاوى محمد الكلية :كلية الهندسة – جامعة عين شمس التاريخ : التوقيع :
/
/
مستخلص الرسالة العنوان :تطبيق تكنولوجيا نماذج معلومات المبانى فى العملية التصميمية الوصف :عملية تصميم المبانى تتضمن ادارة و معالجة كم كبير من المعلومات عن المبنى المراد تصميمه .مع اختراع الحاسب ،ساهمت تطبيقاته فى ادخال العديد من التحسينات لعملية التصميم و ما يتعلق بها من مهام .و لكن ظلت العملية التصميمية مقيدة بالقدرات المحدودة لهذه التطبيقات فى ادارة و نقل و اظهار و استرجاع الخصائص المختلفة لتصميم المبنى من الهيكل المعلوماتى الذى يتم بناؤه أثناء عملية التصميم. لمواجهة هذه المشكلة ،ظهرت تكنولوجيا "نماذج معلومات المبانى" .تقوم هذه التكنولوجيا على استخدام نماذج تخيلية ثالثية األبعاد للمبنى ،بحيث يمكن ان يتم تزويدها يالعديد من المعلومات عن المبنى (مثل السعر ،الخامات ،الخواص ال فيزيائية) فى بيئة مشتركة الدارة هذه المعلومات. تبحث هذه الرسالة المهام المتعلقة بعملية التصميم و التغيير الذى يطرأ عليها مع استخدام هذه التكنولوجيا .كما تناقش الصعوبات و االمكانيات المستقبلية المحتملة لها .و تخلص الى تطوير هيكل نظرى للتعامل مع األنشطة و المهام المختلفة للعملية التصميمية باستخدام تطبيقات هذه التكنولوجيا .من أجل تحقيق هذه األهداف ،تم أوال وصف و تحليل التطبيقات التقليدية المختلفة للتصميم بمساعدة الحاسب ،و ما هى مشاكلها و مدى محدودية قدراتها و تأثير ذلك على مجال العمران و البناء .فى الفصل الثانى تم مناقشة و تحليل المبادئ األساسية التى تقوم عليها تكنولوجيا نماذج معلومات المبانى ،و تحليل المميزات الرئيسية التى وعدت بتقديمها منذ ظهورها ،باالضافة الى تحليل التغيرات التى قد تطرأ على مراحل و استراتيجيات ادارة العملية التصميمية و الفريق المشارك بها الستيعاب تطبيق تكنولوجيا نماذج معلومات المبانى .بعدها عمد البحث فى الفص الثالث الى استنباط كافة التطبيقات المحتملة للتكنولوجيا ،و من ثَم تم التوصل الى 00تطبيق لها باالضافة الى الوسائل التفصيلية لهذا التطبيق .فى الفصل الرابع واألخير تمت مناقشة طبيعة عملية التصميم و مراحلها و أنشطتها المختلفة ،و من ثَم عمل خريطة لألنشطة التصميمة و دمجها مع خريطة للتطبيقات المستنبطة لترسيم خريطة نهائية لألساليب المتغيّرة و المحسّنة للعملية التصميمة كنتيجة لتطبيق تكولوجيا نماذج معلومات المبانى .فى النهاية تم تقديم بعض األمثلة العملية لمشروعات اعتمدت فى تصميمها على تطبيقات نماذج معلومات المبانى ،لدراسة التطبيق العملى للتقنية فى أنشطة التصميم ،باالضافة الى استنباط بعض مواطن الضعف و عدم الكفاءة التى ظهرت أثناء التطبيق و كيف يمكن التغلب عليها. الكلمات المفتاحية: معلومات المبانى
التكنولوجيا المعمارية – التصميم بمساعدة الحاسب – نماذج
أ
ملخص الرسالة التعامل مع العملية التصميمية يعنى التعامل مع كم كبير من مصادر المعلومات ،متطلبات و اشتراطات لجهات عديدة و كذلك العديد من المحددات .و غالبا ما يقع على عاتق المصمم مهمة ادارة هذا الكم من العناصر المؤثرة على التصميم بغرض الوصول الى التصميم النهائى الذى يحقق أفضل الحلول الممكنة ،مستخدما األدوات المتاحة له او مطورا ألدوات جديدة فى سبيل تحقيق هذه الغاية .و قد أدى التطور المتسارع فى امكانيات الحاسبات و تطبيقاتها الى زيادة االعتماد على تقنيات التصميم بمساعدة الحاسب ،و ما صاحب ذلك من اتاحة طرق جديدة للتصميم و تبادل و تنسيق المعلومات و العناصر المكونة للمبانى .و قد أدى كل ذلك بدوره الى عملية تصميمية تعتمد بشكل أكبر على تعاون فريق متنوع من المتخصصين فى كافة المجاالت و اختبار مجموعات من الحلول بشكل تكرارى للتوصّ ل للحل النهائى بدال من االعتماد على منتج منفرد من فرد واحد خاضع للميول الفردية. بالرغم من أن هذه التقنيات أتاحت اليات أفضل لتبادل المعلومات و ميكنة العديد من المهام المرهقة التى كا نت تستغرق وقتا طويال من المصمم ،اال انها ظلت فى غالبيتها عاجزة عن توفير بيئة متكاملة الدارة كافة المعلومات و األنشطة الخاصة بعملية التصميم .باالضافة لذلك ،ظلت هذه األنشطة بأك ملها بشكل أساسى معتمدة على ثقافة انتاج و تبادل الرسومات ثنائية األبعاد بين أفراد الفريق المشارك فى تصميم و تنفيذ المبنى .كل ذلك أدى الى مشاكل حقيقية فى نقل و ادارة المحتوى التصميمى ،و تنسيق عناصره بين كافة المشاركين. كل ما سبق أبرز الحاجة الى تطوير أدوات جديدة للتعامل مع هذه المشكالت و توفير بيئة أكثر فاعلية لمواجهة المتطلبات المتزايدة للتعامل مع عملية تصميم المبانى و التى تزداد تعقيدا بشكل متسارع .و كنتيجة لمجهودات متزايدة من األكادميين و مط ّورى تطبيقات الحاسب ،تطورت تقنية "نماذج معلومات المبانى" على مدار العقد األخير كأداة لديها القدرات و االمكانيات المناسبة الدارة عملية التصميمة بشكل أكثر كفاءة .تعتمد هذه التقنية على تخزين العناصر و المعلومات الخاصة بالمبانى فى صورة نموذج تصميمى تخيّلى مخ ّزن كقاعدة بيانات متكاملة ،و للمشاركين فى العملية التصميمة القدرة على ادخال المعلومات أو استخراجها فى العديد من الصور بما يالئم احتياجات كل فرد مشارك .كل التغيرات التى تطرأ على هذه النموذج التخيلى كنتيجة لتعديالت من أحد المشاركين فى الفريق التصميمى تنعكس تلقائيا على كافة المخرجات التى يستخرجها األخرون فى صورة رسومات ،تقارير ،احصائيات ،نماذج محاكاة ،الخ ..هذه المستخرجات بدورها تخرج كمنتج تلقائى ،دون الحاجة الى تدخل المصمم بعد اتمام النموذج .هذه التقنية مازالت فى مرحلة التطور و النمو ،و هى بشكلها الحالى تتيح االمكانية الدارة العملية التصميمية بشكل أفضل ،اال انها مازالت تواجه العديد من المشكالت التى تعوقها عن تحقيق كافة ما يتوقعه و يريده المطورين و االكادميين و الممارسين منها. ت
المشكل البحثى العملية التصميمة شديدة التعقيد و تتضمن ادارة و تبادل المعلومات بين متخصصين فى عدد متزايد من المجاالت الهندسية .و لكن األدوات التقليدية المستخدمة الدارة العملية التصميمية تنطوى على الكثير من العيوب ،مما حدا بالممارسين و المصممين الى التعبير عن رغبتهم صراحةً فى تملّك أدوات أكثر فاعلية و كفاءة فى التعامل مع العملية التصميمية .مما دفع األكادميين و مطورى التطبيقات المعمارية الى تطوير تكنولوجيا نماذج معلومات المبانى كأداة لديها المقدرة على ادارة أكثر فاعلية و اعتمادية للنموذج التخيّلى للمبنى فى مرحلة التصميم .من هنا تبرز الحاجة الى فهم التغيرات التى قد تفرضها هذه التكنولوجيا على أساليب العمل الموجودة ،توزيع المهام داخل فرق العمل، المميزات التى تقدمها الدارة العملية التصميمية والعوائق التى تواجهها .و فهم انعكاس ذلك على أنشطة العملية التصميمية و تأثرها بتطبيق هذه التقنية. أهداف البحث يهدف هذا البحث بشكل أساسى الى دراسة تطبيق نكنولوجيا نماذج معلومات المبانى فى العملية التصميمية ،بما يشمله ذلك من دراسة المميزات فى التطبيقات التى يمكن استخدامها فيها ،االمكانيات لتطورها مستقبال و التغيرات التى تفرضها .لذلك تهدف الدراسة الى تفصيل كافة التطبيقات الممكنة لهذه التكنولوجيا و ربطها فى اطار نظرى باألنشطة المختلفة التى يحتك بها المصممون فى غالبية المشاريع المعمارية ،و دراسة تأثر أنشطة العملية التصميمة بهذه التقنية. مجال البحث يهتم البحث بدراسة تطبيق تكنولوجيا نماذج معلومات المبانى فى العملية التصميمية بشكل أساسى ،و عليه فانه لن يتطرق بعمق الى دراسة التطبيق فى مجاالت االنشاء و ادارة المنشآت ،و ان كان سيتناول بايجاز نقاط التماس بينهم و بين العملية التصميمية فى اطار تطبيق التكنولوجيا التى تهدف الى ايجاد بيئة عمل تجمع كافة مدخالت المشاركين فى المشروع من البداية للنهاية. منهجية البحث لتحقيق أهداف الدراسة تم استخدام منهجية يمكن تفصيلها فى الخطوات األتية: oدراسة تحليلية للتقنيات التقليدية للتصميم بمساعدة الحاسب المستخدمة للتعامل مع العملية التصميمية ،مع تحليل العيوب المصاحبة لتلك األدوات و كيف يمكن تحسين أداء المصممين فى ضوء تحسين قدرات األدوات التى يستخدمونها. oشرح و تحليل المبادئ األساسية التى تقوم عليها تقنية نماذج معلومات المبانى، حالتها و امكانيتها الحالية ،المميزات التى تقدمها ،و كيف يمكنها مخاطبة المشكالت التى كانت تواجه األدوات التقليدية و التغيرات التى قد تفرضها التقنية على استراتيجيات التصميم المستخدمة. ث
o o o o
o
استنباط كافة التطبيقات التى يمكن استخدام التقنية فيها ،و امكانيات التقنية للتطور لمخاطبة تلك المشاكل و التوسع فى تطبيقات أخرى. دراسة طبيعة العملية التصميمية ،العوامل المؤثرة عليها ،مراحلها و األطر النظرية لألنشطة التى تتضمنها. استنباط و تطوير خريطة تشمل كافة األنشطة المرتبطة بعملية تصميم المبانى و المهام التى تتضمنها دمج تطبيقات تكنولوجيا نماذج معلومات المبانى -المستنبطة من الجزء السابق – مع خريطة أنشطة العملية التصميمية للوصول الى خريطة نهائية توضح عملية التصميم المتأثرة باستخدام تقنية نماذج معلومات المبانى و القاء الضوء على األنشطة التى تأثرت و كيف تأثرت. دراسة عملية و تحليل مقارن لمشاريع عالمية و محلية استخدمت التقنية فى عملية التصميم الختبار التطبيق العملى للتقنية فى التصميم و العقبات التى واجهت المصممين.
ج