71. 1.16 Temperature variation of Al isothermal compressibility . . . . . . . . . . . . . 72. 1.17 Temperature variation of Pb isothermal compressibility . . . . . . . . . . . . . 72.
!
" # $% &'
( $%
( $% ( $% )
*
+
,
*
- . - .
,
" - / 0 ,+1
2
3 ! 14 5
!
,
6 3 5
7
" 5
+
2
6 ) 5
*
! 6 3 8
" 8
6 ) 8
+ " 4 5 4
,!
* " 4 4
,
" 4 5
,
" 4 5
,
, " 4
,
7 " 4 5 9
,+
2 " 4 9
,+
! " 4 5
,*
8 . 4 0 Æ
,,
) 3'
22
" 3' 4
4 :
+
" 3' 4
4 ; Æ
*
!!
!
6 5 / 4
/
"
0
! * =
0 I J 9 4 I +J0
4 $ % 4 $ 4 % I J " 4 4
; 9
L
> $% $% $ 7% 4 I J
)
¼
> $% $%
# > $ % $ %
$ 2+%
4 4 " 4 0
0 4 $ % 4 0 4 I J
L , O$4 %O$!% +
$ 2*%
O$4 % L
> $%> $% M
%* $%
$
$ 2%
" 4 .0 ' '.
,
.! Æ
) 1 Æ / I +0 J ; Æ
"
; Æ ; 0 4 . I +0 J #
' L
I $% $!%J
$ 2%
" . 4 4 I +0 J
% & /
'
=
4 4 #
" 4 ; Æ 4 8
" 4 0 0 4 4 8 +
*
" / 0 0 0 ; 4
" ; 4 0 IJ = 4 0 4 = - 0
4 4 5 4 0 4 0
4 4
/
' &.
- 44 50 80 0 580 - 5- ' ; 0 4
*2! ,!*! #
*2! 5 0 0 Æ
*2! 5 8
#+ #-
,!*! 5
*7! 511 $I*+J%
! P>11
- !11 $I*+J%
+! P>11
- ! $I*+J%
!! 1>
-
!
4
+ 4
+!2 4
!
4
!* 4
2 4
P>11
I**J0 4 0 0 . I**J ; 4 = 4
4
0
= !!! - !1 " / !!!! !1 7
,+1 !!!! " / !!!!
,+1 "
= 0
4
" 0
# " - / 0 ,+1
/
.(
= - 4 4 4 30 / $ 2%0 0 / $ ,!%0 5 8 5 0 0 Æ 2
5 0 0 Æ
) I J 5 *2! 5 88 " 3"- / !!!! ! " 3 / ! / $ 2% 5 Æ ; 4 5 0 4 3 4 " / 4 88 !,
D0 *2! 5 0
70
radial distribution function, Al lattice, 0 K "RADIAL"
60
g(r)
50 40 30 20 10 0
0
0.5
1 1.5 2 r/atomic diameter
2.5
# 3 ! 14 5
! !
!!!! 0
0 4 !
4 4 ! " 0 4 0 4
4 " Æ
" 4 3 $ 3 4 % ,$% 5 ! ! 0 / !!!! 4 3
,$% 9 ,$% 4
3 / 5 4 0 ,$%0 / I J 9 / ! ! ! !!!! 0 0 Æ ,$% 3 ! ! !1 G !10 / !!!! 3 ,$% "
!1
4 7 " 0
0 4 "
*2! 5 7 = 7$% / 4 7$% $%0 88 / 4 " "
1.8
Al lattice solidification from 2010 K 10 10 K "RADIAL"
1.6 1.2
4
1
g(r)
g(r)
"RADIAL"
5
1.4
0.8 0.6
3 2
0.4
1
0.2 0
Al lattice melting from 10 K to 2010 K
6
0
0.5
1 1.5 2 r/atomic diameter
2.5
0
3
0
0.5
liquid Al at 2010 K
2.5
g(r)
1
g(r)
"RADIAL"
3
1.2 0.8 0.6
2 1.5
0.4
1
0.2
0.5
0
3
Al lattice at 10 K
3.5
"RADIAL"
1.4
2.5
a
b
1.6
1 1.5 2 r/atomic diameter
0
0.5
1 1.5 2 r/atomic diameter
2.5
0
3
0
c
0.5
1 1.5 2 r/atomic diameter
2.5
3
d
radial distribution function for Al
,# 6 3 5
/ 4 ) 0 4 0 ; Æ " 0 : 0 0 4 4 ) / " ; 4 ) 4 / 5 0 4 ) 2 0 4 ) 2$% " / 0 ) 2$% 0 0 4
Al at equilibrium 2010K
Al at 10K b
a
Interatomic potential used: RTS
Al at equilibrium, 10K c
7# " 5
4 2$% " 4 ) / ! ! ! " 2$% = 0 " 4 4 @
4 $ ' 14 %0 *2! 8 / !1 !!!! " 8 !1 +! !1 +!!!!
" / +! !1 !!!! " 4 3 / !$% !$% 4 9 +! !1
!1 +!!!! / !1 !!!! 0 +
Al lattice solidification from 2010 K 10 10 K
Al lattice melting from 10 K to 2010 k
-1400
"gib" "potential"
-1250
gibbs free energy and potential energy (ev)
gibbs free energy and potential energy (ev)
-1200
-1300 -1350 -1400 -1450 -1500 -1550 -1600 -1650 40000 42000 44000 46000 48000 50000 52000 54000 56000 58000 60000 time-step
"gib" "potential"
-1450 -1500 -1550 -1600 -1650 -1700 -1750
0
2000
4000
6000
8000 10000 12000 14000 16000 18000 20000 time-step
b
a
liquid Al at 2010 K
-1565 "gib" "potential"
gibbs frre energy and potential energy (ev)
gibbs free energy and potential energy (ev)
-2000
-1800
-1600
-1400
-1200
-1000 20000 22000 24000 26000 28000 30000 32000 34000 36000 38000 40000 time-step
Al lattice at 10 K "gib" "potential"
-1570 -1575 -1580 -1585 -1590 -1595
-1600 60000 61000 62000 63000 64000 65000 66000 67000 68000 69000 70000 time-step
c
d
gibbs free energy and interatomic potential for Al
2# 6 ) 5
*
4 4 3 !$% !$% 5
/ 4 9 7$%
$%
$%0
" 4 ;
Cu lattice melting from 10 K to 3010 K
9
"RADIAL"
8
3
6
2.5
5
g(r)
g(r)
"RADIAL"
3.5
7
4
2 1.5
3 2
1
1
0.5
0
Cu at 10 K
4
0
0.5
1 1.5 2 r/atomic diameter
2.5
0
3
0
0.5
1 1.5 2 r/atomic diameter
b
3
a
Cu at 3010 K
0.8
2.5
Cu solidification from 3010 K to 10 K
2.5
"RADIAL"
"RADIAL"
0.7
2
0.6 1.5
0.4
g(r)
g(r)
0.5 0.3
1
0.2 0.5
0.1 0
0
0.5
1 1.5 2 r/atomic diameter
2.5
3
0
0
0.5
c
1
1.5 r/atomic diameter
2
2.5
3
d
radial distribution function for Cu
!# 6 3 8
" @
) / "
4 ) 5 . 0 0 4 " 5 80 / 0
/
Cu at equilibrium 3010K
Cu at 10K b
a
Interatomic potential used: RTS
Cu at equilibrium, 10K c
# " 8
Cu lattice solidification from 3010 K to 10 K
-1000 gibbs free energy and potential energy (ev)
"gib" "potential"
-1100 -1200 -1300 -1400 -1500 -1600 -1700 50000
55000
60000
65000 time-step
70000
75000
80000
# 6 ) 8
/
" 4 3
" 4 /
" 0 0
/
& 0 4 / 0 0 4
= 0 0
/*
3
= - 0 #
- 4 $ %
9 $4 %
= $ %
? $ %
- $ %
D $ %
" @ $ 8 +% 0 ,
Æ 4 5 4 0 " . 4 40
' $ / . % Æ . 4
8 + " 4
4 4 4 D=-" $D = - " F-5% D? $D ? F1% C. 4 4 4 = 4 . 4 4 . 40 4 0 4 5 4 = " +0 4 ; / $ ,2% 4 " 4 4 / $% " 4 " + " 0 : 5 . 4 " 4 2 5 4 " 4 $ % 4 / $ 8 +% 6 4 4 4 D 30 " 0 3
7
" + " $1%
$4%
$ >5+%
* !
,+*
!*+
!
+
!27
27
,
!7
!*
*
!7
!
*
!7
7 !
!
!2
%0 : 1 Æ
1 Æ
*
:$+ $1>% *
5 " $1%
$4%
%0 : Æ
$ >5+%
+ !
2, *
2
!
2++
7
, !
2!*
,
2 !
7,7
!2!*
2+!
7,,
!7,
2*!
7,
!7
! !
7,
!,
!
7 *
!272
7
Æ
:$+ $1> %
= " *0 . 4 4 0 5 " 4 0 0 / $ 2+%0 $ 2*% $ 7,% 4 C. 5 0 4 . 4 5 + *0 4 4 4 4 ; 4 0 0 2
" *
"
5
2,+
4
!!!
1>
!!! ** 1>
+!!
4
!!! 1>
!!! + 1>
5
+!!
,! )
!7 )
+!!
* )
*7 )
5
+!!
)
2 )
+!!
)
,+ )
5
+!!
!! *+ >)
!! 2, >)
+!!
!! >)
!!++ >)
C.
-
variation of the Al shaer viscosity with temperature
1.8
"visal.dat" 1.75
shaer viscosity (gr/sm)
1.7
1.65
1.6
1.55
1.5
1.45
1.4 200
400
600
800 1000 temperature (K)
1200
1400
1600
+# " 4 5 4 4 4 . 4 5 0 . 4 " 4 / $ 7% "
" 4 / 8 + 6 5 4 , 4 " / $ 7,% " K 4 ,!
the variation of the Pb shear viscosity with Temperature
0.0016
exp value=0.0015 0.0015
shear viscosity (Kg/sm)
0.0014
0.0013
0.0012
0.0011
0.001
0.0009 400
450
500
550
600
650 700 temperature (K)
750
800
850
900
*# " 4 4
variation of Cp with temperature for Al
10
experiment MD simulation
Cp Cal/MolK
8
6
4
2
0 200
400
600
Temperature K
800
1000
1200
# " 4 5
0 " 4 4 ' " 4 / 0 " Æ " 4 4 70 2 ! "
0
.
,
variation of the Al isothermal compressibility with temperature
0.0245
Kt 0.024 0.0235 0.023
Kt (1/GPa)
0.0225 0.022 0.0215 0.021 0.0205 0.02 0.0195 300
400
500
600 700 Temperature (K)
800
900
1000
# " 4 5
variation of Pb isothermal compressibility with temperature
0.0285
Kt 0.028 0.0275 0.027
Kt (1/GPa)
0.0265 0.026 0.0255 0.025 0.0245 0.024 0.0235 0.023 300
400
500
600 temperature (K)
700
800
900
,# " 4
,
variation of the Al bulk modulus with temperature
51
exp=70 50 49
Bulk Modulus (GPa)
48 47 46 45 44 43 42 41 300
400
500
600 700 temperature (K)
800
900
1000
7# " 4 5 9
variation of Pb bulk modulus with temperature
43
exp=45 42
Bulk modulus (GPa)
41
40
39
38
37
36
35 300
400
500
600 temperature (K)
700
800
900
2# " 4 9
4 4 ; 88 $50 80 0 D0 50 5 %0 5 0
4 5 0 4 Æ
4 / $ 2 % $ 72%0 4
' ( & ) = 8 4
,+
variation of the shear modulus with temperature
9.6
Al Pb
9.4 9.2
Shear modulus (GPa)
9 8.8 8.6 8.4 8.2 8 7.8 7.6 300
400
500
600
700 temperature (K)
800
900
1000
1100
!# " 4 5
0 " 0 4 0 8 + " H #
" / /
4 0 )
" 4 0 4
5 / 0 / $ 2%
4 0 / $ !%0 "
" 0 4 #
" 0 ,*
" 4 0
"
5 / 4 4 0 0 / $ ,!% 0 / $ 2% 5 , !0 0
0 0 " 4 7
88
" 2 "
0 ) * - 0 4 !< 9 0 0
0 5 4 0 0 0 4 / A 4 4 8 4 . 4 4
4 " 0 + * 9 "0 4 . " 8 + " 0 4
0 ' $ / . %0 4 0 0 ,
" 4 ; Æ $ / $ 2%% $ / $%% 4 8 " 4
8 0 5 / $%0
0 / $ ,2% 4 & / @ 8 - 0 8 0
/
" 0 4 0 0 '
" 4 0 0 ; $ %
,
Isoentropic compressibility (Ks), Thermal pressure coefficient (Gv)
# 8 . 4 0 Æ
,,
*
" / / 0 8 " /
I 0 7J /
. /
0 / "
'
" .
' 0 0 @
0 4 H
4 6 = 8 0 4 " $ %0 4 ; Æ " 50 5+(#
= - 0 4 $ 4 7!Æ 4% ) " 4
4 " 4 4 ; 4 4 = 0 4
0 !,
0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90
*# 8 3' 0 !!
" ' 9 0 = 0
" ; 0 /. 5 ! *Æ 0 % !1> *Æ 0 % 1> 2!Æ 0 % !1> 2!Æ
+7
variation of the LF with T for Sn 10%w Pb alloy with contact angle 45 Deg
1
10 K/s 2 K/s 1 K/s
0.9 0.8
liquid fraction
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0
50
100
150
200
250 300 temperature K
350
400
450
500
550
* # ?/ 4 *0 - !
: > ?;+
" . 0 0 " . 5-= $ 227% I+J -X 8 0 0 6 ++0 D 0 2,, I+,J " ";0 0 8 5 0 =" 0 27, I+7J &1 6 A 0 5 = 8 I+2J P5 -
-)3 9 0 8 - C; 5 6 ) - 8 0 5 0 6 +,0 D ,0 7!+ 7 !0 272 I*!J &0 8 " 0 8 0 6 70 7+! 0 27+ I* J 84 5 8 . 0 = ?/ - 0 P A - 0 2, I*J 3 & 0 3? G 0 5 11 10 - 6 " 9 50 P A0 2+ I*+J - 5 0 = " = 0 27 I**J 3) 0 A X 0 " 5 0 22* I*J 8 0 - 0 ) &0 2,*
7
I*J 5 0 5 C/ 0 C4 0 2 I*,J A A 0 3 - 0 P 5 6 +*0 2+ I*7J A A 0 3 - 0 P 5 6 +0 2* I*2J 3 - 0 P 8 ) 0 6 +0 27 I!J P 5 -
- ) 3 9 0 5 0 6 +,0 D ,0 7!+ 7 !0 272 I J P - 4 '0 5 0 - - ) - ) 0 5 0 6 +0 ,2+0 27* IJ P - 4 '0 ) - ) 0 5 0 6 ++0 ++0 27 I+J P - 4 ' ) - ) 0 5 0 6 +*0 7++0 27 I*J D &
0 - X & D 0 - 0 6 0 *,0 27, IJ P - 4 '0 5 ) - ) 0 5 0 6 +0 D 20 *2 *+70 27* IJ & A & = 3 )0 5 0 6 +20 D 20 + *+0 22 I,J A 1 '0 9 )4 3 " 40 5 0 6 +*0 D 0 7+7+!0 27 I7J Y " 0 89 0 = P & " 0 6 * 0 *!*!20 227 I2J P & 0 U & - ?0 - - 0 C = G - 0 22+ I!J 3' & "4'0 5 0 6 +0 D ,0 *7, *2,0 27, I J 8 X A 8 9 0 - C 0 5 , 0 22 22+ 7,
0
IJ 8 5 ) 0 3' A 0 " 50 6 50 P 22 I+J 8 9 8 X A 0 - - C 0 C = G - 0 22 I*J Y " 8 9 0 P 8 ) 0 6 7,0 72+!0 227 IJ 6 0 5 8 0
8 9 0 C/. - - 0 - 70 227 IJ = - 0 8 9 0 9 1 U ?0 5 0 6 *,0 D +0 2, 270 222 I,J 9 8 5 60 P 8 ) 0 4 *0 !20 2,, I7J 3' 8 5 ) 0 5 0 6 * 0 D 0 +*+!0 22+ I2J 3'0 = 340 6 +*0 D +0 272 I,!J = . 5 &0 5 0 6 +0 2, I, J 8 8 0 5 P 3'0 5 0 6 *0 D 0 +2++20 22* I,J 8 5 ) 0 8 8 3'0 =-=P = 0 6 +0 D 0 ,0 22 I,+J 8 5 ) 3'0 5 0 6 * D 0 7, 20 22, I,*J 1 X ? 8 & 0 - - 0 C = G - 0 22 I,J "4'0 P ? 3'0 " 50 6 !50 272 I,J - ) F0 " 50 6 50 5 22!
77
I,,J 8 5 ) 3'0 5 0 4 *0 D ,0 ++*0 22* I,7J - 9 H0 8 5 ==0 C 6 3 6 - 0 22 I,2J C ) 3 D - 0 " 50 6 +50 22 I7!J & 8 P ' 0 " 50 6 ,50 5 22 I7 J 8 - P )0 " 50 6 750 P 22, I7J 8 8 3 ? 0 - - C 0 C = G - 0 22 I7+J 8 3 - 6 3 6 0 " 90 6 +90 G 22 I7*J 8 0 A 54 - 6==0 D U 0 1 8 3 9 0 C 8 P 8 0 22 I7J 8A ) 0 & - 0 - 0 9 0 27 I7J - 3 0 9 " 5 5 8 40 P 8 ) 0 6 * 0 2++0 22* I7,J A A 3 - 0 P 5 0 6 +0 ***0 2* I77J & 3 " 0 ?& 8 0 P 8 #
0 6 !0 +,0 227 I72J 5 ?0 1 ) 4 3 -0 P 8 ) 0 6 70 2 2,0 227 I2!J P 80 8 0 9
& 0 22, I2 J ) C 0 0 277 I2J - 6 0 D @ @0 27!
72
I2+J " D 8 0 F 6 5 - 0 " 0 3 "0 F 4 ) 0 ? 0 227 I2*J 6 3 6 8 3 - 0 ) - 9 - D 0 90 2$%# , 720 22 I2J )5 " 0 "0 F 4 ) 0 22 I2J = 0 A
0 & " 0 A0 22! I2,J )0 F 4 ) 0 222 I27J = 33
2!