Rotary Field. Indication. +. +. +. +. +. +. +. -. Voltage Supervision Unit. Load: battery bank and power inverter. Control structure: Cascade. System conditioned with ...
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Pspice-Schematics oriented to simulate electronics circuits. Study case: Industrial battery chargers Ciudad Guayana, Venezuela
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
PSpice is a computational tool oriented to electronic circuit simulation. Therefore, it can be focused to analyze electronics circuits embedded in industrial system which are specially designed using discrete components and integrated circuits.
Note: Copyrights are considered, therefore, it article shows a specific section of each unit. However, it´s a practical guide for students, teachers and researchers.
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Steps to simulate with PSpice Subciruit 1 C1
V1
Subcircuit 2 Cf
V1 1 0 5V R1 1 2 50 C1 2 0 100UF .END
Library, include files, subcircuits external (Tools) Stimulus Editor (Optional)
Availables internal models
Output File Analysis Setup
($N_0001) ($N_0002)
1.0398 1.5304
($N_0003) ($N_0004)
.8015 .7982
($N_0005) ($N_0006)
.5492 0.0000
($N_0007)
0.0000
Warning Errors
Schematics Editor
Simulador PSPICE
Circuit File
Markers Pspice Optimizer (Optional)
Text Editor
Ropt
R1
V1
C1
V1 1 0 5V R1 1 2 50 C1 2 0 100UF .END
V1
C1
Probe Data File (Enable Automatically Run Probe)
Probe Output Pspice A/D
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Power Conversion: Battery chargers considered are based on three-phase bridge converter (AC/DC). L
Vr Vs C
Vt
Control & Regulation
Power stage consists of a thyristor rectifier converter which is triggered via control unit, according outgoing signal imposed through regulation stage.
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Regulation stage: Frequently are used two topologies: 1.- Cascaded control scheme consisting of an inner current loop and an outer voltage control loop. It represent the classical control structure. The voltage command is compared to the voltage battery (properly scaled) to produce voltage error signal. This signal is processed through a proportional-plus-integral regulator to determine current reference. The current reference is limited to keep it within safe conditions. Current set point is compared to the actual battery current (properly scaled) to produce a zero current error using a PI regulator. The signal generated modified firing pulse angle imposed over AC/DC converter. 2.- In a Parallel control structure the system will regulate for either voltage or current depending upon the battery requirements. This configuration can be described as a current regulating system when voltage limit or as a voltage regulating system with current limit. However only one of the parameters will be regulated at any on time. A next stage denominated minimum value block is configured as detector to allow the operation in parallel mode.
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Ericsson Battery charger PBXs (Telephony equipment) 24VDC Sweden
AC
Ramp Generator Regulación de la distribución de la carga
Soft start Sequencer
Step-down Transformer
Filter & Sinchronism
V A
Vref
iref
+
+ -
AC/DC
-
Vbat Voltage Controller (PI)
ib a t
Current Controller (PI)
Compare Units
Pulse Amplifier
DC Filter Acquisition A
V Battery Array
PBX
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Orion Battery charger General services Hydroelectric plant 120VDC Venezuela
AC Breaker
Charge Methods
Equalization
Floating
Step-down Transformer
Timer
Vref
Voltage Regulator Synchronism
+
Vbat
ig1-ig6
Current Regulator
ref
i
Fuse
Min Detector
+
ibat
AC/DC Pulse Generator
-
DC Filter
Acquisition & Filters A
Breaker
V RSCC
Protection Relay Batteries
Load
Load: Power inverter
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Gustav Klein Battery charger Hydroelectric Plant 120VDC Germany
Rotary Field Supervision
Configurable inputs: Phase to Phase Phase to Neutral L3
Attenuation & Protection Circuit
Load: battery bank and power inverter Control structure: Cascade System conditioned with rectifier and main voltage supervision, automatic charging changeover, DC overvoltage detector and others protections.
Overvoltage Limit Stage Amplifiers
RMS Extractor Undervoltage Limit
L2
L1
N
Attenuation & Protection Circuit
Attenuation & Protection Circuit
High Voltage Detector + Low Voltage Detector High Voltage Detector
Stage Amplifiers
+
RMS Extractor
∑
Overvoltage Indication
+
+ +
∑
+
-
+ ∑
Rotary Field Indication
Undervoltage Indication
Low Voltage Detector
Stage Amplifiers
RMS Extractor
High Voltage Detector
Low Voltage Detector
Voltage Supervision Unit
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
Each pulse generator is designed considering three integrated circuits TCA785 Features: Recognition zero passage Three-phase operation using 3 IC´s Output current 250mA Long-pulse ideal to drive inductive load (AC/DC & AC/AC)
December, 2015
Orion Gustav Klein
Cases:
Pulse Extension (12)
Vsync (5)
ZVS
Synchronism Register
Q1(4)
Zero Detector
Vs (16)
Q1(14)
Discharge Monitor +
Q2(15)
-
Logic -
QU (3) QZ (7)
+
Model is available in CircuitMaker simulation tool, however is feasible simulate with PSpice using others components
Q2 (2)
Control Comparator
I
Gnd (1)
Discharge Transistor
(9) R9
(8) Vstab
(10) C10
(11) V11 Control Voltage
(6) Inhibit
(13) Long-Pulse Commutation
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
TCA785 Waveforms
VSINC
t
2
V10
V10MAX
V11
Control pulses
Pin_15
Q2
Pin_14
Q1
t
2
t
2
Q2 Pin 12 a Gnd Q1 Pin 12 a Gnd
t
t
2
t
Q2
Pin 13 a Gnd
t
Q1 Pin 13 a Gnd
t
QU QZ
t
2
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Design equations: Triggering point:
t fir
V11 R9 C10 Vref K
2.8 V Vref 3.4 V
Vref típico 3.1 V
K 1.25 Tp 1:1
Ramp voltage:
1K K1
Vref K t
10 K Vs(16)
Charge current:
I10
GND (1)
Vsyn (5)
Vref K
INV (1)
2K
VC (11)
V10max VS 2 Voltios
INHIBIT (6)
TCA785 Phase Control
Vstab(8)
15
Q 2 (15) T1
C10 (10)
R9 C10
RT (9)
V10
G1
12 Vcc
12 Volts
1K Q 1 (14)
Tp 1:1
G2
12 Vcc
R9
1K
Cr 22nF 10K Reference Voltage
270K
K2 RT1 22K
15 C10 330nF
24 VAC
RT2 50 K
220 VAC
3K R9 300 K 500 pF C10 1 F
T2 1K
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
Equivalent circuits using PSpice:
Ramp Generator
December, 2015
Zero detector
Synchronism
Control Comparator
Output Pulses
+
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
Pspice simulations
Single-phase AC/DC converter
December, 2015
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
Pspice simulations
Three-phase test
December, 2015
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Orión Electrónica
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Filters & synchronization stage Protection diodes
Output signal to TCA785 (Synchronism) Sinusoidal signal
Filter circuit
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Transient Analysis
Output signal
Input signal from step-down transformer
AC Sweep Analysis (Bode Diagram) Attenuation:-14.68dB
Phase: -180°
60Hz
Filters & synchronization stage
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Voltage Regulator
Battery Voltage Acdquisition
Set Point PI Configuration Output PI: Control signal to adjust firing pulse
Reference (constant)
Battery voltage
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
PI Voltage
Regulation Stage
Minimum Value Detector
PI Current
Parallel control structure
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Regulation Stage 16V
14V
PI Voltage Output Reg
12V
10V
8V 0s
Pi Current
Diode (CR15) reverse conducting, thus the output voltage=PI Current+VAK V(Out_Reg)
0.1s V(U2A:OUT)
0.2s V(U3C:OUT)
0.3s
0.4s
0.5s Time
0.6s
0.7s
0.8s
0.9s
1.0s
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
Thyristor Driver
December, 2015
Amplifier Circuit & Isolated Transformer
From TCA785
Output Pulse
Inhibit Pulse Modulation Circuit (Oscillator)
From TCA785
Modulated Pulse
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Gustav Klein
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Filter stage
Input signal
First stage: Inverter Amp
Second stage: Inverter Amp
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Voltage Supervision
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
2.5V
High level reference Test signal
2.0V
1.5V
V(VTest:+)
V(R96:2)
Low level reference
V(R97:2)
0V
Normal condition
-5V
-10V 20V
10V
SEL>> 0V 0s
High-voltage detected
V(RTest1:2)
Low-voltage detected
Normal condition V(RTest2:2)
0.1s
0.2s
0.3s
0.4s
0.5s Time
0.6s
0.7s
0.8s
0.9s
1.0s
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Rotary Field Supervision
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Rotary field OK
Vt
Vs
Incorrect sequency of rotary field Vr
Vs
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Thyristor Driver
Input Pulse
TP Output Pulse Gate Pulse
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Ericsson
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Power Supply
Transient analysis
AC Input
Linear Regulator using IC723
Current Driver Current Sensor
Branch circuit used for shortcircuit test
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Transient analysis
Power supply
Shortcircuit event: overcurrent registered
Sensor current
Normal condition: 15VDC
Shutdown Protection mode
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Filter test when is added a noise signal
Filter Stage
Sinusoidal signal Noise signal
12V
8V
Output signal (Synchronism)
4V
0V
-4V
-8V
-12V 32ms 36ms V(2A18:+,2A18:-) V(U1:OUT)
40ms V(2A18:+)
44ms
48ms
52ms Time
56ms
60ms
64ms
68ms
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
AC Sweep analysis (Bode Diagram)
Filter stage
60Hz Phase:-179,250
-119d
(59.893,-179.258) (60.008,-179.272) -200d
-300d
SEL>> -382d 10
VP(U1:OUT)
60Hz Attenuation:-6.46dB 0
(60.008,-6.4588)
-10
-20
40.0Hz VDB(U1:OUT)
60.0Hz
80.0Hz
100.0Hz
120.0Hz
140.0Hz Frequency
160.0Hz
180.0Hz
200.0Hz
220.0Hz
240.0Hz
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
Transient analysis
December, 2015
Synchronization circuit
Enable firing pulse
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
Transient analysis
December, 2015
Ramp Generator
Synchronism Signal
Ramp Generator
Control Comparator
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Transient analysis
Ramp Generator Ramp waveform
Control voltage from regulation circuit
The control pulse is output at the falling edge
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
Lead-Acid Battery Model
December, 2015
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015 (0.758+(0.139/(1.06-V(SOC N )))/{SOC M})*{N S} Ercarga
R cm eg 20m eg
PARAM ET ERS:
R carga SOC M = 0.95 k = 0.005 NS = 1
Charge stage
IN - OU TIN + OU T+
0
EVALU E
1
F1 D C arg
EVALU E
F
OU T+ IN + OU T- IN -
D break
0
Ecarga (2+(0.148*V(SOC N )))*{N S}
0
R ext Vbat 0.8 -
H1 +
I1
Ibat
H
-10A
0 D D esc
Discharge stage
0 D break
F2 F
EVALU E
0
OU T+ IN + OU T- IN -
R descarga 1 20m eg
Erdescar
0
V
EVALU E
SOC Calculator
0
IN - OU TIN + OU T+
R dm eg
((0.19+(0.1307/(V(SOC N )-0.14)))/{SOC M})*{N S}
V(Ibat)*V(Vbat)*{K}/(3600*{SOC M}) 1
d/dt
SOC N 0v
V
0.95 1 0v
Edescarga (1.926+(0.124*V(SOC N )))*{N S}
1.0
Battery model
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
Battery model Charge cycle
Consumed Energy SOC Balance Energy Discharge cycle Returned Energy
SOC
Pspice-Schematics oriented to simulate electronics circuits. Study case: industrial battery chargers Prof. Herman E. Fernández H.
December, 2015
References García J. F., López F., Zabala J.C., e Iriarte M. (1997). “El vehículo eléctrico, tecnología, desarrollo y perspectivas de futuro”. Mc. Graw Hill, Madrid. pp.136-155. García J. F.(1998). “Acumuladores Electroquímicos, fundamentos, nuevos desarrollos y aplicaciones”. Mc. Graw Hill, Madrid. pp.25-64. Mohan N. (1999).” Power electronics: computer simulation, análisis, and education using Pspice”. Minnesota power electronics researh & education. Minesota, pp.20.1-20.3. Panasonic (1998). “Charging Methods and Applications of VRLA Batteries”. August, pp. 1-8. Rashid M and Rashid H (2006). “Spice for power electronics and electric power.” CRC second edition, pp.210214. Castañer L., and Silvestre S.(2002).“ Modelling photovoltaic systems using Pspice. Wiley. Chichester, pp. 117123. Intusoft (1991). “Pre-spice user´s guide”. Copyright Intusoft, California, pp.5.1-5.21. Análisis y Simulación de Circuitos Eléctricos y Electrónicos con el PSpice, CVG Bauxilum, 2007 (40h). Simulación de Convertidores de Potencia con PSpice, CVG Venalum, 2007 (48hr). Análisis y Simulación de Circuitos Eléctricos y Electrónicos con el PSpice, CVG Venalum, 2006 (40h). Análisis y Simulación de Circuitos Eléctricos y Electrónicos con el PSpice Schematics, 2006 (20h). Fernández H., Martínez A., Guzmán V., y Giménez M. I.(2005). “Modelaje y simulación de una batería de plomo – ácido mediante fuentes dependientes de voltaje – corriente y bloques de funciones aritméticas”. Universidad ciencia y tecnología, vol.8, pp.35-41. Marzo, Puerto Ordaz. Fernández H., Martínez A., Guzmán V., y Giménez M. I.(2005). “Modelaje y simulación de una batería de plomo – ácido mediante fuentes dependientes de voltaje – corriente y bloques de funciones aritméticas”. Universidad ciencia y tecnología, vol.8, pp.35-41. Marzo, Puerto Ordaz. Fernández H., Martínez A., Guzmán V. y Giménez M. “Simulación mediante PSpice de un modelo simplificado y de alta eficiencia de una batería de plomo-ácido”. Revista UCT, vol.13, Nº52, pp. 231-237, 2009.