Lecture5.pdf - Google Drive

0 downloads 5 Views 281KB Size Report
Basic identification methods. • Frequency domain approach. • Time domain approach. – Example. ˆ ( ). ˆ. ( ). ˆ(
ECE 2680: Adaptive Control (3 Credits, Fall 2016)

Lecture 5: System Identification (I)

September 29, 2016 Zhi-Hong Mao Associate Professor of ECE and Bioengineering University of Pittsburgh, Pittsburgh, PA 1

Outline • Homework 2 • Basic identification methods

2

Homework problems • Homework 2 (due next Thursday Oct. 6) – Problems 0.3 and 2.2(a)-(b)

1

Basic identification methods • Frequency domain approach – Frequency response: steady-state response of systems to sinusoidal inputs The figure compares the output response of a system (red solid line) with a sinusoidal input (black dashed line) Both the magnitude and the phase shift of a system will change with the frequency of the input into the system

Phase Shift 1.5 1

A

0.5 Output 0

B

-0.5 -1 -1.5 0

10

20

30

Time

Amplitude Ratio = B / A

4

Basic identification methods • Frequency domain approach –

Frequency response: steady-state response of systems to sinusoidal inputs

– Frequency response function ^ its frequency • Given a system with transfer function P(s), ^ response function is P(jω) • The steady-state gain of a system for a sinusoidal input sin(ω0t) is the magnitude of the transfer function evaluation at s = jω0, and the phase shift of the output sinusoid relative to ^ 0) the input sinusoid is the angle of P(jω

5

Basic identification methods • Frequency domain approach –

Frequency response: steady-state response of systems to sinusoidal inputs



Frequency response function

– Example

yˆ p ( s ) ˆ kp  P( s )  rˆ( s ) s  ap

6

2

Basic identification methods • Frequency domain approach –

Frequency response: steady-state response of systems to sinusoidal inputs



Frequency response function



Example

Question: How about identification of a system of higher order?

yˆ p ( s ) ˆ  s n 1   1  P( s )  n n n 1 ˆ( r s) s   n s   1

7

Basic identification methods •

Frequency domain approach

• Time domain approach – Example

yˆ p ( s ) ˆ kp  P( s )  rˆ( s ) s  ap Question: What is the differential equation for the above frequency-domain description?

8

Basic identification methods •

Frequency domain approach

• Time domain approach – Example

yˆ p ( s ) ˆ kp  P( s )  rˆ( s ) s  ap y p ( t )   a p y p ( t )  k p r (t ) Question: If we have measurement of r(t) and dyp(t)/dt at t1 and t2, how can we estimate ap and kp?

9

3

Basic identification methods •

Frequency domain approach

• Time domain approach – Example

yˆ p ( s ) ˆ kp  P( s )  rˆ( s ) s  ap y p ( t )   a p y p ( t )  k p r (t )

10

Basic identification methods •

Frequency domain approach

• Time domain approach – Example

yˆ p ( s ) ˆ kp  P( s )  rˆ( s ) s  ap

y p ( t )   a p y p ( t )  k p r (t )

Question: Why we avoid the measurement of dyp(t)/dt and how to do that?

11

Basic identification methods •

Frequency domain approach

• Time domain approach – Example

yˆ p ( s ) ˆ kp  P( s )  rˆ( s ) s  ap Define

12

4

Basic identification methods •

Frequency domain approach

• Time domain approach – Example

yˆ p ( s ) ˆ kp  P( s )  rˆ( s ) s  ap Define

y p (t )   *T w(t )  wT (t ) *

13

Basic identification methods •

Frequency domain approach

• Time domain approach – Example

y p (t )   *T w(t )  wT (t ) *

Nominal identifier parameter

e1 (t )   T w(t )  y p (t )   T   *T  w(t ) Identification error

Adaptive identifier parameter

Linear error equation

14

Basic identification methods •

Frequency domain approach

• Time domain approach –

Example

– Gradient algorithm

e1 (t )   T w(t )  y p (t )   T   *T  w(t ) Objective: minimize e12 (t ) Gradient:

 2  e1   2e1   e1   2e1w 

Parameter update law:

It is a vector!

d   ge1w dt 15

5

Basic identification methods •

Frequency domain approach

• Time domain approach –

Example

– Gradient algorithm • Advantages of using the gradient algorithm over using the following calculation 1

1   w1 (t1 ) w2 (t1 )   y p (t1 )      w (t ) w (t )  y (t )   2  1 2 2 2   p 2 

16

Basic identification methods •

Frequency domain approach

• Time domain approach – –

Example Gradient algorithm

– Least-squares algorithm Objective: minimize the integral-squared-error (ISE) t

ISE =   T ( )w( )  y p ( ) d 2

0

Least-squares estimate

17

Basic identification methods •

Frequency domain approach

• Time domain approach – –

Example Gradient algorithm

– Least-squares algorithm Recursive formulation

 (t ) =  P(t )w(t )  T (t )w(t )  y p (t )  P(t ) =  P(t )w(t )wT (t ) P(t )

 (0)  0

P(0)  PT (0)  P0

Remark: It can be shown that (t) converges t asymptotically to * if  w( )wT ( )d is unbounded as 0 t∞. 18

6

Basic identification methods •

Frequency domain approach

• Time domain approach – – –

Example Gradient algorithm Least-squares algorithm

– Model reference identification yˆ p ( s ) ˆ kp  P( s )  rˆ( s ) s  ap

a0

uˆ( s )

+

Reference model

yˆ m ( s ) ˆ k  M ( s)  m uˆ( s ) s  am yˆ m ( s ) Mˆ ( s )

rˆ( s )

_+

b0 Pˆ ( s )

yˆ p ( s )

eˆ1 ( s )

19

References • • • • •

K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd Edition, Addison-Wesley, 1995. C.-T. Chen, Linear System Theory and Design, 4th Edition, Oxford University Press, 2013. R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation, CRC, 1994. S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, 1989. G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, 1986.

20

7