Doctoral school of energy and geotechnology January 16–21, 2006. Kuressaare, Estonia
Power Electronics Arrangements in Distributed Systems Ryszard Strzelecki Gdynia Maritime University
[email protected]
Abstract This paper aims to present a review of applications of power electronic (PE) in distributed systems. Particular issues are selected for discussion: distributed generation with the use of alternative sources; energy storage with help of conventional and unconventional energy storages; distribution and custom power. The paper presents theoretical background and detailed solutions. that are partially supported by experiments’ results. The material is presented as PowerPoint slides.
1 PE in distributed generation
DISTRIBUTED GENERATION: WHAT IS IT?
Distributed Resources (DR) are small (usually under 10 MW), modular electric generation and storage technologies that provide electric capacity and/or energy when and where needed. DR may either be interconnected with the electric grid or isolated from the grid in "stand-alone" applications, but its locational value is important to its economics and operation.
Keywords Distributed generated, storage, custom power, power electronics, power delivery and quality,
Introduction
-3DISTRIBUTED GENERATION: WHAT IS IT?
POWER ELECTRONICS IN DISTRIBUTED GENERATION
Today's Central Utility
DC
Photovoltaic generation
Tomorrow's Distributed Utility? Central Generation
Central Generation
DCDC-toto-AC Conversion
Wind
Fuel cells
AC * kW ~ * MW
VariableVariable-speed wind generator
AC Lines (usually isolated from utility lines)
Fixed frequency
Genset
PV
Fuel Cell
AC-toto-AC Conversion
Small hydrogenerator
Remote Loads
Battery
Customer Efficiency
PE Variable frequency CONVERTERS
Microturbine
Customers
-4-
-1-
POWER ELECTRONICS IN HYBRID GENERATION
POWER ELECTRONICS IN
20 kV
DISTRIBUTION: DISTRIBUTION: CUSTOM POWER
Batteries
u k = 4 % , r k= 1 % , D y n 1 1 3
3+N
0 .4 k V
O v e r h e a d lin e
C ir c u it B re a k e r
PE Controllers
PE Converters Converters
AC Utility Lines
High--quality High power
(con verters,, (converters switching equipments, quipments, etc.
Automated processing/ manufacturing customers
*0 kW ~ *0 MW
S in g le r e s id e n c ia l con su m er
3+N +P E
4x120 m m 2 A l XLP E tw is t e d c a b le
4x6 m m
-2-
2
Cu
80 P o s s ib le n e u t ra l b r id g e to a d ja c e n t L V n e t w o r k
80 80
F ly w h e e l s to r a g e
4x16 m m
~
R a tin g t o b e d e t e r m in e d
2
C ir c u it B re a k e r
4 x 3 Ö , I s= 4 0 A S m ax= 5 0 k V A S 0= 2 3 k V A
W in d T u rb in e
~
3Ö , 15 kW
80 4x25 m m
2
3x50 m m
2
A l +35m m
2
C u XLP E
M ic ro tu rb in e 3Ö , 30 kW
3+N +P E
~
20 m
~
~
A p p a rtm e n t b u ild in g 3+N +PE
5 x 3 Ö , Is= 4 0 A 8 x 1 Ö , Is= 4 0 A S m ax= 7 2 k V A S 0= 5 7 k V A
80
4 x6 m m
1 Ö , 4 x 2 .5 k W
2
Cu
20 m
30
1 x 3 Ö , Is= 4 0 A 6 x 1 Ö , Is= 4 0 A S m ax= 4 7 k V A S 0= 2 5 k V A
2
30 m
10
Cu
P h o t o v o lta ic s
A p p a rtm e n t b u ild in g
80
3 x7 0 m m 2 A l X L P E + 5 4 .6 m m 2 A A A C T w is t e d C a b le
P o s s ib le s e c t io n a liz in g CB 3+N +P E
80
Cu
30 m 10
G r o u p o f 4 r e s id e n c e s
O th e r lin e s
3+N
20 m
3 Ö , Is = 4 0 A S m ax = 1 5 k V A S 0= 5 .7 k V A
80
80
1+N +PE
4 x1 6 m m
F u e l C e ll
-5-
S in g le r e s id e n c ia l consum er
P h o to v o lta ic s 1 Ö , 3 kW
2
Cu
30 m
3Ö , 30 kW
3+N +P E
3 Ö , Is= 4 0 A S m ax= 1 5 k V A S 0= 5 .7 k V A
3+N+P E
30
50
2 0 /0 .4 k V , 5 0 H z , 4 0 0 k V A
O ff- lo a d T C 1 9 - 2 1 k V in 5 s te p s
P o le - t o - p o le d is t a n c e = 3 5 m
* kW ~ * MW
Others
Case of the LV Feeder with DG sources
in s te a d o f fu s e s
Low--quality Low power
Superconducting Reactor
Flywheels
Large Capacitors
ENERGY STORAGE
80
CHARACTERISTIC OF DG TECHNOLOGIES
POWER ELECTRONICS IN PV GENERATION Selected of the PV PE Conditioning Systems -1
COMMON TRAITS Mass produced Modular and small ( 0 UDC or IDC
if ! 0 then PC < 0 UDC or IDC
-61-
57
POWER ELECTRONICS IN FES SYSTEMS
POWER ELECTRONICS IN ENERGY STORAGE FES for Power Quality Arrangements
Matrix Concept for FES System
Vacuum Housing
Carbon/Glass Composite Rim
Motor Rotor
Motor Stator
Active Magnetic Bearing
Modular Shipping Container
One Flywheel modul AC
AC
DC
AC
DC
AC
DC
AC
DC
DC
AC
DC Bus DC
DC
AC
DC
AC
Electrical Schematic of the Modular Shipping Container
AC Line
DC DC
AC
DC
AC
AC
Conventional Storage
Distributed Voltage Restorer (DVR DVR)
Supported by:
Getter Pump
FES
FES S-CES, SMES BES
-46-
-50-
2 PE in Distribution: Custom Power
POWER ELECTRONICS IN FES SYSTEMS FES for UPS Applications - 1 AC
AC Line
Flywheel
Motor
AC
AC/DC
Technological Change of the Power Distribution Control
Basic
PE Bidirectional Converter
M/G
POWER ELECTRONICS IN DISTRIBUTION
The modern concepts:
Load
Line
D ynamics
DC/AC
Hybrid
Load
Flywheel
Line
Flywheel
AC Generator
PE Bidirectional Converter
M/G
- with Diesel generator
Diesel Generator
AC/DC
DC/AC
Load
Efficiency and accuracy
The old concept
e Fl
Flywheel
Line PE Bidirectional Converter
M/G
Battery bank
1 95 0
-47-
Letwork
Flywheel
Pref and PWG [W]
Spedd [rpm]
1000 40
50
60
PFES [W]
Pref and PFES [W]
2000 1000
0 -1000 -2000
0
10
x10 4
20
30
40
50
60
FES spedd [rpm]
1
EFES [J]
Experimental results
2000
30
0,5 0 -0,5 -1
0
10
20
30
40
50
60 Tim e [s]
0 1000 2000 3000 4000 5000
0 1500 1000 500 0 -500 -1000 -1500 0 3000
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
60
60
2000 1000 0
0
60 Tim e [s]
Examples of the FES Applications in Electrical Power Systems Configuration of the 200-MJ/20 MW FES system.
2 0 00
CUSTOM POWER
Generator-motor 26,5 MVA Cycloconverter 6,55 MVA
1996 - Chujowan Substation of the Okinawa Electric Power Company (Japan)
FES
-49-
Generation
Transmission
Distribution
Customer
The term CP pertains to the use of PE controllers for power distribution systems Just as the FACTS (F Flexible AC Transmission System) controllers improve the reliability and quality of power transmission systems, the CP enhances the quality and reliability of power that is delivered to customers Since the CP devices improve the power quality, they can also be called power quality enhancing devices as well
Basically Types of the CP Devices Network reconfiguring CP devices – are usually used for fast current limiting and current breaking during faults. They can also prompt a fast load transfer to an alternate feeder to protect a load from voltage sag/swell or fault in the supplying feeder: Solid State Current Limiter (SSCL SSCL); Solid State Circuit Breaker (SSCB SSCB); Solid State Transfer Switch (SSCL SSCL);
FES Supported Power Quality Compensator at 480 Volts
6,6 kV
56
1 99 0
POWER ELECTRONICS IN DISTRIBUTION
POWER ELECTRONICS IN FES SYSTEMS
FES m=74 t, F= 4 m
19 7 0
-52-
-48-
Power system 66 kV, 60 Hz
T hyristor circuits
Load
with Wind Turbine
20
A ctive circuits w ith full controllable sw itches: IG B T ,G T O ,IG C T
Example of the FES System
3000
10
y
t
Custom Power (CP CP) is a concept based on the use of PE conntrollers in the distribution systems to supply value-added power with the reliability and power quality required by the customers
DC/AC LC filter
0
li t
en
POWER ELECTRONICS IN DISTRIBUTION: DISTRIBUTION:
FES for Distributed Generators
0
bi
nv
m
-51-
POWER ELECTRONICS IN FES SYSTEMS
AC/DC
xi
-I
t es
P assive circuits
S teady state
- with battery bank
Load
AC/DC
Flywheel Energy Storage
S-CES, SMES BES
Distributed StaticCom Compensator Stat (D D-STATCOM STATCOM)
Active Magnetic Bearing
Compensating CP devices – are used for power flow control, active filtering, load balancing, power factor correction and voltage regulators. The family of compensating devices has the following configurations: Parallel Compensators – this are shunt connected devices. These circuits can perform: load compensation (harmonics, unbalancing etc.), when connected at the load terminals; power flow control and voltage regulation when connected a distribution bus. Series Compensators – this are series connected devices. The main purpose of these devices is to protect sensitive loads from sag/swell, interruptions in the supply side. Since this are series devices, it can also be used to power flow control and as a series active filters. Series--Parallel Compensators – this are a very versatile devices; that can inject current in shunt and voltage in series simmultaneously in a dual control mode Considers in this presentation
-53-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS Typical Static Var Compensator (SVC) SVC) and D-STATCOM Comparision P /P VT 2 S
PG
D-STATCOM VT
C
L I
ICmax
ILmax
0
VT
C
L
D-STATCOM
I
2 1 PD
/2
0
P S /P max
2
PG 4 3
1
2 1
PD
ILmax
0
ICmax
3 1
Cascade 1 connection
L
4
Changes of the real power versus angle two--source system obtained of a two with different var ratings
Operating V-I area
VT
C
Practical Examples of the Connection of C-APC
max
Voltage connection
SVC
/2
0
-62-
-66-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS Series Compensation
Some D-STATCOM Applicalions
D-STATCOM 0,3 without compensator
0,2
D-STATCOM/FC
0,1
Controller
1,5
1
VS2
V
jIS VS1
s
0,4
0,5
PS
0,6
V S1 VS 2 sin X
V S1 V cos X 2
uL1 Lf
uC 2
S3
C
Cf
iS2 =iL2
uS2
Voltage harmonics u compensation Stability improvement Current harmonics blocking
or
w ithout com pensator 0,3
MAJOR TASKS:
VS1 V S 2 sin V X IS
PS
0,97
0,2
Lf
uC1
VS2
Protected load
with transformer
uS1 iS1 =iL1
IS
0,95 0,1
Cf
Basic topology of the compensators:
VXmax
0,98
6
Lf
VSI
CDC
PS
VLoad
VSupply
X
VS1
w ith D -STATC O M
0,99
0,96
3 4,5 PM , MVA
V
Arc furnace
acceptable region 0
IS
Capacitor battery (optional) D-STATCOM
V %
For the reduction of lamp ficker due to arc furnaces
Bus
U/UN
For the reduction of voltage drop during starting of induction motor
Two-source power system with an ideal series compensator
VT
M
C
Cf
i S3 =i L3
uL2 Lf
u C3
C
Cf
uL3
transformerless
-63-
- 67-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS Voltage (Series) Series) Active Power Conditioner (V-APC) APC) as Series Active Power Filter (S-APF) APF)
Current (Parallel) Parallel) Active Power Conditioner (C-APC) APC) as Parallel Active Power Filter (P-APF) APF) SCR
Apliccation of the S-APF to current harmonics blocking
ZS
IS
IL
ZL
(5A/div)
L
ES
R
IC
S-APF
VLac
Lf
P-APF
ES
ZS
IS
Z
ZL
IL
C
]
[m 14 =3 L
Diode Rectifier
Lr
IS ESa
IC
ISa
ZSa ISa V Ta
VLa VTb
IL
R
VTc
IC Lr Cr
IS
Z
L =6
P-APF
2,8
Rr
50Hz 380V
IC
[m
VCa
Diode rectifier
Rr
-64-
-68-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS Series Active Power Filter (S-APF) APF)
Configuration of the Typical Connection of C-APC a) voltage connection
Master-Slave
Apliccation of the S-APF to compensation of the voltage harmonics and voltage unbalance
Parallel
VSI SLAVE
APC (N)
APC (N-1)
APC (2)
APC (1)
1/N
1/N
1/N
1/N
VSI MASTER
uS3
STEROWNIK
uL3 u K2
uS2 US
Cascade 1
uS1
uL2
uK1
LOAD
VS3
uL1 u’S3
u’S2
VL2-3
b) current connection APC (N)
VSI MASTER
US- USn
QD(N-1)
VSI SLAVE
STEROWNIK
APC (2)
APC (N)
APC
US-US1
QD(2) APC (N-1)
APC (1)
VK2
Economical circuit topology
APC (1)
V’S2
Corresponding phasor diagram
QL
-65-
VK1 V’S1 VL1-2
C2d
S-APF
QD(1) APC (2)
VS1
VS2
C1d US1
VL3-1
u’S1
APC
Cascade 2
58
VLc Cr
IL
]
Vdc
VLb
-69-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS Serieseries-Parallel APC as Universal Power Line Controller
Series Active Power Filter (S-APF) APF) P1 ,Q1
Apliccation of the S-APF as Dynamic Voltage Restorer (DVR DVR)
PD ,QD
voltage sag/swell
P L, Q L V
V1 ~
injected voltage restored voltage
PR QR
P1 Q1
U
V1
~
V
V1 = V1+V
IR
Case V1=V2=V where:
VX=jX LI
V2
XL
I
~
P2 Q2
~
QR
I
UPLC
U
?
PL Pmax
S-APF
Principle of operation of the DVR
Operating conditions of the DVR
P1 Pmax
P2 Pmax
P Pmax
PR Pmax
S sin
PD Pmax
sin
S sin
PD P Pmax
S sin
sin
sin
Real power
V , Pmax V 2 X L
S V
V2
V1
P Q
QL Pmax
2 1 cos
Q Pmax
S2
QD Pmax
1 cos
Qmax , Qmax
Q2 Pmax
1 cos
S cos
Q1 Pmax
1 cos
S cos
S2
S cos
2 S cos
QR
cos
cos
S cos
Reactive power
-70-
-74-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS Methods of the Power Control in Case of UPLC Application - 1
Dynamic Voltage Restorer (DVR) DVR) - 1
Amplitude Regulation
SDVR4
S-APF
3) DVR with ES and with variable DC-link voltage
S-APF
S-APF
2) DVR without ES and supply-sideconnected shunt converter
var
I
0 S S S
40% 0 40%
V X = jX L I
S
V2
V1
V1
var
I
2 S S S
Q2 Pmax
Changes of real and reactive power
?
SDVR3
S
V V1
V
Phasor diagram
SDVR2
S-APF
1) DVR without ES and load-sideconnected shunt converter
V1
V2
40% 0 40%
Changes of real and reactive power
SDVR1
Quadrature Regulation
V X=jX LI
Phasor diagram
System topologies
Q1 Pmax PL Pmax
Q2 Pmax Q1 Pmax PL Pmax
4) DVR with ES and with constant DC-link voltage
-71-
-75-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS Methods of the Power Control in Case of UPLC Application - 2
Dynamic Voltage Restorer (DVR) DVR) - 2
Phase Shift Regulation
Example of the Control System
var 2 S S S
- Current harmonic filtering. - Reactive current compensation. - Current unbalance. - Voltage Flicker. - Voltage unbalance.
-73-
sin
Q2 Q1 Pmax
1
PL Pmax
L
V1
V2
I
V1
S 22 40% 0 40%
Q2 Pmax Q1 Pmax
PL Pmax
POWER ELECTRONICS IN DISTRIBUTION Modern Arrangements of the UPLC V
V
I
V1
IR
AC Supply on Load
Q2 Pmax
S
20%
1 V
Controllable Obszar region sterowania
TrS
TrP
-Voltaje sag/swell. -Voltaje unbalance. -Voltaje distortion. -Voltaje interruption. -Voltaje flicker. -Voltaje notching.
IR VDC VDC Operator inputs
Series Compensator (Converter)
Series
S 2
S S S
Shunt Compensator (Converter)
UPLC ?
Short characteristic
- Current harmonic filtering. - Reactive current compensation. - Current unbalance. - Voltage Flicker
cos
40% 0 40%
Changes of real and reactive power
the supply-side-connected converter (System 2)
USupply UDVR ULoad
Active Power Conditioner Solutions to Power Quality Problem
Shunt
X
V
-76-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
Load on AC Supply
V2 I
-72-
APC Connection
Phasor diagram
S
DVR closed-loop control in the rotating d-q reference frame. Experimental performance for
V1
V V1
Phase Shift Regulation with the Constant Amplitude V =jX I of the Voltage
Changes of real and reactive power
Phasor diagram
V X = jX L I
IGBT or IGCT CONVERTERS CONTROLLER - PWM MODUTATOR I'Rp I'Rq V' p V' q
FUNCTIONAL OPERATION CONTROL Mode Selection
V'1
I'R
V'
Z'
'
P'
Q'
SYSTEM OPTYMIZATION CONTROL
Typical UPLC topology
Pmin
0,5
P max I V1 V1
0
0,5
1
P Pmax
System variables
Control region of the attainable real and reactive power
-77-
59
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
UPLC - Experimental Results
Modeling and Experimental Investigation of the Small UPLC pS
eS
RS
UPLC
u'C
iS
LS
pP=const
uV
R'V uC u *L
uS
iV
i'S
CD C
CI
LI
PAPF
C'V
SAPF
LV
iV
iC
PWM Current Controller
D C
u *C
3×220 V Nominal voltage US Admissible changes in 60÷340 V network voltage Stabilized load voltage UL 3×60÷240 V 1650 F DC link capacitor The reference voltage 610 V U*DC The maximum network 20 A current IS(max) In the main controller, 10 ms HPF time constant TR KC gain in the UDC regulator (with 1 V/V assumption of the sensor 0,052 V/V) PWM frequency in PAPF 4 kHz controller PWM frequency in SAPF 12 kHz controller
uL
iC
TI U *
C' I R ' I
uI
TV
PWM Voltage Controller
iL
i *C
UD C
Simulation
uS
Load
iS
pI
i 'S
CV
i
iL i'C
Tr
uS u C pV
Results obtained during steady states - 1
pL
MAIN CONTROLLER
Scheme of the investigated UPLC Selected parameters and adjustables of the UPL UPLC
u
40A
400V
20A
200V
0
Experiment
0
uC – 50 V/div
uL – 100 V/div
-20A -200V
10 ms
-40A -400V
uL
iL
40A
400V
20A
200V
0
uS – 100 V/div
0
iS – 10 A/div -20A -200V
10 ms
-40A -400V
UPQC - off
UPQC - on
iL – 10 A/div
Simulation and experimental courses in case of the network voltage and load current harmonics compensation
iC – 10 A/div
-78-
-82-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS UPLC - Experimental Results
UPLC Modeling - 1
Results obtained during steady states - 2
u Sd
u*Ld
+
* uCd
-
0
+ -
uCd
uCd
* uCq
uVq
+ u Ld
+
Voltage controller + SAPF
Voltage reference circuit
u *Lq
uVd
u *Ld
u Id
pV -
+ +
uCq
+ +
uCq
iVd
iSd
iCd
+ -
-
pI
* iCd +
iCd
+
* U DC
KC
Current controller + PAPF + Filter C
+
iL1 – 5 A/div
uS1 – 50 V/div
iL2 – 5 A/div
uS2 – 50 V/div
iL3 – 5 A/div
uS3 – 50 V/div
u S1 – 50 V/div
uL1 – 50 V/div
i Ld
j TR j TR
1
-
Current reference circuit
-
u Lq
u Iq
0
iVq
i Sq
0+
iCq
* iCq
iCq
i Lq
iS1 – 5 A/div
uL2 – 50 V/div
iS2 – 5 A/div
u L3 – 50 V/div
iS3 – 5 A/div
iS1 – 5 A/div
u Sq DC link circuit
pV
pI
U DC
1 j C DC
p DC
Simplified, with ideal voltage and current adding sources, model of the UPL UPLC
Non-symmetrical supply and symmetrical resistive load
Symmetrical supply and non-linear and non-symmetrical load
-79-
-83-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS iS – 10 A/div
UPLC - Experimental Results
UPLC Modeling - 2 Analysis of the Processes in DC Circuit – Steady State P~ PL K SU sin ~U t K LI sin ~ I t Power periodic component
C DC U DC
dU DC dt
L S
UDC(max)=f( PL)
30
2 U DC min
U max
U
U max C
K K 2 ~SU ~ LI sin
U
K SU ~
* U DC
2
K SU ~
2 PL
where U *DC
U
I
U DC max
U DC min
U DC max
U DC min
K LI ~
L S
I
K SU PL *2 ~ U CU DC
K LI ~
2
Calculation (19)
uC – 50 V/div
20
I
uL – 100 V/div
Experiment 10
UDC – 200 V/div
K LI ~ I
PL
iDC – 20 A/div
0
1,0
3,0
2,0
4,0
[kW]
Maximum deviations UDC(max)=UDC(max)-UDC* as a function of increases PL
-80-
-84-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
u Ld
const
i Ld
Compensating iCd
PL e u Ld
t TR
KC
Load active power step change PL PL u Ld
Current changes
Network PL 1 e
i Sd
U DC
t TR
u Ld
KC
U DC
where: KC - gain of the UDC regulator (type P) Instantaneous power pDC changes
PL TR
U DC max where: K C
P
* C DC U DC
u Ld
u
KC ;
K C TR u
u Sd u Ld
-81-
u Sd
PL 1 e u Ld
C DC
TR * U DC
t TR
KC
P
KC U DC
U DC
U DC max
PL max
2
uC
iS 1
Additional functions: power flow control – 1
LS
iS
uS1
S2 Tr
S1 uS1
CD C
P-APF
u Ld
S-APF
Assumption:
Connection scheme to investigate UPQC’s capabilities for power flow control.
UPLC - Experimental Results
UPLC Modeling - 3 Analysis of the Processes in DC Circuit – Transient states
60
[V]
uS – 100 V/div
PL
C DC
The case of harmonics filtration and load step changes PL from 4kW to 8kW
iC – 10 A/div
P~
C DC 2 U DC max 2
Results obtained during transients
iL – 10 A/div
Vector diagrams for the presented scheme, in case when power flow control is achieved through: a) changes of the angle, maintaining constant uC voltage, b) changes of the ! angle, maintaining even voltages uS1 and uS2
-85-
LI
u S2
UC
UC
US2
US1
US1
!
a)
US2
!
b)
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – I-ACDS
UPLC - Experimental Results
Iindirect Backack-toto-Back Coupler (IBIB-BC) BC)
Additional functions: power flow control - 2 Simulation and experimental courses
Simulation
[k W ]
P S1 , P S2 =f( )
Active and reactive powers, measured at S1 and S2 points in the investigated scheme
1,0
uC
u S1
iS1
iS2
u S2
0
60
12 0
24 0
180
300
[d eg]
-0,5
V1 f1
V2 f2
-1,0
I'1 f1 UC
QS1, QS2=f( )
1,5
QS2
Operator
60
120
180
240
300
f2 UC V2
P'
Q'2
System
SYSTEM OPTYMIZATION CONTROL
inputs
0
I2
I'2
2
Q'1
Mode Selection
1,0
1
FUNCTIONAL CONTROLLER "BACK-TO-BACK" VSI
V1
QS1
0,5
Experiment
INVERTERS CONTROLLER - PWM MODUTATOR
I1
[kVar]
u – 50 V/div i – 5 A/div
Changes of the
I2
I1
P S1
P S2 0,5
variables
Typical arrangements of the IBIB-BC circuits with a two VSI module’s
[deg]
angle, maintaining constant uC voltage
-86-
-90-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – I-ACDS
UPLC - Experimental Results
Iindirect Backack-toto-Back Coupler - Principle of Operation
Additional functions: power flow control - 3 Simulation
P
P
VSI1
VSI2
P S1 , P S2 =f( )
[kW ] 1,0
iS1
Active and reactive powers, measured at S1 and S2 points in the investigated scheme
Simulation and experimental courses
u S1
P S2
P S1
uC
u S2
iS2
0,5
-20
-10
10
0
20
[deg]
-0,5 -1,0
[kVar]
Pk > 0
Q S1 , Q S2=f( )
0,5
0,4
Q S1
Q S2
0,3
Pk < 0
0,2 0,1
u – 50 V/div i – 5 A/div
Experiment
-20
-10
Rectifier operation 10
0
20
[deg]
Inverter operation Phasor diagrams for:
Changes of the angle, maintaining even voltages uS1 and uS2
-87-
-91-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION – I-ACDS
IPFC – Interline Power Flow Controller as Extended Arrangements of the UPLC System Linia 1 1
X1
Linia 2 2 System
X2
IDCC DCC – Interline Direct Current Controller as Extended Arrangements of the IBIB-BC ~
E(1)
~
E(2)
System 1
TCR
VSI CSI
P-APF
XN
Linia N N System
SSSC (N)
SSSC (2) S-APF(2)
S-APF(N)
(Inverter) (FALOWNIK)
(FALOWNIK) (Inverter)
System 2
~
VSI CSI
E(N)
GTO
SSSC (1) S-APF(1)
(Inverter) (FALOWNIK)
STATCOM P-APF
ESES E
(Inverter) (FALOWNIK)
System N
CSI
ESE ES
CONTROL
STEROWAN IE
-88-
-92-
POWER ELECTRONICS IN DISTRIBUTION – D-ACDS
POWER ELECTRONICS IN DISTRIBUTION Other Potential Applications of the IPFC and IDCC
Probalistic Investigations
Multifuncional-Multiline Power Coupler
GROUP 1
MRG B1-1 H
b
G
System AC-1 VSG
VSG
P
P
System AC-N
P
Main System-1
10
E(0) f1
GROUP 2
15 20
~
X1G
25
ES
IPFC
SC
1
2
3
4
5
6
7
8
9
10
Number of Systems - N
-89-
X2G
S-APF(M') (Inverter)
E'(M) f2
~
E(1) f1
~
E(N) f1
E'(1) f2
~
Main System-2
~
E'(0) f2
X'M
System AC-M'
GROUP N
IPFC as a transforming substation
45
XN
SYSTEM E(0)
35 40
~
S-APF(N) (Inverter)
GROUP 3
30
X1
S-APF(1) (Inverter)
BM-1
P-APF (Inverter)
Savings of the power rating - %
Results for savings of the P-APF (shunt inverter) power rating due to number of systems.
IPFC – Interline Power Flow Controller
5
Arrangements of the IDCC circuits with a transistorized CSI modules and one high power TCR+GTO module (associated additional P-APF) APF
P-APF (Inverter)
X0
Optional ?
~
{
Optional ?
E(0)
Main System
VSI
Main System
S-APF(1') (Inverter)
Connection of the IPFC and IDCC as a Multifuncional-M Multiline Power Coupler
X'1
System AC-1'
VSI(1") (Front-End)
VSI(K") (Front-End)
X"1
~
E"(1) f=var
DC/DC Converter
ES
X"K
~
E"(K) f=var
E1DC
E2DC
ELDC
-93-
61
PE ARRANGEMENTS IN DISTRIBUTED SYSTEMS Instead Conclusion
SUMMARIZING GENERAL REVIEW
-94Doctoral School of Energynergy- and Geotechnology POWER ELECTRONICS ARRANGEMENTS IN DISTRIBUTED SYSTEMS prof. STRZELECKI Ryszard Kuressaare 16-21 January, 2006
Project code IN576 (1.0101-0236)
-95-
References 1. W.Leonhard, Electrical Engineering between Energy and Information, IPEMC 2000, Beijing 2. F. Blaabjerg et al., Power Electronics as Efficient Interface in Dispersed Power Generation Systems, IEEE Trans. on Power Electronics, Vol.19, N0.5, 2004 3. F.Blaabjerg et al., A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules, IEEE Trans. on Industry Appl., Vol.41, No.5, 2005 4. K.Rajashekara, Hybrid Fuel Cell Strategies for Clean Power Generation, IAS 2004 5. Dong-Ho Lee, A Power Conditioning System for Superconductive Magnetic Energy Storage based on Multi-Level Voltage Source Converter, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 1999 6. D.Larbalestier et al., WTEC Panel Report on Power Applications of Superconductivity in Japan an Germany, International Technology Research Institute, Baltimore, 1997 7. M.Bojrup , Advanced Control of Active Filters in a Battery Charger Application, PhD Dissertation, Lund Institute of Technology (LTH), 1999 8. Perry I-Pei Tsao, An Integrated Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High-Frequency Drive, Ph.D. Dissertation, University of California, Berkeley, 2003
62
9. Nohara. et al., Succeful commercial operation of doubly-fed adjustablespeed flywheel generating system. Proc. of the CICRE/IEE Japan Joint Colloquium on Rotating Electric Machinery Life Extension, Availability, Improvement, and Development of New Machinery, 1997 10. R.S.Weissbach et al., A Combined Uninterruptible Power Supply and Dynamic Voltage Compensator Using a Flywheel Energy Storage System. IEEE Trans. on Power Delivery, Vol.16, No.2, 2001 11. H.Akagi, H.Sato, Control and Performance of a Doubly-FedInduction Machine Intended for a Flywheel Energy Storage System. IEEE Trans. on Power Electronicsy, Vol.17, No.1, 2002 12. Y.H.Song, A.T.Johns, Flexible AC Transmission Systems (FACTS), IEE Power and Energy, Series 30, London, 1999 13. N.G.Hingorani, L.Gyugyi, Understanding FACTS – Concepts and Technology of Flexible AC Transmission Systems. IEEE Press, New York, 2000 14. A.Ghosh, G.Ledwich, Power Quality Enhancement using Custom Power Devices. Kluwer Academic Publishers, London, 2002 15. A.Emadi, A.Nasiri, S.B.Bekiarov, Uninterruptible Power Supplies and Active Filters. CRC Press, 2005 16. R.Strzelecki, G.Benysek, J.Rusi ski, H.D bicki. Modeling and Experimental Investigation of the Small UPQC Systems. Proc. of the IEEE Conf. Compatibility in Power Electronics - CPE’2005, Gdansk, 2005 17. R.Strzelecki, G.Benysek, H.D bicki, Uniwersalny wielofunkcyjny sprz g mi dzysystemowy. Przegl d Elektrotech., Nr.3, 2004 (in Polish) 18. R.Strzelecki, H.Supronowicz, Power factor in AC supply systems and improvements methods., Publishing House of the Warsaw Univ. of Tech, 2000 (in Polish) 19. R.Strzelecki et al., Interline power flow controller - probabilistic approach. Proc. of the IEEE Power Electronics Spec. Conference - PESC ' 02, Cairns, Vol.2, 2002 20. R.Strzelecki, G.Benysek, A.Noculak, Wykorzystanie urz dze energoelektronicznych w systemie elektroenergetycznym. Przegl d Elektrotech., Nr.2, 2003 (in Polish) 21. R.Strzelecki, Aktywne układy kondycjonowania energii – APC. Przegl d Elektrotech., Nr.2, 2002 (in Polish) 22. G.Meckien, R.Strzelecki, Single Phase Active Power Line Conditioners - without Transformers. Proc. of the Conf. EPE–PEMC’2002, Dubrovnik, 2002. 23. L.Fr ckowiak, R.Strzelecki, Hybrid filter operation during nonlinear current pulsation. The Int. Jurnal “COMPEL”, Vol.16, No.1, 1997 24. R.Strzelecki et al., A universal symmetrical topologies for active power line conditioners, Proc. of the Conf. EPE ' 99 , Luesane, 1999