Pattern Matching for Program Generation: A User ... - Semantic Scholar
Recommend Documents
implementation of functional languages like ML, Caml, or Haskell as well as rewrite rule based ... program is a program written in a host language and extended by some new instructions like the %match ...... Standard ML of new jersey.
number of separable n-permutations is the (nâ1)st Schröder number. ... match of PV into TV will force i in PV to match with either 2i or 2i â 1 in TV , for 1 ⤠i ⤠l.
plementation uses to represent murder-for-hire is shown in. Figure 3. Pattern Comparison Metric. The term âgraph edit distanceâ covers a class of metrics that.
Oct 5, 2015 - A NIDS can be categorized as anomaly-based or signature-based. Anomaly-based ..... leading n bits of a 64-bit integerâfor example, Intel and AMD CPUs that support Streaming ...... Nvidia Corporation [Internet]. NVIDIA ...
Spatio-temporal data, spatial data, tem- poral data, parametric data, pattern ..... and a temporal element respectively. The expression reg n p will be treated.
An overview and a new statistical approach is published by Luo et.al. in [15]. ... affine point pattern matching in O(n3) complexity only using geometric distances.
The theme of the DAME project is the design and implementation of a .... ReturnResults(). Search. Constraints. Builder. Raw Data. SRB. Engine Data. Tracked ...
Sep 17, 2004 - Despite the fact that natural polymorphism is necessarily faded by this consensus, the final .... matching with gaps among the occurrences of the characters of the pattern ..... list. Assume the occurrence of p at position j. Then, the
Abstract. Nested if-then-else statements is the most common program- ming schema in applications like data transformation or data analysis. In most cases ...
industrial partners Rolls-Royce, Data Systems and. Solutions, and Cybula ... system, using the White Rose Grid [2] as a test bed and accessed through a web ...
Mar 21, 2006 - following queries efficiently: (1) Given a pattern P, a position p and a rank ... The traditional tfidf ranking takes the frequencies of keyword.
semantic action, which is executed if the given pattern matches the input term. The semantic ... forms matching only at the top position of the input term (see Section 4 and. Section 6.5 for full ... We will give an answer to this question after expl
and we call it the epsilon transition. The DFA is shown in .... regular expressions matching for deep packet inspection,â in Proceedings of the 2006 conference on.
Department of Computing and Software, McMaster University ..... which, for readability, we also present as polymorphic morphisms: returnM. : id â M. , i.e.,.
Keywords: Algorithm, pattern matching, exact pattern matching, searching, Bidirectional. 1. Introduction. String matching algorithms, also called string searching.
algorithm for finding the best alignment between two code fragments, and a ... Keywords: reverse engineering, pattern matching, program understanding, ...
Tour ´Evry-2, 523 Place des terasses de l'agora, 91000 ´Evry, France. Abstract. In this paper, we present a new framework for the definition of various data ...
2Available at www.tmforum.org (Best Practices & Standards). 3Available at ... for software development to the context of business pro- cess and service centric ...
the same time, performs the segmentation of the scene, which is in accordance ... stage, the two layers are not connected and image segmentation is performed ...
image or pattern and hence speed up the searching process. Also by ..... Registration", Proceedings of the 2nd International Conference on Information Fusion, ...
Abstract. In this paper we present a novel approach for pattern- constrained test case generation. The generation of test cases with known characteristics is ...
Exact pattern matching in Java. Exact pattern matching is implemented in Java's
String class ..... Ultimate search program for any given pattern: • one statement ...
vector becomes redundant, it is dropped from the test set. EFR algorithm improves the Two by One (TBO). 10] and the Essential Fault Pruning (EFP) algorithms.
y Presently with Design Technology Center, Hewlett-Packard Co., Palo. Alto, CA. ... sented a simulation-based diagnostic test generation algo- rithm for large sequential .... us call this faulty machine the target machine. Internally, only the base .
Pattern Matching for Program Generation: A User ... - Semantic Scholar
It simply backtracks to the last choice point (e.g., a spanto expression), picks the next choice, and proceeds forward with the pattern matching right from where it ...
Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052
2
Pattern Matching for Program Generation: A User Manual Ted J. Biggerstaff Pattern Matching for Program Generation: A User Manual ........................................................................... 3 1 Introduction............................................................................................................................................. 5 2 The Pattern Matcher ............................................................................................................................... 5 2.1 The Design Philosophy ................................................................................................................... 5 2.2 The Implementation Philosophy ..................................................................................................... 6 2.3 Patterns ........................................................................................................................................... 6 2.3.1 Literal Data ............................................................................................................................. 6 2.3.2 Pattern Variables..................................................................................................................... 6 2.3.3 Pattern Operators .................................................................................................................... 6 2.3.3.1 The Or Operator.................................................................................................................. 6 2.3.3.2 Bindvar................................................................................................................................ 7 2.3.3.3 Testing Properties ............................................................................................................... 7 2.3.3.4 The And Operator and Lisp Escapes................................................................................... 7 2.3.4 Invoking the matcher .............................................................................................................. 8 2.3.5 Backtracking ........................................................................................................................... 8 2.3.5.1 The Spanto and Pfail Operators .......................................................................................... 8 2.3.5.2 Cuts ..................................................................................................................................... 9 2.3.5.3 Marking for Cuts............................................................................................................... 10 2.3.6 Other Operators..................................................................................................................... 11 2.3.6.1 Pnot and None................................................................................................................... 11 2.3.6.2 Remain .............................................................................................................................. 11 2.3.6.3 Pmatch .............................................................................................................................. 12 2.3.6.4 Within and Preorderwithin................................................................................................ 12 2.3.6.5 Psuch and Bindconst ......................................................................................................... 13 2.3.6.6 Pat ..................................................................................................................................... 15 2.3.6.7 Pdeclare............................................................................................................................. 15 2.3.6.8 Plet .................................................................................................................................... 15 2.3.6.9 Psucceed............................................................................................................................ 16 2.3.6.10 Rules and Pprove .......................................................................................................... 16 2.3.6.11 Rulesets and the With-Rules Operator.......................................................................... 19 2.3.6.12 Minor operators............................................................................................................. 21 2.4 User extensions ............................................................................................................................. 21 2.5 Macro expansions in patterns........................................................................................................ 21 3 Examples .............................................................................................................................................. 21 3.1 Introduction................................................................................................................................... 21 3.2 Walking a Tree using Pfail ........................................................................................................... 21 3.3 Lisp Escapes ................................................................................................................................. 22 3.4 Sharing Subpatterns ...................................................................................................................... 23 3.5 Patterns in Parameter Lists............................................................................................................ 23 3.6 Dynamically Created Patterns....................................................................................................... 24 3.7 Using Dynamically Created Patterns ........................................................................................... 26 3.8 Dynamically Created Patterns for GenVoca Components ............................................................ 26 3.9 Finding Two Ifs with a Common Condition ................................................................................. 31 3.10 Finding the Target of a Data Flow ................................................................................................ 33 3.11 Finding All Data Flow Sources..................................................................................................... 34 3.12 Finding a Loop Containing Me..................................................................................................... 35 3.13 Patterns used in Defining Transforms........................................................................................... 35 3.14 Inference ....................................................................................................................................... 36 4 Implementation ..................................................................................................................................... 38
Abstract The Anticipatory Optimization Generation (AOG) system is built to generate custom programs using largescale, programmatic transformations (versus pure pattern-based transformations) that operate on Abstract Syntax Trees (ASTs). Because of the scale of the AOG transformations and the often-complex program reorganizations that they enable, the transformations must operate on the low-level physical formats of the ASTs and simultaneously accommodate high degrees of variation in the ASTs. However, both the physical details of and variations within an AST are irrelevant to the AOG system in the same sense that both the physical details of and variations within a database format are irrelevant to a database management system. In both cases, only the logical structure is relevant. Database management systems introduce logical schemas to hide the details and variations in the format of their databases. Similarly, the AOG pattern matcher introduces a pattern notation that performs the analogous service for ASTs. It hides the details of and variations within an AST from the large-scale transformations that must operate on the AST and thereby reduces the complexity of the transformation code. The pattern notation is embedded in the Lisp language and provides a set of Prolog-like operators for performing complex matching and inference logic. The operators include analogs to the Prolog operators and, or, not, mark, cut, bind, is, succeed, fail, prove, and rule definition (i.e.,