ze ss te ch nik. Recycling. The ESR Process. Functions: Removal of non-metallic .... 0,9. 1. 1,1. 1,2. 1,3. 1,4. 1,5. 1,6 poo l de pth / mm melt rate / kg/min. E1, 110 ...
EMC2013
Parameters determining Solidification Structure and Process Efficiency of ESR Superalloys S. Radwitz, J. Morscheiser, B. Friedrich
IME Process Metallurgy and Metal Recycling, RWTH Aachen University Prof. Dr.-Ing. Dr. h.c. Bernd Friedrich
Introduction General information about superalloys: Developed in the middle of the 20th century, nomenclature due to superior high-temperature (HT) properties compared to steel: Excellent HT-creep resistance High mechanical HT-strength Good HT-oxidation and -corrosion resistance Common alloying elements: Ni, Co, Fe, Cr, Mo, Nb, W, Ta, Ti, Al Applications: Automotive
Off-shore Chemical industry
chn ik ss te Pro ze
Metallurgie
Aviation & Space
Recycling
Motivation General tendency in turbine manufacturing Increasing the degree of efficiency by
raising the maximum operating temperature further development of the chemical composition optimisation of the manufacturing processes
Observance of strict safety requirements
chn ik ss te Pro ze
Metallurgie
Recycling
© Courtesy of Rolls Royce
warranty of an accurate chemical composition minimisation of potential material and solidification defects
The ESR Process Functions: Removal of non-metallic inclusions (NMIs)
Avoidance of cavities and shrinkage holes
Controlled and “partially directed“ solidification
chn ik ss te Pro ze
Metallurgie
Metall refining due to physical and chemical slag interactions interaction
Recycling
Aim of the Performed Work Interdendritic segregation Freckle formation
Material group prone to segregation and solidification defects!
Tree Rings
Solidification White Spots
chn ik ss te Pro ze
Metallurgie
investigation of solidification processes during ESR
Recycling
process parameters
alloy dependence of various parameters slag skin
physical slag properties
Solidification during ESR Increase of the heat flow
Increase of the cooling rate (R)
Reduced local solidification times T − Ts T − Ts LST = L = L G∙v R
Decrease of the primary (1) and secondary (2) dendrite arm spacing 2 = C ∙
TL − Ts R
1 3
chn ik ss te Pro ze
Metallurgie
reduced segregation Recycling
Concept of the Experiments investigated influencing factors process parameters
power supply height of the slag bath
phys. slag properties
liquidus temperature (overheating) viscosity (fluid flow behavior) solidification path
selection of slag systems:
chn ik ss te Pro ze
Metallurgie
constant composition of mostly CaF2, CaO and Al2O3 addition of TiO2, MgO especially suitable for the remelting of superalloys
Recycling
notably requirement:
all physical properties are related to ionic slag structure variation of a specific property with only the smallest change in the other attributes CaF2, Al2O3, CaO
Trial
Average power input / kW
E1
110
E2
80
E3
Amount of slag Height of bulk slag / kg / mm
utilised 4 slags and their 90 viscosity at 1600 °C 90
140
4
85
E4
110
2.5
52
E5
110
8
174
ss te
chn ik
4
Pro ze
Metallurgie
Experimental Overview
Recycling
Trial
Composition
Tliquid / °C
Viscosity / P
E6
40/38/22
1230
0.3-0.45
E7
50/40/10 1780 utilised slag compositions in0.2-0.3
E8
their ternary phase 65/15/20 1480 diagram0.1-0.4
E9
50/30/20
1350
0.2-0.4
E10
45/37/18
1600
0.3-0.35
E11
80/10/10
1450
0.1-0.3
E12
15/48/37
1450
0.55-1.0
Combined (P)ESR Unit at IME Technical specifications: Pmax: ~ 400 kW transformer with two taps Umax/Imax:80V/5kA & 66V/6kA AC power supply (50 Hz) industrial process control unit maximum pressure (PESR): 50 bar Inertisation with protective gas (ESR)
chn ik ss te Pro ze
Metallurgie
Mould geometries: PESR: 160/180 Ø x 890 mm ESR: 85/95 Ø x 800 mm, 145/160 Ø x 800 mm, 145/160 Ø x 960 mm, 170/215 Ø x 1 510 mm Recycling
Sampling from the Remelted Ingots
R C
M
chn ik ss te Pro ze
Metallurgie
P
Recycling
Labelling
Analysed parameter
P
Depth of the metal pool
M
Solidification defects
R
SDAS, SEM-EDX
C
Chemical composition
Investigation of the Slag Skin Sampling of the slag skin
uniform thickness over the ingot height differences between the various trials
No significant influence of process parameters on slag skin thickness! slag skin thickness / mm
Clear influence of phys. properties on slag skin thickness!
chn ik ss te Pro ze
Metallurgie
Trial Recycling
Influencing Factors on Slag Skin Formation Process parameters
no detectable impact of power supply and slag bath height Phys. slag properties
chn ik ss te Pro ze
Metallurgie
low liquidus temperature/ intense slag superheating supports formation of thin slag skins high viscosities presumably lead to thick slag skins lenght of solidification path affects slag skin thickness
Recycling
Results from Melting Paramters & Macrostructure rel. electrode position / mm
Power supply & amount of slag ↔ melt rate
Increase of the melt rate with:
E3, 140 kW, 4 kg E4, 110 kW, 2,5 kg E1, 110 kW, 4 kg E5, 110 kW, 8 kg E2, 80 kW, 4 kg
360 320 280 240 200 160 120 80 40 0 -40
rising power supply → increased slag temperature
decreasing slag bath height → reduced heat losses against the mould
Correlation melt rate ↔ pool depth 45 E3
Pool depth rises with increasing melt rate:
E1-E5: linear relationship (no significant change in slag skin thickness)
pool depth / mm
process time / hh:mm:ss 40
E4
E1
35
30 E5 25 E2
ss te
chn ik
E6-E12: no identifiable correlation (varying heat extraction due to different slag skin thicknesses) Pro ze
Metallurgie
Recycling
20 0,8
0,9
1
1,1
1,2
1,3
melt rate / kg/min
1,4
1,5
1,6
Microstructural Investigation Typical development of the SDAS over the ingot radius
Increase of the SDAS from the ingot surface to the center!
SDAS / µm
45 40 35
Why?
30
25
increase of the metal layer formation of the contraction gap
→ reduced heat flow
20 0
20 40 60 Distance from the ingot surface / mm
E8, T(liquid) = 1480 °C
E9, T(liquid) = 1350 °C
80
E10, T(liquid) = 1600 °C
Dependence slag skin thickness ↔ SDAS (ingot center) E1
45
E2
No distinct relationship:
SDAS increases with rising slag skin thickness for a part of the performed trials
Additional influence of melt rate on dendrite arm spacing and the local solidification time
SDAS / µm
42 E3
39
E6
36
E9
33
E8
E5 E4
E11 E12
E10
30 27 0,3
0,5
0,7
0,9
chn ik ss te Pro ze
Metallurgie
average slag skin thickness / mm Recycling
1,1
Microstructural Investigation 2 Correlation melt rate ↔ LST 30 E2
LST / s
25
E1
E5
20
E4
E8
E11
E3
15 E7 10
E9
E6 E12
E10 5 0 0,7
0,9
1,1
1,3
1,5
melt rate / kg/min
Explanation:
increase of the solidification front velocity
slight rise of the thermal gradient
chn ik ss te Pro ze
Metallurgie
→ decrease of SDAS / LST
Recycling
1,7
Microstructural Investigation 3 Distribution of elements in dendritic and interdendritic areas
content of the element / %
60
30
Cr
k>1
Fe
k>1
Ni
k1
Nb
k