Physically based modeling and simulation of a LiFePO4-based lithium-ion battery C. Hellwig, D. N. Fronczek*, Ş. Sö Sörgel and W. G. Bessler German Aerospace Center (DLR), Institute of Technical Thermodynamics, Thermodynamics, Stuttgart, Germany *E-mail:
[email protected]
Goal and approach
MultiMulti-scale modeling
Goal: ImpedanceImpedance-based SOC diagnostics of LiFePO4 cells LiFePO4based cell
e–
100 % 40 % 0%
Li+
E
Thermal modeling
Z'' [mOhm]
10 8 6 4 2 0 -2 -4 25
30
Positive electrode
Negative current collector
Negative electrode
LiFePO4 e–
LiC6
Li+
LiPF6
DLR MobilEMobilE-Pack 300 W continuous 1 kW peak
100 % 80 % 60 % 40 % 20 % 0%
20
Positive current collector
• Li+ charge transport in electrolyte: 100 µm scale • Li transport in solid phase: ~100– ~100–1000 nm scale
Electrochemical characterization
Structural characterization A123 26650
Battery management of LIB/PEFC LIB/PEFC hybrid system
T
Electrochemical Discharge and modeling impedance simulation
Mass and charge transport is modeled on particle and repeat unit scale.
Separator Electronically conductive coating
e–
Li+
Electrolyte Active material
Li
35
Z' [mOhm]
Model Thermodynamics ΔH (cLi ) TΔS(cLi ) ΔG Parameters: eq (cLi ) zF zF • Empirical halfhalf-cell enthalpy, entropy 1.5 mol l–1 • LiPF6 Concentration: F (1 )F – + – 10 2 – 1 Kinetics i i 0 exp act exp act • Li and PF6 - diffusion coefficient: 1·10 m s RT RT • ButlerButler-Volmer kinetics • Thickness (anode / separator / cathode): 40 µm / 20 µm / 80 µm RT c 0 – 14 2 – 1 – 16 2 – 1 ( t ) ( c ) conc • Concentration overpotential ln act eq Li conc • Bulk diffusion coefficients (LiC6 / LiFePO4): 1· 1·10 m s / 1· 1·10 m s zF c (t ) SolidSolid-state transport • Exchange current density: 3·105 A m–3 Diffusion Chemistry • Mass conservation • Particle radius (anode / cathode): 1 µm / 0.1 µm Li 1 2 Li MLi i r D • Spherical diffusion in particle t r 2 r r zF Thermodynamic data: Electrolyte transport Diffusion Migration Chemistry • Separation in enthalpy and entropy • NernstNernst-Planck equation ∂c ∂c z F ∂ D D c M s ∂t y ∂y RT y ∂y • LiC6: Y. Reynier, Reynier, R. Yazami, Yazami, B. Fultz, Journal of Power Sources • Charge neutrality c z 0 119– 119–121 (2003) 850– 850–855 Heat transport Conduction Sources Losses • LiFePO4: J. L. Dodd, PhD thesis, California Institute of Technology, • Ohmic, Ohmic, chemical heat production CPT T 2007 QelchemQohmTcellTenv • Heat conduction and convection t y y Cell voltage E = – i
i
i
i
V i i
i i
i i
i
cathode
anode
Electrochemical behavior Experiment
3.6
2.6 2.4
Experiment Simulation
0.5
1.0
1.5
Capacity [Ah]
-5 15
2.0
20
25
30
35
40
1.60 0.7 +
c(Li )
x in LixFePO4
30
1.50
0.5
1.45
0.4
x in LixC6
0.3
1C, 25% SOC 0
20
35
40
-1.0
40
60
80
-0.5
0.0
0.5
1.0
Relative sensitivity
• Allows detailed insight into rateratelimiting processes. • Cathode is limiting component
• Promising system for highhigh-energy batteries (5× (5× specific energy) • Major challenge today: Limited cycle life • New model will account for side reactions and other degradation mechanisms, allowing the study of cell aging Positive electrode
+
1.55
Concentration Li [mol / l]
Stoichiometry x in LixC6 / LixFePO4
Separator Neg. El.
Pos. El.
0.6
25
0.1 C 5C
Outlook: LithiumLithium-sulfur batteries
Concentration variation at SOC 25 % with 1C discharge rate: 0.8
20
• Considerable influence of SOC on impedance spectrum • Impedance simulations are feasible, so far only qualitative agreement
Spatial concentration variations Electrolyte: • S-curve behavior of Li+concentration in electrolyte • No interaction with separator assumed Bulk: • Stoichiometry change during discharging in dependence on diffusion limitations in electrolyte
15
Z'[m]
Z' [mOhm]
• Flat discharge curve, voltage variation mainly from C6 electrode • Voltage losses at higher discharge rates due to transport limitations in electrodes
5 0
0 -5
2.2 0.0
5
100
120
Distance through repeat unit [µm]
1.40 140
Sulfur/carbon composite
Organic electrolyte
Li2S8
Positive current collector
Li2S6 Li2S4 Li2S3
Li2S2 Li2S
Sulfur redox chemistry
Negative electrode
Separator
S8
Charge
0.1C 1C 2C 5C 10C
Discharge
3.0
Anode bulk diffusion coefficient Anode particle diameter Anode exchange current density Anode thickness Cathode bulk diffusion coefficient Cathode particle diameter Cathode exchange current density Cathode thickness Separator thickness
100 % 40 % 0%
10
-Z'' [m]
-Z'' [mOhm]
Cell Voltage [V]
3.2
Simulation
100 % 40 % 0%
10
3.4
2.8
Sensitivity analysis • Sensitivity of cell parameters on discharge capacity
Electrochemical impedance spectra • Impedance spectra of an unpolarized cell at different SOC
Polysulfides diffusion (shuttle mechanism)
Lithium metal S8
Polysulfides reduction
Discharge curves • Discharge curves starting from 100 % SOC at different discharge rates
Li2S8
Negative current collector
Li2S6 Li2S4 Li2S3 Li
+
Li0
Lithium plating/stripping