Oct 4, 2012 - statistical properties of a random sequence - like the equiprobability of all numbers ... the example, the increase of the world human population.
RANDOM NUMBER GENERATORS AND MONTE CARLO INTEGRATION THESIS SUBMITTED TO
M. J. P. ROHILKHAND UNIVERSITY In fulfillment of the requirement for the degree of
DOCTOR OF PHILOSOPHY *** 2012 *** Under the Supervision of Dr. Anil Kishore Saxena. Ex-Head : Mathematics Department Bareilly College, Bareilly By
( Saurabh Saxena ) House No 19: UDIT II Mahanagar, Bareilly Phone: +919997029495 [1]
Dedicated To My Parents
Smt. Meera Saxena & Shri Ashok Kumar Saxena
who gave proper direction to my life
[2]
***DECLARATION***
I do hereby affirm that the present research work in the thesis entitled "Random Number Generators And Monte Carlo Integration", has been carried out by me under the supervision of Dr. Anil Kishore Saxena and this work has not been submitted elsewhere for any other degree, diploma, fellowship or any other similar title.
Date: October 4, 2012
[ Saurabh Saxena ] Research Scholar
[3]
***CERTIFICATE***
This is to certify that Saurabh Saxena has carried out this work for Ph.D. thesis entitled "Random Number Generators And Monte Carlo Integration" under my supervision for more than three years. This thesis is a bonafide work and has not been submitted for a degree at any other university
Date: October 4, 2012
Dr. Anil Kishore Saxena Ex-Head Department of Mathematics Bareilly College, Bareilly
[4]
***ACKNOWLEDGEMENT***
It
is a matter of extra pleasure for me to record my indebtedness to my
supervisor Dr.Anil Kishore Saxena, Ex-Head: Department of Mathematics, Bareilly College Bareilly, who read the original manuscript and offered me his valuable guidance, constant inspiration, encouragement and criticism for its correction and improvement throughout the present work. I am profoundly indebted to Dr.P.Bera (Department of Mathematics IIT Roorkee) who enriched my academics and helped me to work out on this topic. I would express my thanks to Chairman Mr.Mukesh Gupta; M.D Dr.Pramod Rana; Group Director Dr.Swatantra Kumar; Dean Engineering Er.Santosh Khare, and Head-Department of Mathematics Dr.A.P.Singh of Future Group of Institutions Bareilly for their inspiration and moral support. I express my cordial gratitude to Er.Hemant Yadav, Director: P.P.G Institute of Engineering Bareilly, for his valuable advice and discussions. I am also thankful to my friends Amit Chandra, Dr.Vinod Kumar Verma, Abhishek Saxena and especially Ankur Mittal for offering their help and valuable suggestions. To my Family, must go the largest debt of gratitude for their generous and constant encouragement and understanding. Last but not the least, I would like to thank almighty for whatever I am and could able to do.
Date: October 4, 2012
[Saurabh Saxena] [5]
***PREFACE***
In the present work, various types of one dimensional, two dimensional and three dimensional integrals are taken into consideration and are evaluated by Monte Carlo method using RANDOM POINTS (self generated and online generated) as well as EQUISPACED POINTS. First chapter relates with the general introduction to randomness, random number, use of these numbers in mathematics. Available generators to generate these numbers are also depicted here. In second chapter two types of random numbers, one is self generated through a computer program and the other is through the online available software are discussed. These random numbers are having extensive application in further chapters to apply Monte Carlo Integration. To generate random numbers we first give a program and steps involved in its execution. We also give a full description of the online random number generator. The nomenclature of these files of random numbers is the last attribute of this chapter. Third chapter is devoted for testing of random numbers, generated in chapter 2.For this very purpose POKER TEST, RUN TEST, FREQUENCY TEST, FREQUENCY MONOBIT TEST and their characteristic are discussed in detail. Necessary computer programs for the calculations required in these test is also given.
[6]
Fourth chapter relates to Monte Carlo Method for Numerical Integration. We describe this method in detail including its origination and error involved. We show how this method is used in Centre Point Formula. We also discuss complete steps of Monte Carlo Integration for one dimensional Integral and its extension for multidimensional integration. Chapter five includes the calculation for one dimensional integral. We solve three different types of one dimensional integral by Monte Carlo Integration using different number of random points and also using equi-spaced points. A program for this calculation is also illustrated. Sixth chapter includes the calculation for two dimensional Integral. We solve three different types of two dimensional integral by Monte Carlo Integration using different number of random points and also using equi-spaced points. A program for this calculation is also illustrated. Chapter seven includes the calculation for three dimensional Integral. We solve two different types of three dimensional integral by Monte Carlo Integration using different number of random points and also using equi-spaced points. A program for this calculation is also illustrated. Eighth chapter is the last chapter of thesis which consists of conclusion of our research work.
[7]
***PROPOSED WORK***
Monte
Carlo
Method
has
taken
extensive
applications
in many fields using only random numbers generated by different and efficient random number generators. In every field the basic requirements for Monte Carlo method are 1.
Sample should be random.
2.
Sample size should be large.
The proposed research work deals with the use of Monte Carlo Method for Numerical Integration. So far the research work in this field only comprises the efficiency of random number generator and the randomness of these numbers and how the randomness of these numbers may be increased to get the best approximation of an integral using these numbers. Here we are proposing the same method for numerical integration but the approach takes a new idea of using the equispaced numbers instead of random numbers i.e. when we apply Monte Carlo method for numerical integration then instead of evaluating the function over the random numbers in the given range of integration we first divide the range of integration into n equal interval, obtain n equispaced points and then evaluate the integral over these points.
[8]
CHAPTER -1
INTRODUCTION
[9]
RANDOMNESS It was around 330 BC when Aristotle defined randomness just be associated with coincidences outside the system whatever one is looking at, while around 300 BC
Epicurus
defined
that
randomness
might
be
continually injected into the motion of all atoms. The presence of apparent randomness[36]in digit sequences of square roots, logarithms etc, and other mathematical constructs was presumably noticed by the 1600s, and by
[10]
the late 1800s it was being taken for granted. But the significance of this for randomness in nature was never recognized. In the late 1800s and early 1900s attempts to justify both statistical mechanics and probability theory led to ideas that perfect microscopic randomness might somehow be a fundamental feature of the physical world. One case where there was occasional discussion of origins of randomness from the early 1900s was fluid turbulence. Traditional mathematical models of natural systems are often expressed in terms of probabilities. In 1927 the first attempt was made to provide supply of random digits to researchers, when a table of 41,600 digits developed by Leonard H.C.Tippet was published by Cambridge machine
University
was
built
Press.
by
RAND
In
the
1950s,
Corporation
to
A
unique
generate
pseudorandom binary bits of 0 or 1 that were then used to generate one million random decimal digits. John Von Neumann[8,35]is
a
name
which
is
treated
as
an
early
pioneer in the development of pseudo random numbers.
Concept of randomness is having somewhat different meanings in different fields. As per the definition given by Aristotle randomness is the situation when a choice is to be made which has no logical element by which to make the choice. In general outcomes of a [11]
process which is assumed to be random, do not follow any
describable
deterministic
pattern,
but
follow
a
probability distribution. For example, the rolling of a die in natural state of affairs produce random results as one cannot compute before throwing the die what digit
will
appearing
be
on
any
the
digit
top, may
but
be
the
probability
calculated.
of
Factually
speaking random numbers should not be generated with a method
chosen
at
random.
The
generation
of
random
numbers is too important to be left to chance[18].As per John Von Neumann, any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. As
far
as
the
best
example
as
a
source
of
randomness is considered, the roulette having a rolling ball may be considered , because behavior of the ball is unpredictable and do not follow any deterministic pattern. types
Basically
randomness
(i) TRUE-RANDOMNESS
is
defined
as
of
two
(ii) PSEUDO-RANDOMNESS
TRUE-RANDOMNESS If the randomness is generated with the help of the phenomenon happening in the environment then it is [12]
called True randomness and the numbers attaining such type of randomness are known as true random numbers.
No mater which physical phenomenon is used, the process
of
generating
true
random
numbers
involves
little, unpredictable changes in the data. For example, HotBits
uses
small
variations
in
the
delay
between
happening of radioactive decay, and RANDOM.ORG[9] uses small deviation in the amplitude of atmospheric noise and many more examples are there to get true randomness into a computer. So far the best physical phenomenon for
the
source.
purpose The
dot
of
true
of
time
randomness when
a
is
radioactive
radioactive
source
decays is completely unpredictable .This approach is used
by
the
Hot-Bits
service
at
Fourmi
lab
in
Switzerland.
Completely category
of
randomized true
design
random
number
falls
within
the
generation.
The
generation of true random numbers outside the computer environment is based on the theory of entropy. Sources of
entropy
include
nuclear
conditions.
HotBits
uses
decay
and
radioactive
atmospheric
decay,
while
Random.org uses radio noise to generate randomness.
[13]
Another common entropy source is the behavior of human users of the system, if such users exist. While humans are not considered good randomness generators upon request, they generate random behavior quite well in the context of playing mixed strategy games. The utilization of human gameplay entropy for randomness generation was studied by Ran Halprin and Moni Naor.
PSEUDO-RANDOMNESS Randomness generated by any deterministic pattern with
the
randomness
help and
of the
the
system
numbers
is
called
attaining
such
Pseudotype
of
randomness are known as Pseudo Random Numbers[32]. A process that appears to be random but it is not, is said to be pseudorandom process .Statistical randomness is a typical exhibition of pseudorandom sequences while it is generated by an entirely deterministic process. A pseudo-random variable[24,26] is a variable created by a deterministic
procedure
which
takes
random
bits
as
input. Most
computer
programming
languages
include
functions or library routines that purport to be random number generators. They are often designed to provide a [14]
random
byte
or
word,
or
a
floating
point
number
uniformly distributed between 0 and 1. Such library functions often have poor statistical properties and some will repeat patterns after only tens of thousands of
trials.
They
are
often
initialized
using
a
computer's real time clock as the seed. These functions may provide enough randomness for certain tasks (for example video games) but are unsuitable where highquality
randomness
is
required,
such
as
in
cryptographic applications[41], statistics or numerical analysis. Much higher quality random number sources are available on most operating systems.
RANDOM NUMBERS Although it may look simple at first sight to give a definition of what a random number is, it proves to be quite difficult in practice. A random number is a number
generated
unpredictable, reliably
by
and
a
which
reproduced.
process, cannot
This
whose be
sub
definition
outcome
is
sequentially works
fine
provided that one has some kind of a black box - such a black box is usually called a random number generator that fulfills this task. However, if one were to be given
a
number,
it
is
simply [15]
impossible
to
verify
whether it was produced by a random number generator or not[18]. In order to study the randomness of the output of such a generator, it is hence absolutely essential to consider sequences of numbers. In the case of a finite sequence of numbers[23], it is formally impossible to verify whether it is random or not. It is only possible to check that it shares the statistical properties of a random sequence - like the equiprobability of all numbers - but this a difficult and tricky task. To illustrate this, let us for example consider
a
binary
random
number
generator
producing
sequences of ten bits. Although it is exactly as likely as any other ten bits sequences, 1 1 1 1 1 1 1 1 1 1 does look less random than 0 1 1 0 1 0 1 0 0 0.
In order to cope with this difficulty, definitions have been proposed to characterize "practical" random number sequences. According to Knuth, a sequence of random numbers is a sequence of independent numbers with
a
specified
distribution
and
a
specified
probability of falling in any given range of values. For
Schneider,
it
is
a
sequence
that
has
the
same
statistical properties as random bits, is unpredictable and cannot be reliably reproduced. A concept that is [16]
present in both of these definition and that must be emphasized
is
the
fact
that
numbers
in
a
random
sequence must not be correlated. Knowing one of the numbers of a sequence must not help predicting the other ones. Whenever random numbers are mentioned in the rest of this paper, it will be assumed that they fulfill these "practical" definitions.
RANDOMNESS AND MATHEMATICS In mathematics statistical approaches are used to explain
the
distribution
theory of
a
of set
probability of
empirical
and
probability
observations
in
large supply of random numbers. For the purposes of simulation we often need to find means to generate random
numbers
on
demand.
Random
numbers
are
of
fundamental need for Monte Carlo Integration[13]. One should not be confused between randomness and unpredictability which seems to be interconnected in ordinary usage, but separate in mathematics[4].Just for the example, the increase of the world human population is quite predictable approximately, but total births [17]
and
deaths
individually
cannot
be
accurately
calculated.
RANDOM NUMBER GENERATOR A
random
abbreviated
as
number
generator
RNG
a
is
which
computational
is or
often
physical
device designed to generate a sequence of numbers or symbols that lack any pattern, i.e. they appear random. Hardware-based systems for random number generation are widely
used,
but
often
fall
short
of
this
goal[18,30],though they may meet some of the statistical tests for randomness intended to ensure that they do not have any easily discernible patterns. Methods for generating random results have existed since ancient times, including dice, coin flipping, the shuffling of playing cards. The many applications of randomness have led to many different methods for generating random data. These methods may vary as to how unpredictable or statistically random they are, and how quickly they can generate
random
computational
numbers.
random
Before
number
the
generators,
advent
of
generating
large amounts of sufficiently random numbers (important in statistics) required a lot of work. Results would sometimes be collected and distributed as random number tables. A growing number of government-run lotteries, and
lottery
games,
are
using [18]
RNGs
instead
of
more
traditional drawing methods, such as using ping-pong or rubber balls. A
computational
or
physical
device
which
is
designed to generate a sequence of numbers following the
non-deterministic
number
generator.
The
pattern two
is
types
known
as
a
random
of
random
number
generator are described as follows.
PSEUDO-RANDOM NUMBER GENERATOR PRNGs
are
algorithms
that
use
the
set
of
mathematical statements or simply pre calculated tables to generate sequence of numbers that come into view as random. PRNGs[25] are efficient, they can produce ample of
numbers
generated
in
short
time,
and
sequence
of
numbers
can be regenerated at a later date if the
seed (starting point) of the sequence is known. The thought of using atmospheric noise to generate random numbers came up while framing a prototype of an online gambling system. Pseudo Random Number Generator are often initialized using a real time clock of a computer,
as
the
seed.
Randomness
often
obtained
through these functions may be suitable for certain [19]
tasks
(for
example
video
games)
but
are
unsuitable
where high-quality randomness is needed, such as in cryptographic
applications,
statistics
or
numerical
analysis. As an example of generating random numbers from physical processes was the Atari 8-bit computers, in which electronic noise from an analog circuit is used to generate true random numbers. Other examples are of radioactive decay, thermal noise, shot noise and clock drift. An outline to different type of pseudo random number generator is given below. The
generation
important While
and
of
common
cryptography
pseudo-random task
and
in
numbers
computer
certain
is
an
programming.
numerical
algorithms
require a very high degree of apparent randomness, many other
operations
only
need
a
unpredictability.
Some
simple
modest
amount
of
examples
might
be
presenting a user with a "Random Quote of the Day", or determining which way a computer-controlled adversary might
move
in
randomness
are
algorithms
and
a
computer
also in
game.
closely
creating
Weaker
associated
amortized
forms with
searching
of hash and
sorting algorithms. Some applications which appear at [20]
first sight to be suitable for randomization are in fact not quite so simple. For instance, a system that 'randomly' selects music tracks for a background music system must only appear to be random; a true random system
would
have
no
restriction
on
the
same
item
appearing two or three times in succession. There are a couple of methods to generate a random number based on a probability density function. These methods involve transforming a uniform random number in way[26].
some
Because
of
this,
these
methods
work
equally well in generating both pseudo-random and true random
numbers.
One
method,
called
the
inversion
method, involves integrating up to an area greater than or
equal
to
the
random
number
(which
should
be
generated between 0 and 1 for proper distributions). A second method, called the acceptance-rejection method, involves choosing an x and y value and testing whether the function of x is greater than the y value. If it is, the x value is accepted. Otherwise, the x value is rejected and the algorithm tries again. Some
frequently
used
pseudo
generators[41]are listed as below
[21]
random
number
MID SQUARE GENERATOR It
is
one
of
the
earliest
methods
used
for
generation of random numbers. In this method we begin with an n-digit number (called seed), then we square it and take n-digits in the middle as the next number. For example let the seed number be 5673, after squaring we get 32182929. After removing two first and two last digits from it we get the next random number as 1829. Again
repeating
the
same
process
we
get
the
next
numbers in the same style.
LINEAR CONGRUENTIAL GENERATOR Linear congruential generator is the most common method for generating pseudorandom numbers which was invented in 1951 by Derrick H. Lehmer(1905-1991). In 1991, George Marsaglia and Arif Zaman at Florida State University invented a random number generator capable of generating a chain of pseudorandom numbers with a period of at least 10250. Linear Congruential Generator was first suggested by Lehmer. According to him it is an easily applicable method of generating pseudorandom sequences. The sequence of pseudorandom numbers < rn> is given by [22]
rn+1= ( a rn + b ) modulo m where m (modulo), a (multiplier) and b (increment) are magic integers chosen by theoretical and empirical analysis of the sequence generated and r0 is an initial non-random seed value.
ARITHMATIC CONGRUENTIAL GENERATOR Another kind of psudo-random number generator is the arithmetic congruential generator whose algorithm is given by rn+1= ( rn-1 + rn ) modulo m For example if Then
r1 =
9 , r2 = 13 and m = 17
r3 = ( 9 + 13 ) mod 17 = 5 r4 = (13 + 5 )
mod 17
= 1
……….etc . and so on the process will go on.
COMBINED CONGRUENTIAL GENEATOR The simulations of complex computer networks, in which
thousands
program,
require
of
users
are
substantially [23]
executing longer
hundreds periods.
of One
method of meeting such a demand is to combine two or more multiplicative congruential generators in such a way that the combined generator has good statistical properties and has a longer period. If ri.1 , ri.2 , ri.3 ,.........ri.k are the ith output from
k
different
multiplicative
congruential
generators, where the jth generator has prime modulus mj and the multiplier aj chosen so that the period is mj-1 then the combined generator will give
With
TEST OF RANDOMNESS Various sequence
statistical
to
attempt
to
tests
can
compare
be
applied
and
to
evaluate
a
the
sequence to a truly random sequence. Randomness is the property of a random sequence that can be characterized and
described
in
terms
of
Independence
and
uniform
distribution[25] of the numbers. The likely outcome of statistical
tests,
when
applied
to
a
truly
random
sequence, is known a priori. There are so many possible [24]
statistical
tests,
absence
a
of
each
"pattern"
assessing which,
the
if
presence
detected,
or
would
indicate that the sequence is nonrandom. Because there are so many tests for judging whether a sequence is random
or
not,
no
specific
finite
set
of
tests
is
deemed "complete." In addition, the results of statistical testing must be interpreted with some care and caution to avoid incorrect conclusions about a specific generator. A
test[1]is
statistical
formulated
to
test
a
specific null hypothesis (H0). For the present research work,
the
null
hypothesis
under
test
is
that
the
sequence being tested is random. Associated with this null
hypothesis
is
the
alternative
hypothesis
(Ha),
which, for this present work, is that the sequence is not
random.
For
each
applied
test,
a
decision
or
conclusion is derived that accepts or rejects the null hypothesis i.e., whether the generator is (or is not) producing random values, based on the sequence that was produced. For
each
test,
a
relevant
randomness
statistic
must be chosen and used to determine the acceptance or rejection of the null hypothesis. Under an assumption [25]
of randomness, such a statistic has a distribution of possible values. A theoretical reference distribution of
this
statistic
under
the
null
hypothesis
is
determined by mathematical methods. From this reference distribution,
a
critical
value
is
determined
(typically, this value is "far out" in the tails of the distribution, say out at the 95 % or 99 % point). During a test, a test statistic value is computed on the data (the sequence being tested). This test statistic value is compared to the critical value. If the test statistic value exceeds the critical value, the
null
hypothesis
Otherwise,
the
for
null
randomness
hypothesis
is
(the
rejected. randomness
hypothesis) is not rejected (i.e., the hypothesis is accepted). In
practice,
hypothesis
testing
the
reason
works
is
that that
statistical
the
reference
distribution and the critical value are dependent on and
generated
under
a
tentative
assumption
of
randomness. If the randomness assumption is, in fact, true
for
the
data
at
hand,
then
the
resulting
calculated test statistic value on the data will have a very
low
probability
(e.g.,0.05% [26]
or
0.01
%)
of
exceeding the critical value. On the other hand, if the calculated
test
statistic
value
does
exceed
the
critical value (i.e., if the low probability event does in
fact
occur),
then
from
a
statistical
hypothesis
testing point of view, the low probability event should not occur naturally. Therefore,
when
the
calculated
test
statistic
value exceeds the critical value, the conclusion is made
that
the
original
assumption
of
randomness
is
suspect or faulty. In
this
case,
statistical
hypothesis
testing
yields the following conclusions: reject H0 randomness) and accept Ha (non-randomness).
MONTE CARLO METHOD The Monte Carlo method is a method for solving problems using random variables. It is a powerful tool in many fields of mathematics, physics and engineering. The algorithms[12]based on this method give statistical estimates for any linear functional of the solution by performing random sampling of a certain random variable whose
mathematical
expectation
functional. [27]
is
the
desired
The basis of the Monte Carlo method[27], along with its name, was formed during World War II in Los Alamos when the atom bomb was developed. On the basis of this method Monte Carlo integration becomes a mathematical technique random
that
relies
variables
and
on
statistical
random
sampling
properties to
of
numerically
estimate integrals. It is well suited for the highdimensional integrals[31].Monte Carlo methods estimate integrals or other quantities that can be expressed as an
expectation
by
averaging
the
results
of
a
high
number of statistical trials. Computers are ideal for performing such trials, and the appearance of faster and
faster
computers
has
driven
the
wide
spread
application of Monte Carlo methods today. This change towards
stochastic
simulation
with
computers
was
adequately described by Schneider. "It is interesting to note that computers have led to
a
novel
revolution
in
mathematics.
Whereas
previously an investigation of a random process was regarded as being complete as soon as it was reduced to an analytic description, nowadays it is convenient in many cases to solve an analytic problem by reducing it to a corresponding random process and then simulating that process"[33]. [28]
CHAPTER -2
RANDOM NUMBERS DATA FILES
[29]
The
basic
requirement
of
MONTE
CARLO
TECHNIQUE[15]for numerical integration is a large sample of random numbers in the range of integration. As far as the sample size is concerned, we partially agree with the requirement of large number of nodes( points in the range of integration )as we shall observe later that as the number of nodes increases the evaluated value of integral comes to be closer and closer to the exact value. But we completely disapprove the random character
of
nodes.
Our
rejection
[30]
of
randomness
is
specifically
for
numerical
integration
and
not
for
other applications of MONTE CARLO TECHNIQUE and it will be completely established in next coming chapters. For this purpose we shall first generate the random numbers with the help of TIMER and RANDOMIZE statements of GWBASIC in a program that follows PROG2_1.BAS 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260
CLS : KEY OFF D$ = DATE$: T$ = TIME$ V = TIMER: V$ = STR$(V): V1$ = LEFT$(V$,5) : DIM N(5000) LOCATE 6,15 : PRINT "Choice 1 for 1000 numbers file" LOCATE 8,15: PRINT "Choice 2 for 2000 numbers file" LOCATE 10,15: PRINT "Choice 3 for 3000 numbers file" LOCATE 12,15: PRINT "Choice 4 for 4000 numbers file" LOCATE 14,15: PRINT "Choice 5 for 5000 numbers file" LOCATE 18,15: INPUT "Type your Choice Number....( 1 to 5 )";CHOICE IF CHOICE < 0 OR CHOICE > 5 THEN 110 ELSE 130 LOCATE 18,15 : PRINT " GOTO 90 F$ = "H:Mydata"+ RIGHT$(STR$(CHOICE),1) + ".dat" OPEN F$ FOR OUTPUT AS #1 RANDOMIZE(V) FOR I = 1 TO CHOICE*1000 R$ = STR$(RND) N(I)= VAL(R$) 'IF VAL(LEFT$(R$,2))= 0 THEN PRINT R$, WRITE #1,N(I):COUNT = COUNT + 1 NEXT I CLS:PRINT:PRINT TAB(25): PRINT "Name of Data File ", F$ PRINT:PRINT:PRINT TAB(25): PRINT "NUMBER of Data ",,COUNT PRINT:PRINT: PRINT TAB(25)"DATE of creation ",D$ PRINT:PRINT: PRINT TAB(25)"TIME of creation ",T$ CLOSE #1:END
[31]
"
On execution of this program, we are prompted as Choice 1 for 1000 numbers file Choice 2 for 2000 numbers file Choice 3 for 3000 numbers file Choice 4 for 4000 numbers file Choice 5 for 5000 numbers file Type your Choice Number.....(1 to 5) ? If we input 1 as the choice number then the output is as below Name of Data File
H:Mydata1.dat
NUMBER of Data
1000
DATE of creation
05-17-2012
TIME of creation
10:23:54
In this way a data file of 1000 random numbers is being created in drive H by the name of "Mydata1.dat". If we again execute this program with same input 1 for
choice
then
the
already
created
data
file
"Mydata1.dat" in H drive will be omitted and a new data file of 1000 random numbers will be created in drive H by the same name "Mydata1.dat".The input 2 for the choice variable will create a data file of 2000 random numbers by the name of "Mydata2.dat" in H drive. If we again execute this program for the choice 2 then the [32]
file "Mydata2.dat" which was created just now will be omitted and a new file by the name of "Mydata2.dat" will be created i.e. execution of this program for the file which is already present will remove the existing file and a new file with the same name will be formed. Just to examine the nature of data files ( test of
randomness,
random
number
Poker's
test
created
by
and this
run
test
program
it
etc
)of
becomes
essential to retain the same files by other name.On account of this fact we have executed this program thrice (as we have to use them for three integrals ) for each choice selection and retained them by other names. For choice 1 on first time execution File created
"H:Mydata1.dat"
New name awarded
"H:Int_1_1.dat"
For choice 1 on second time execution File created
"H:Mydata1.dat"
New name awarded
"H:Int_2_1.dat"
For choice 1 on third time execution File created
"H:Mydata1.dat"
New name awarded
"H:Int_3_1.dat"
Each of the above noted files will contain 1000 random numbers. [33]
Similarly for other choice selection of 2,3,4 and 5 we shall get three files for each choice selection. For A = 1,2,3
and B = 1,2,3,4,5
we follow that the file "H:Int_A_B.DAT" will contain B1000
random
numbers
and
it
will
be
used
for
the
evaluation of Ath Integral. Out of the above noted fifteen data files we may require any single data or a series of data from any of these files. For this purpose we now give a program in GWBASIC as below PROG2_2.BAS 10 20 30 40 50 60 70 80 90 100 110 120 130
CLS : KEY OFF : CLEAR LOCATE 5,5: PRINT "Select the Random Data file......" LOCATE 12,5 : PRINT "Choice 1.......Data File of 1000 Random Numbers" LOCATE 14,5 : PRINT "Choice 2.......Data File of 2000 Random Numbers" LOCATE 16,5 : PRINT "Choice 3.......Data File of 3000 Random Numbers" LOCATE 18,5 : PRINT "Choice 4.......Data File of 4000 Random Numbers" LOCATE 20,5 : PRINT "Choice 5.......Data File of 5000 Random Numbers" LOCATE 22,5 : INPUT "Give your Choice Number....",A$ :A=VAL(A$) IF A 5 THEN 100 ELSE 110 LOCATE 22,5 : PRINT " ":GOTO 80 CLS : LOCATE 5,5 : PRINT "Select the Integral..." LOCATE 12,5 : PRINT "Choice 1.......File used for First Integral" LOCATE 14,5 : PRINT "Choice 2.......File used for Second Integral"
[34]
140 150 160 170 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360
LOCATE 16,5 : PRINT "Choice 3.......File used for Third Integral" LOCATE 20,5 : INPUT "Give your Choice Number....",B$ :B=VAL(B$) IF B 3 THEN 170 ELSE 180 F$="h :"+"Int_"+B$+"_"+A$+".dat": DIM N(A*1000):I=1 OPEN F$ FOR INPUT AS #1 INPUT #1,X : N(I)=X : COUNT=COUNT+1 : I=I+1 IF NOT EOF(1) THEN 200 ELSE 220 CLOSE #1 CLS : LOCATE 5,5 : PRINT"Give your selection....." LOCATE 10,5 : PRINT"Type 1 to view a single data" LOCATE 12,5 : PRINT"Type 2 to view data in given range" LOCATE 18,5 : INPUT "Type your choice number.........."; ANS IF ANS 2 THEN 280 ELSE 290 LOCATE 18,5 : PRINT "Type your choice number.......... " : GOTO 260 IF ANS =1 THEN 300 ELSE 320 CLS : LOCATE 12,5 : INPUT " Give data number "; D LOCATE 14,5 : PRINT " Required Random Number is ";N(D):GOTO 360 CLS : LOCATE 12,5 : INPUT " Give starting data number ";D1 LOCATE 14,5 : INPUT " Give ending data number ";D2 LOCATE 16,5 : PRINT"Your Random Numbers are..." LOCATE 17,1 : FOR I= D1 TO D2 : PRINT USING ".####";N(I),:NEXT I END
As a result of execution of this program we are first prompted as Select the Random Data File..... Choice 1.....Data File of 1000 Random Numbers Choice 2.....Data File of 2000 Random Numbers Choice 3.....Data File of 3000 Random Numbers Choice 4.....Data File of 4000 Random Numbers Choice 5.....Data File of 5000 Random Numbers Give your Choice Number....? [35]
Here we have to input our choice number which can be 1,2,3,4 or 5 according as the size of data file required to view is 1000,2000,3000,4000 or 5000. Let the choice is 2 (for 2000 Random Numbers) After that the next prompt message is Select the Integral.... Choice 1.....File used for First Integral. Choice 2.....File used for Second Integral. Choice 3.....File used for Third Integral. Give your Choice Number..... This choice number will decide the integral under consideration. Let
the
choice
number
selected
this
time
is
1
which is corresponding to the first Integral. The last prompt of this session is Give your selection.... Type 1 to view a single data Type 2 to view data in a given range Type your choice number......? Selection of 1 will ask you the data number in the file "H:Int_1_2.dat".Let 346 is required data number in this file of 2000 numbers then, our ultimate output of the program is Required Random Number is .2270722 Selection of 2 will ask you [36]
Give the starting data number... Let it be 569 then Give the ending data number .... Let it be 581 then output is Your Random Numbers are.... .1060 .2012 .1481 .7971 .8186 .5364 .9739 .0761 .9635 .4065 .6989 .1452 .2729 It should be noted that for neat and clean display of these data the required data range is rounded off to four decimal places by PRINT USING statement. Apart
from
the
generation
of
random
numbers
through computer programs in GWBASIC we now switch over to
online
generation
of
random
numbers.
For
this
purpose we searched many sites which provide random numbers instantly. Out of them three sides which are taken under consideration are
1. RANDOM.ORG (http://www.random.org/decimal-fractions/) RANDOM.ORG offers true random numbers to anyone on the
Internet.
noise,
which
pseudo-random
The for
randomness many
number
comes
purposes algorithms
is
from
atmospheric
better
typically
than used
the in
computer programs. People use RANDOM.ORG for holding [37]
drawings, lotteries and sweepstakes, to drive games and gambling sites, for scientific applications and for art and music. The service has existed since 1998 and was built and is being operated by Mads Haahr of the School of Computer Science and Statistics at Trinity College, Dublin in Ireland. As
of
today,
RANDOM.ORG
has
generated
1.12
trillion random bits for the Internet community. The numbers used in our work generated by random.org are obtained as fractional values upto four decimal places between 0 and 1 and used directly in our work.
2. RESEARCH RANDOMIZER (http://www.randomizer.org/form.htm) RESEARCH RANDOMIZER is the site which is designed for researchers and students who want a quick way to generate
random
numbers
experimental
conditions.
used
wide
in
psychology
a
or
Research
variety
experiments,
assign
of
participants
Randomizer
situations,
medical
trials,
can
to be
including and
survey
research. The program uses a JavaScript random number generator to produce customized sets of random numbers. Since its release in 1997, Research Randomizer has been used to generate number sets over 15.8 million [38]
times.
This
service
is
part
of
Social
Psychology
Network and is fast, free, and runs with any recent web browser as long as JavaScript isn't disabled. The
numbers
used
in
our
work
generated
by
randomizer.org are obtained as integral values of four digits between 0 and 9999 and then divided by 10000 to obtain fractional values between 0 and 1 and then they are used in our work.
3. GRAPH PAD Software (http://www.graphpad.com/quickcalcs/randomn1.cfm) Graph-Pad Software has been dedicated to creating software exclusively for the international scientific community
Since
1984.
Created
by
scientists
for
scientists, its intuitive programs provide researchers worldwide with the tools they need to simplify data analysis, statistics and graphing. It provides free service as quick calcs which is an online calculator for scientist and researchers to generate random numbers. The
numbers
used
in
our
work
generated
by
graphpad.com are obtained as integral values of four digits between 0 and 9999 and then divided by 10000 to [39]
obtain fractional values between 0 and 1 then they are used in our work.
NOMENCLATURE OF THE DATA FILES Five data files of random numbers from each of the above noted sites are saved as under F ile N a m e
S it e
S ize
o lr r 1 .d a t
R e s e a r c h R a n d o m iz e r
1000
o lr r 1 .d a t
R e s e a r c h R a n d o m iz e r
2000
o lr r 1 .d a t
R e s e a r c h R a n d o m iz e r
3000
o lr r 1 .d a t
R e s e a r c h R a n d o m iz e r
4000
o lr r 1 .d a t
R e s e a r c h R a n d o m iz e r
5000
o lr o r g 1 .d a t
R a n d o m .O r g
1000
o lr o r g 2 .d a t
R a n d o m .O r g
2000
o lr o r g 3 .d a t
R a n d o m .O r g
3000
o lr o r g 4 .d a t
R a n d o m .O r g
4000
o lr o r g 5 .d a t
R a n d o m .O r g
5000
o lg p 1 .d a t
G ra p h Pa d
1000
o lg p 2 .d a t
G ra p h Pa d
2000
o lg p 3 .d a t
G ra p h Pa d
3000
o lg p 4 .d a t
G ra p h Pa d
4000
o lg p 5 .d a t
G ra p h Pa d
5000
T a b le 2 .1
As far as the notation and nomenclature of these files are concerned it should be noted ol stands for ONLINE gp stands for GRAPH PAD rorg stands for RANDOM.ORG rr stands for RESEARCH RANDOMIZER [40]
and the last numeral n stands for the size of the file which is n multiplied by 1000. All the random numbers in the above noted fifteen files are distinct and have no correlation with each other. In order to view the data of any of the above fifteen
files,
we
present
the
following
GWBASIC
program. PROG2_3.BAS 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
CLS: KEY OFF LOCATE 5,10 : PRINT "Choice 1 for file for RESEARCH RANDOMIZER data file" LOCATE 7,10 : PRINT "Choice 2 for file for RANDOM.ORG data file" LOCATE 9,10 : PRINT "Choice 3 for file for GRAPH PAD data file" LOCATE 15,10 : INPUT "Type your Choice Number ";A IF A < 0 OR A > 3 THEN 70 ELSE 80 LOCATE 15,10 : PRINT" ":GOTO 50 ON A GOTO 90 ,100 , 110 F$= "olrr":GOTO 120 F$= "olrorg":GOTO 120 F$= "olgp" CLS:LOCATE 5,10 : PRINT "Type 1 for 1000 data" LOCATE 7,10 : PRINT "Type 2 for 2000 data" LOCATE 9,10 : PRINT "Type 3 for 3000 data" LOCATE 11,10 : PRINT "Type 4 for 4000 data" LOCATE 13,10 : PRINT "Type 5 for 5000 data" LOCATE 15,10 : INPUT "Give size number ";A$ IF VAL(A$) < 0 OR VAL(A$) > 5 THEN 190 ELSE 200 LOCATE 15,10 : PRINT " ":GOTO 170 F$=F$+A$+".dat": F$="H:"+F$ OPEN F$ FOR INPUT AS #1 INPUT #1,X PRINT USING ".####";X,
[41]
240 250
IF NOT EOF(1) THEN 220 CLOSE #1:END
On execution of this program we shall encounter with two sessions of input. In first session the choice number will decide the online site from which the data file is created. Corresponding to choice 1 the online site is
RESEARCH RANDOMIZER Corresponding to choice 2 the online site is
RANDOM.ORG Corresponding to choice 3 the online site is
GRAPH PAD In the second session of input the choice number will decide the size of the data file created. The input N (such that 0 < N < 6) will be for the file which contains N multiplied by 1000 data. In
the
final
stage
of
the
program
we
get
the
required output of all the data of required file. It should be noted that these data are displayed on screen rounded
upto
four
decimal
statement.
[42]
places
by
PRINT
USING
CHAPTER -3 TESTS for randomness of data files
[43]
The
first
tests
for
random
numbers
were
published by M.G. Kendall and Bernard Babington Smith in the Journal of the Royal Statistical Society in 1938. These were built on statistical tools such as Pearson's distinguish
chi-square
test[33]and
whether
experimental
was
developed
phenomena
to
matched
their theoretical probabilities. Kendall and Smith's original four tests were Hypothesis tests, which took as their null hypothesis the idea that each number in a given random sequence had an [44]
equal
chance
patterns
of
in
occurring,
the
data
and
should
that be
various
also
other
distributed
equiprobably. The frequency test, was very basic: checking to make sure that there were roughly the same number of 0s, 1s, 2s, 3s, etc. The
serial
test,
did
the
same
thing
but
for
sequences of two digits at a time (00, 01, 02, etc.), comparing
their
observed
frequencies
with
their
hypothetical predictions were they equally distributed. The
gap
test,
looked
at
the
distances
between
zeroes (00 would be a distance of 0, 030 would be a distance of 1, 02250 would be a distance of 3, etc.). If a given sequence was able to pass all of these tests within a given degree of freedom and level of significance (generally 5%), then it was judged to be, in
their
words
differentiated
"locally "local
random".
Kendall
randomness"
and
from
Smith "true
randomness" in that many sequences generated with truly random methods might not display "local randomness" to a given degree of freedom very large sequences might contain many rows of a single digit. This might be [45]
"random" on the scale of the entire sequence, but in a smaller block it would not be "random" (it would not pass their tests), and would be useless for a number of statistical applications. As random number sets became more and more common, more
tests,
of
increasing
sophistication
were
used.
Some modern tests plot random digits as points on a three-dimensional plane, which can then be rotated to look for hidden patterns[36].In 1995, the statistician George Marsaglia created a set of tests known as the diehard tests, which he distributes with a CD-ROM of 5 billion pseudorandom numbers. Pseudorandom
number
generators
require
tests
as
exclusive verifications for their "randomness," as they are decidedly not produced by "truly random" processes, but
rather
by
deterministic
algorithms.
Over
the
history of random number generation, many sources of numbers thought to appear "random" under testing have later
been
discovered
to
be
very
non-random
when
subjected to certain types of tests. The notion of quasi random numbers[2] was developed to circumvent some of
these
generators
problems, are
still
though
pseudorandom
extensively [46]
used
number in
many
applications (even known to be extremely "non-random"), as they are "good enough" for most applications.
POKER TEST In order to test the randomness of the data in data files created in chapter 2, we shall first examine the data files by Poker's Test[47].Factually speaking Poker is a family of card games involving betting and individualistic play whereby the winner is determined by the ranks and combinations of their cards, some of which
remain
hidden
un-till
the
end
of
the
game.
Poker's test which derived its name from this game of cards is specially designed to test the independence of the
data
which
is
the
primary
requirement
of
randomness. In testing independence, our null hypothesis is H0: Numbers are random. (In terms of Independence) This null hypothesis, H0, reads that the numbers are independent. Failure to reject the null hypothesis means that no evidence of dependence has been detected on the basis of this test. The very first requirement for the application of POKER'S
TEST
on
data
files [47]
is
to
find
the
actual
probability of getting a number in the range of .0000 to .9999 in which Category 1:
all the four integers are distinct like .ABCD
Category 2:
all the four integers are same like .AAAA
Category 3:
any three integers are same like .AAAB,.AABA,.ABAA,.BAAA
Category 4:
Exactly one pair of like digits like .AABC,.ABAC,.ABCA,.BAAC ,.BACA ,.BCAA
Category 5:
Two pairs of like digits like .AABB,.ABBA,.ABAB
Now we shall evaluate the probabilities of getting a number from each of the above noted categories.
Probability for Category 1 Event 1 The very first integer can be any of 0,1,2,3,4,5,6,7,8,9 Probabilty for this event P(E1)= 10/10 = 1 Event 2 Second integer is different from first Probabilty for this event P(E2)= 9/10 = .9 [48]
Event 3 Third integer is different from first & second Probabilty for this event P(E3)= 8/10 = .8 Event 4 Fourth integer is different from first, second and third Probabilty for this event P(E4)= 7/10 = .7 Therefore Probabilty of getting a number of Category 1 p1 = P(E1)P(E2)P(E3)P(E4) = 1(.9)(.8)(.7)= 0.504
Probability for Category 2 Event 1 The very first integer can be any of 0,1,2,3,4,5,6,7,8,9 Probabilty for this event P(E1)= 10/10 = 1 Event 2 Second integer is same as first Probabilty for this event P(E2)= 1/10 = .1 Event 3 Third integer is same as first & second Probabilty for this event P(E3)= 1/10 = .1 Event 4 Fourth integer is same as first, second and third [49]
Probabilty for this event P(E4)= 1/10 = .1 Therefore Probabilty of getting a number of Category 2 p2 = P(E1)P(E2)P(E3)P(E4) =
1(.1)(.1)(.1) =
0.001
Probability for Category 3 Event 1 If the number is of the type .AAAB Probabilty for this event P(E1) = (10/10)(.1)(.1)(.9) = .009 Event 2 If the number is of the type .AABA Probabilty for this event P(E2) = (10/10)(.1)(.9)(.1) = .009 Event 3 If the number is of the type .ABAA Probabilty for this event P(E3) = (10/10)(.9)(.1)(.1) = .009 Event 4 If the number is of the type .BAAA Probabilty for this event P(E4) = (10/10)(.9)(.1)(.1) = .009 Probabilty of getting a number of Category 3 p3 = P(E1)+ P(E2)+ P(E3)+ P(E4) = 0.009 +.009 +.009 +.009 = 0.036 [50]
Probability for Category 4 If the four digit number contains exactly one pair of like digits then it can be any one of the following forms .AABC,.ABAC,.ABCA,.BAAC ,.BACA ,.BCAA Probabilty of getting a number of the type .AABC = P(E1)= 1(.1)(.9)(.8)= 0.072 Probabilty of getting a number of the type .ABAC = P(E2)= 1(.9)(.1)(.8)= 0.072 Probabilty of getting a number of the type .ABCA = P(E3)= 1(.9)(.8)(.1)= 0.072 Probabilty of getting a number of the type .BAAC = P(E4)= 1(.9)(.1)(.8)= 0.072 Probabilty of getting a number of the type .BACA = P(E5)= 1(.9)(.8)(.1)= 0.072 Probabilty of getting a number of the type .BCAA = P(E6)= 1(.9)(.8)(.1)= 0.072 Probabilty of getting a number of Categoery 4 p4 = P(E1)+ P(E2)+ P(E3)+ P(E4)+ P(E5)+ P(E6) = .072 +.072 +.072 + .072 +.072 +.072 = .432
Probability for Category 5 In a four digits number two pairs of like digits can appear in following ways [51]
.AABB,.ABBA,.ABAB Probabilty of getting a number of the type .AABB = P(E1)= 1(.1)(.9)(.1)= 0.009 Probabilty of getting a number of the type .ABBA = P(E2)= 1(.9)(.1)(.1)= 0.009 Probabilty of getting a number of the type .ABAB = P(E3)= 1(.9)(.1)(.1)= 0.009 Probabilty of getting a number of Category 5 p5 = P(E1)+ P(E2)+ P(E3) =
.009 + .009 + .009
=
.027
In a sample space of size N Expected frequency of Category 1 = p1N Expected frequency of Category 2 = p2N Expected frequency of Category 3 = p3N Expected frequency of Category 4 = p4N Expected frequency of Category 5 = p5N For a data file of size 1000, expected frequencies are (.504)x1000,(.001)x1000,(.036)x1000,(.432)x1000 and (.027)x1000 i.e.
504 , 1 , 36 , 432 and 27
Our data files are of size 1000 , 2000 , 3000 , 4000 and 5000 Expected frequencies for these files are as under [52]
E x p e c t e d f r e q u e n c ie s F ile S iz e
1000
2000
3000
4000
5000
C a te o g e ry 1
504
1008
1512
2016
2520
C a te o g e ry 2
1
2
3
4
5
C a te o g e ry 3
36
72
108
144
180
C a te o g e ry 4
432
864
1296
1728
2160
C a te o g e ry 5
27
54
81
108
135
Tab l e 3.0
Next in order to evaluate the observed frequencies of these five categories in our files, we now present a computer program as below PROG3_1.BAS 10 20 30 40 50 60 70 80 90 100
110 120 130 140 150 160 170
CLS: DIM K$(1000) : C1=0:C2=0:C3=0:C4=0:C5 = 0 :DIM N$(4) OPEN "H:INT_1_1.DAT" FOR INPUT AS #1 FOR I = 1 TO 1000 INPUT #1,X$ K$(I)=X$:NEXT I FOR J = 1 TO 1000 X$=K$(J) FOR I = 1 TO 4 : N$(I)=MID$(X$,I+2,1) : NEXT I REM**CHECK FOR DISTINCT DIGITS**** IF N$(1) N$(2) AND N$(1) N$(3) AND N$(1) N$(4) AND N$(2) N$(3) AND N$(2) N$(4) AND N$(3) N$(4) THEN C1=C1+1 REM***CHECK FOR TRIPPLE REPETITION **** IF N$(1)=N$(2) AND N$(2)=N$(3) AND N$(3) N$(4) THEN C2=C2+1 IF N$(1)=N$(2) AND N$(1)=N$(4) AND N$(3) N$(1) THEN C2=C2+1 IF N$(1)=N$(3) AND N$(3)=N$(4) AND N$(1) N$(2) THEN C2=C2+1 IF N$(2)=N$(3) AND N$(3)=N$(4) AND N$(1) N$(2) THEN C2=C2+1 REM***CHECK FOR FOUR TIMES REPETITION *** IF N$(1)=N$(2) AND N$(2)=N$(3)
[53]
180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350
AND N$(3)=N$(4) THEN C3=C3+1 REM**CHECK FOR ONE PAIR OF LIKE DIGITS*** IF N$(1)=N$(2) AND N$(2) N$(3) AND N$(2) N$(4) AND N$(3)N$(4) THEN C4 = C4+1 IF N$(1)=N$(3) AND N$(1) N$(2) AND N$(1) N$(4) AND N$(2)N$(4) THEN C4 = C4+1 IF N$(1)=N$(4) AND N$(1) N$(2) AND N$(1) N$(3) AND N$(2)N$(3) THEN C4 = C4+1 IF N$(2)=N$(3) AND N$(1) N$(2) AND N$(4) N$(2) AND N$(1)N$(4) THEN C4 = C4+1 IF N$(2)=N$(4) AND N$(1) N$(2) AND N$(3) N$(2) AND N$(1)N$(3) THEN C4 = C4+1 IF N$(3)=N$(4) AND N$(1) N$(3) AND N$(3) N$(2) AND N$(1)N$(2) THEN C4 = C4+1 REM***CHECK FOR TWO PAIRS OF LIKE DIGITS** IF N$(1)=N$(2) AND N$(2) N$(3) AND N$(3) = N$(4) THEN C5 = C5+1 IF N$(1)=N$(3) AND N$(3) N$(2) AND N$(2) = N$(4) THEN C5 = C5+1 IF N$(1)=N$(4) AND N$(4) N$(2) AND N$(2) = N$(3) THEN C5 = C5+1 NEXT J CLS:LOCATE 10,10 : PRINT "Category 1....FOUR DISTINCT DIGITS","=";C1 LOCATE 12,10: PRINT "Category 2....FOUR LIKE DIGITS",,"=";C3 LOCATE 14,10 : PRINT "Category 3....THREE LIKE DIGITS",,"=";C2 LOCATE 16,10 : PRINT "Category 4....ONE PAIR OF LIKE DIGITS","=";C4 LOCATE 18,10: PRINT "Category 5....TWO PAIRS OF LIKE DIGITS","=";C5 CLOSE :END
This program is designed for the file H:INT_1_1.DAT Data size of which is 1000. As a result of its execution we get the following output
[54]
Category 1 ....FOUR DISTINCT DIGITS
= 508
Category 2 ....FOUR LIKE DIGITS
= 3
Category 3 ....THREE LIKE DIGITS
= 35
Category 4 ....ONE PAIR OF LIKE DIGITS
= 419
Category 5 ....TWO PAIRS OF LIKE DIGITS
= 35
For
observed
frequencies
of
all
other
files
size 1000 we have to modify line 20 only. For file "H:INT_2_1.DAT" the modified form of line 20 will be 20
OPEN "H:INT_2_1.DAT" FOR INPUT AS #1
Execution of which will give Category 1 ....FOUR DISTINCT DIGITS
= 518
Category 2 ....FOUR LIKE DIGITS
= 0
Category 3 ....THREE LIKE DIGITS
= 33
Category 4 ....ONE PAIR OF LIKE DIGITS
= 414
Category 5 ....TWO PAIRS OF LIKE DIGITS
= 35
For the files of size 2000 like "H:INT_1_2.DAT" we have to modify line 10,20,30 and 60 as 10 20 30 60
CLS:DIM K$(2000): C1=0:C2=0:C3=0:C4=0:C5 = 0 :DIM N$(4) OPEN "H:INT_1_2.DAT" FOR INPUT AS #1 FOR I = 1 TO 2000 FOR J = 1 TO 2000
which on execution gives Category 1 ....FOUR DISTINCT DIGITS
= 1018
Category 2 ....FOUR LIKE DIGITS
= 0
[55]
of
Category 3 ....THREE LIKE DIGITS
= 65
Category 4 ....ONE PAIR OF LIKE DIGITS
= 872
Category 5 ....TWO PAIRS OF LIKE DIGITS
= 45
In
observed
such
a
way
we
can
evaluate
the
frequencies of all the thirty files of chapter 2 with following ready report.
Observed Frequencies F ile s D a t a S ize 1 0 0 0 F ile N a m e
IN T _ 1 _ 1
IN T _ 2 _ 1
IN T _ 3 _ 1
o lr r 1
o lr o r g 1
o lg p 1
C a te g o ry 1
508
518
485
498
517
487
C a te g o ry 2
3
0
1
0
1
1
C a te g o ry 3
35
33
39
39
35
41
C a te g o ry 4
419
414
445
432
420
448
C a te g o ry 5
35
35
30
31
27
23
T a b le 3 .1
F ile s D a t a S iz e 2 0 0 0 F ile N a m e
IN T _ 1 _ 1
IN T _ 2 _ 1
IN T _ 3 _ 1
o lr r 1
o lr o r g 1
o lg p 1
C a te g o ry 1
1018
1033
1048
1019
999
1003
C a te g o ry 2
0
2
2
1
2
3
C a te g o ry 3
65
64
74
63
69
77
C a te g o ry 4
872
859
821
862
869
867
C a te g o ry 5
45
42
55
55
61
50
T a b le 3 .2
F ile s D a t a S iz e 3 0 0 0 F ile N a m e
IN T _ 1 _ 1
IN T _ 2 _ 1
IN T _ 3 _ 1
o lr r 1
o lr o r g 1
o lg p 1
C a te g o ry 1
1497
1518
1499
1507
1522
1544
C a te g o ry 2
3
3
4
4
3
4
C a te g o ry 3
118
115
107
106
101
98
C a te g o ry 4
1288
1293
1299
1293
1291
1278
C a te g o ry 5
94
71
91
90
83
76
T a b le 3 .3
[56]
F ile s D a t a S iz e 4 0 0 0 F ile N a m e
IN T _ 1 _ 1
IN T _ 2 _ 1
IN T _ 3 _ 1
o lr r 1
o lr o r g 1
o lg p 1
C a te g o ry 1
2023
2012
1975
2059
1990
2023
C a te g o ry 2
4
6
1
3
4
1
C a te g o ry 3
133
155
139
158
138
148
C a te g o ry 4
1736
1726
1776
1679
1763
1718
C a te g o ry 5
104
101
109
101
105
110
T a b le 3 .4
F ile s D a t a S iz e 5 0 0 0 F ile N a m e
IN T _ 1 _ 1
IN T _ 2 _ 1
IN T _ 3 _ 1
o lr r 1
o lr o r g 1
o lg p 1
C a te g o ry 1
2575
2473
2522
2514
2566
2489
C a te g o ry 2
3
7
3
5
4
5
C a te g o ry 3
170
177
178
182
167
170
C a te g o ry 4
2126
2210
2172
2177
2130
2202
C a te g o ry 5
126
133
125
122
133
134
T a b le 3 .5
Now we are well equipped with expected frequencies as
well
as
observed
frequencies
of
all
the
five
categories in our files. For the evaluation of Chi-Square for these data files we now give a computer program as below PROG3_2.BAS 10 20 30 40 50 60
CLS: KEY OFF:C1=0 : C2=0 :C3=0 :C4=0 :C5=0 : DIM N$(4) LOCATE 4,5 : PRINT "Following files are available...." LOCATE 7,5 : PRINT "1......INT_1_1.DAT","2......INT_2_1.DAT","3......INT_3_1.DAT" LOCATE 8,5 : PRINT "4......olrr1.DAT","5......olrorg1.DAT","6......olgp1.DAT" LOCATE 10,5 : PRINT "7......INT_1_2.DAT","8......INT_2_2.DAT","9......INT_3_2.DAT" LOCATE 11,5 : PRINT
[57]
70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430
"10.....olrr2.DAT","11.....olrorg2.DAT", "12.....olgp2.DAT" LOCATE 13,5 : PRINT "13.....INT_1_3.DAT","14.....INT_2_3.DAT","15.....INT_3_3.DAT" LOCATE 14,5 : PRINT "16.....olrr3.DAT","17.....olrorg3.DAT", "18.....olgp3.DAT" LOCATE 16,5 : PRINT "19.....INT_1_4.DAT","20.....INT_2_4.DAT","21.....INT_3_4.DAT" LOCATE 17,5 : PRINT "22.....olrr4.DAT","23.....olrorg4.DAT", "24.....olgp4.DAT" LOCATE 19,5 : PRINT "25.....INT_1_5.DAT","26.....INT_2_5.DAT","27.....INT_3_5.DAT" LOCATE 20,5 : PRINT "28.....olrr5.DAT","29.....olrorg5.DAT", "30.....olgp5.DAT" LOCATE 22,5 : INPUT "Give File Number ( 1 - 30)";ANS IF ANS < 0 OR ANS > 30 THEN 150 ELSE 160 LOCATE 22,5:PRINT " ": GOTO 130 IF ANS 7 AND ANS < 13 THEN DM=2000 IF ANS >6 AND ANS < 13 THEN DM=2000 IF ANS >12 AND ANS < 19 THEN DM=3000 IF ANS >18 AND ANS < 25 THEN DM=4000 IF ANS >24 AND ANS < 31 THEN DM=5000 IF ANS =1 THEN F$="H:INT_1_1.dat" IF ANS =2 THEN F$="H:INT_2_1.dat" IF ANS =3 THEN F$="H:INT_3_1.dat" IF ANS =4 THEN F$="H:olrr1.dat" IF ANS =5 THEN F$="H:olrorg1.dat" IF ANS =6 THEN F$="H:olgp1.dat" IF ANS =7 THEN F$="H:INT_1_2.dat" IF ANS =8 THEN F$="H:INT_2_2.dat" IF ANS =9 THEN F$="H:INT_3_2.dat" IF ANS =10 THEN F$="H:olrr2.dat" IF ANS =11 THEN F$="H:olrorg2.dat" IF ANS =12 THEN F$="H:olgp2.dat" IF ANS =13 THEN F$="H:INT_1_3.dat" IF ANS =14 THEN F$="H:INT_2_3.dat" IF ANS =15 THEN F$="H:INT_3_3.dat" IF ANS =16 THEN F$="H:olrr3.dat" IF ANS =17 THEN F$="H:olrorg3.dat" IF ANS =18 THEN F$="H:olgp3.dat" IF ANS =19 THEN F$="H:INT_1_4.dat" IF ANS =20 THEN F$="H:INT_2_4.dat" IF ANS =21 THEN F$="H:INT_3_4.dat" IF ANS =22 THEN F$="H:olrr4.dat"
[58]
440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710
720 730 740 750 760 770 780 790
IF ANS =23 THEN F$="H:olrorg4.dat" IF ANS =24 THEN F$="H:olgp4.dat" IF ANS =25 THEN F$="H:INT_1_5.dat" IF ANS =26 THEN F$="H:INT_2_5.dat" IF ANS =27 THEN F$="H:INT_3_5.dat" IF ANS =28 THEN F$="H:olrr5.dat" IF ANS =29 THEN F$="H:olrorg5.dat" IF ANS =30 THEN F$="H:olgp5.dat" IF ANS < 7 THEN 530 ELSE 540 EC1=504:EC3=1:EC2=36:EC4=432:EC5=27 IF ANS 6 THEN 550 ELSE 560 EC1=1008:EC3=2:EC2=72:EC4=864:EC5=54 IF ANS 12 THEN 570 ELSE 580 EC1=1512:EC3=3:EC2=108:EC4=1296:EC5=81 IF ANS 18 THEN 590 ELSE 600 EC1=2016:EC3=4:EC2=144:EC4=1728:EC5=108 IF ANS 24 THEN 610 ELSE 620 EC1=2520:EC3=5:EC2=180:EC4=2160:EC5=135 CLS:DIM K$(DM):C1=0:C2=0:C3=0:C4=0:C5=0 OPEN F$ FOR INPUT AS #1 FOR I = 1 TO DM INPUT #1,X$ K$(I)=X$:NEXT I FOR J = 1 TO DM X$=K$(J) FOR I = 1 TO 4 : N$(I)= MID$(X$,I+2,1):NEXT I REM*****CHECK FOR DISTINCT DIGITS***** IF N$(1) N$(2) AND N$(1) N$(3) AND N$(1) N$(4) AND N$(2) N$(3) AND N$(2) N$(4) AND N$(3) N$(4) THEN C1=C1+1 REM***CHECK FOR TRIPPLE REPETITION **** IF N$(1)=N$(2) AND N$(2)=N$(3) AND N$(3) N$(4) THEN C2=C2+1 IF N$(1)=N$(2) AND N$(1)=N$(4) AND N$(3) N$(1) THEN C2=C2+1 IF N$(1)=N$(3) AND N$(3)=N$(4) AND N$(1) N$(2) THEN C2=C2+1 IF N$(2)=N$(3) AND N$(3)=N$(4) AND N$(1) N$(2) THEN C2=C2+1 REM**CHECK FOR FOUR TIMES REPETITION** IF N$(1)=N$(2) AND N$(2)=N$(3) AND N$(3)=N$(4) THEN C3=C3+1 REM***CHECK FOR ONE PAIR OF LIKE DIGITS**
[59]
800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070
IF N$(1)=N$(2) AND N$(2) N$(3) AND N$(2) N$(4) AND N$(3)N$(4) THEN C4 = C4+1 IF N$(1)=N$(3) AND N$(1) N$(2) AND N$(1) N$(4) AND N$(2)N$(4) THEN C4 = C4+1 IF N$(1)=N$(4) AND N$(1) N$(2) AND N$(1) N$(3) AND N$(2)N$(3) THEN C4 = C4+1 IF N$(2)=N$(3) AND N$(1) N$(2) AND N$(4) N$(2) AND N$(1)N$(4) THEN C4 = C4+1 IF N$(2)=N$(4) AND N$(1) N$(2) AND N$(3) N$(2) AND N$(1)N$(3) THEN C4 = C4+1 IF N$(3)=N$(4) AND N$(1) N$(3) AND N$(3) N$(2) AND N$(1)N$(2) THEN C4 = C4+1 REM**CHECK FOR TWO PAIRS OF LIKE DIGITS** IF N$(1)=N$(2) AND N$(2) N$(3) AND N$(3) = N$(4) THEN C5 = C5+1 IF N$(1)=N$(3) AND N$(3) N$(2) AND N$(2) = N$(4) THEN C5 = C5+1 IF N$(1)=N$(4) AND N$(4) N$(2) AND N$(2) = N$(3) THEN C5 = C5+1 NEXT J CLS SUM=SUM+(C1-EC1)*(C1-EC1)/EC1 SUM=SUM+(C2-EC2)*(C2-EC2)/EC2 SUM=SUM+(C3-EC3)*(C3-EC3)/EC3 SUM=SUM+(C4-EC4)*(C4-EC4)/EC4 SUM=SUM+(C5-EC5)*(C5-EC5)/EC5 LOCATE 2,5 : PRINT "File Name .....";F$ LOCATE 5,5 : PRINT "Observed Frequencies are.... LOCATE 7,5 : PRINT C1,C2,C3,C4,C5 LOCATE 9,5 : PRINT "Expected Frequencies are.... LOCATE 11,5 : PRINT EC1,EC2,EC3,EC4,EC5 LOCATE 14,5 : PRINT "Calculated Value of Chi-Square ",SUM LOCATE 16,5 : PRINT "Tabulated Value of Chi-Square" LOCATE 18,5 : PRINT "at 5% level of significance is "," 9.488" IF SUM < 9.488 THEN 1060 ELSE 1070 LOCATE 20,5 : PRINT "There is no reason to reject the Null Hypothesis" CLOSE : END
As a rsult of execution of this program we are prompted with the following message Following files are available..... [60]
1
INT_1_1.DAT
2
INT_2_1.DAT
3
INT_3_1.DAT
4
olrr1.DAT
5
olrorg1.DAT
6
olgp1.DAT
7
INT_1_2.DAT
8
INT_2_2.DAT
9
INT_3_2.DAT
10
olrr2.DAT
11
olrorg2.DAT
12
olgp2.DAT
13
INT_1_3.DAT
14
INT_2_3.DAT
15
INT_3_3.DAT
16
olrr3.DAT
17
olrorg3.DAT
18
olgp3.DAT
19
INT_1_4.DAT
20
INT_2_4.DAT
21
INT_3_4.DAT
22
olrr4.DAT
23
olrorg4.DAT
24
olgp4.DAT
25
INT_1_5.DAT
26
INT_2_5.DAT
27
INT_3_5.DAT
28
olrr5.DAT
29
olrorg5.DAT
30
olgp5.DAT
Give File Number ( 1- 30 ) ? Choice 1 for the file number gives the following informations File Name .....H:INT_1_1.DAT Observed Frequencies are... 508
3
35
419
35
432
27
Expected Frequencies are... 504
1
36
Calculated Value of Chi Square is 6.821098 Tabulated Value of Chi Square at 5% level of significance is 9.488 There is no reason to reject the Null Hypothesis Corresponding to other values of file number we get Chi Square as well as the deduction in respect of all the files created in chapter 2.These results can be put in following tabulated forms [61]
Files of Data Size 1000 C h i -S q u a r e T e s t f o r I N T _ 1 _ 1 .D A T
S .N o .
C o m b in a t io n (i)
O b se rve d
Ex p e c te d
fr e q u e n c y
fr e q u e n c y
(O i )
(E i )
(O i -E i )
(O i -E i )
2
(O i -E i )
2
/Ei
1
C a te g o ry 1
508
504
-4
16
0 .0 3 1 7
2
C a te g o ry 2
3
1
-2
4
4 .0 0 0 0
3
C a te g o ry 3
35
36
1
1
0 .0 2 7 8
4
C a te g o ry 4
419
432
13
169
0 .3 9 1 2
5
C a te g o ry 5
35
27
-8
64
2 .3 7 0 4
χ 2 (C a lc u la t e d ) =
6 .8 2 1 1
6 THEN 230 ELSE 240 LOCATE 15,1:PRINT " " : GOTO 210 LOCATE 17,1: INPUT "For y-range type your File Number";C2 IF C2 =< 0 OR C2 > 6 THEN 260 ELSE 270 LOCATE 17,1:PRINT " " : GOTO 240 IF C1 = C2 THEN 280 ELSE 330 LOCATE 18,1: PRINT"You have to choose distinct files" ANS$=INKEY$:IF ANS$="" THEN 290 ELSE 300 LOCATE 15,1:PRINT " " LOCATE 17,1:PRINT " " LOCATE 18,1:PRINT " " : GOTO 210 IF C=1 THEN C1=C1 : IF C=1 THEN C2 = C2 IF C=2 THEN C1=C1+6 : IF C=2 THEN C2=C2+6 IF C=3 THEN C1=C1+12 : IF C=3 THEN C2=C2+12
[136]
360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530
IF C=4 THEN C1=C1+18 : IF C=4 THEN C2=C2+18 IF C=5 THEN C1=C1+24 : IF C=5 THEN C2=C2+24 F1$=F$(C1):F2$=F$(C2):CLS DEF FNI(A,B)= A*B + EXP(B) LOCATE 10,5: INPUT "Lower limit for x-variable ";XLO LOCATE 12,5: INPUT "Upper limit for x-variable ";XUP LOCATE 14,5: INPUT "Lower limit for y-variable ";YLO LOCATE 16,5: INPUT "Upper limit for y-variable ";YUP:CLS H=(XUP-XLO)/DS : K=(YUP-YLO)/DS OPEN F1$ FOR INPUT AS #1 OPEN F2$ FOR INPUT AS #2 INPUT #1,X : X=X*(XUP-XLO) INPUT #2,Y : Y=Y*(YUP-YLO) Y = YLO +Y:X = XLO+X:SUM = SUM + FNI(X,Y) IF NOT EOF(1) THEN 470 SUM=SUM/DS : SUM=SUM*(XUP-XLO)*(YUP-YLO) LOCATE 8,10 : PRINT "By Monte-Carlo Integration :-" LOCATE 10,10 : PRINT "Using Random data files: ";F1$; " and ";F2$ LOCATE 12,10 : PRINT"Value of integral ";SUM CLOSE:END
540 550
On execution of the program PROG6_1R.BAS we are first required to input the drive letter where the Random required
Data to
Files choose
are the
stored. size
of
Then the
after
we
are
DATA
FILE
by
inputting the choice number 1,2,3,4 or 5 corresponding to the sizes of 1000, 2000, 3000, 4000 and 5000 data. Next, all the six data files of the required size are depicted on the screen. Out of these six data files we have to choose one data file for x-series and one data file for y-series.
[137]
After this selection, limits of integration for xvariable as well as for y-variable are to be inputted.
Now the INPUT session is complete and finally the evaluated values of the integral by Monte Carlo Method using random nodes and equispaced nodes are displayed.
Corresponding to data size of 1000 and choosing INT_1_1.DAT for x-series and
INT_2_1.DAT for y-series
and Limits of integration : 1 to 2 for x-variable and Limits of integration : 3 to 4 for y-variable
We get the following OUTPUT
By Monte Carlo Integration:Using Random Data Files: G:INT_1_1.DAT and G:INT_2_1.DAT Value of Integral
=
40.27252
Corresponding to data size of 1000 and choosing INT_2_1.DAT for x-series and
INT_1_1.DAT for y-series
[138]
i.e. interchanging the files of x and y series with same limits of integration we get the following OUTPUT By Monte Carlo Integration:Using Random Data Files: G:INT_2_1.DAT
and G:INT_1_1.DAT
Value of Integral
=
39.4643
Out of the six data files for 1000 data size there can be 15 combinations and 15 more combinations when data files for x-series and y-series are interchanged. These 30 pairs of codes for 30 file combinations are
(1,2),(1,3),(1,4),(1,5),(1,6),(2,3) (2,4),(2,5),(2,6),(3,4),(3,5),(3,6) (4,5),(4,6),(5,6),(2,1),(3,1),(4,1) (5,1),(6,1),(3,2),(4,2),(5,2),(6,2) (4,3),(5,3),(6,3),(5,4),(6,4),(6,5)
By repeated execution of this program for these 30 combinations of files for x and y series, we get the following observations.
[139]
FIR S T IN T E G R A L (2-D ) Usin g 1000 R a n d o m D a ta S .N o .
File N a m e
T ru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
in t_1_1 & in t_2_1
39.76261
40.27252
0.50991
2
in t_1_1 & in t_3_1
39.76261
39.7384
-0.0242
3
in t_1_1 & o lrr1
39.76261
39.71796
-0.0447
4
in t_1_1 & o lro rg1
39.76261
39.95174
0.18913
5
in t_1_1 & o lgp 1
39.76261
40.19047
0.42786
6
in t_2_1 & in t_1_1
39.76261
39.4643
-0.2983
7
in t_2_1 & in t_3_1
39.76261
39.81743
0.05482
8
in t_2_1 & o lrr1
39.76261
39.78837
0.02576
9
in t_2_1 & o lro rg1
39.76261
40.02318
0.26057
10
in t_2_1 & o lgp 1
39.76261
40.26213
0.49952
11
in t_3_1 & in t_1_1
39.76261
39.41841
-0.3442
12
in t_3_1 & in t_2_1
39.76261
40.30568
0.54307
13
in t_3_1 & o lrr1
39.76261
39.74761
-0.015
14
in t_3_1 & o lro rg1
39.76261
39.97729
0.21468
15
in t_3_1 & o lgp 1
39.76261
40.21144
0.44883
16
o lrr1 & in t_1_1
39.76261
39.41968
-0.3429
17
o lrr1 & in t_2_1
39.76261
40.29828
0.53567
18
o lrr1 & in t_3_1
39.76261
39.76924
0.00663
19
o lrr1 & o lro rg1
39.76261
39.97384
0.21123
20
o lrr1 & o lgp 1
39.76261
40.21274
0.45013
21
o lo rrg1 & in t_1_1
39.76261
39.43876
-0.3239
22
o lro rg1 & in t_2_1
39.76261
40.31837
0.55576
23
o lro rg1 & in t_3_1
39.76261
39.78424
0.02163
24
o lro rg1 & o lrr1
39.76261
39.75909
-0.0035
25
o lro rg1 & o lgp 1
39.76261
40.23304
0.47043
26
o lgp 1 & in t_1_1
39.76261
39.46723
-0.2954
27
o lgp 1 & in t_2_1
39.76261
40.34709
0.58448
28
o lgp 1 & in t_3_1
39.76261
39.8081
0.04549
29
o lgp 1 & o lrr1
39.76261
39.78773
0.02512
30
o lgp 1 & o lro rg1
39.76261
40.02274
0.26013
Tab le 6 .4 .1
[140]
FIR S T IN TE G R A L (2-D ) Usin g 2000 R a n d o m D a ta S .N o .
File N a m e
Tru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
int_1_2 & int_2_2
39.76261
40.25756
0.49495
2
int_1_2 & int_3_2
39.76261
39.94837
0.18576
3
int_1_2 & olrr2
39.76261
40.05103
0.28842
4
int_1_2 & olrorg2
39.76261
39.76542
0.00281
5
int_1_2 & olgp2
39.76261
39.93312
0.17051
6
int_2_2 & int_1_2
39.76261
39.52998
-0.2326
7
int_2_2 & int_3_2
39.76261
40.03584
0.27323
8
int_2_2 & olrr2
39.76261
40.12588
0.36327
9
int_2_2 & olrorg2
39.76261
39.84009
0.07748
10
int_2_2 & olgp2
39.76261
40.01141
0.2488
11
int_3_2 & int_1_2
39.76261
39.50343
-0.2592
12
int_3_2 & int_2_2
39.76261
40.30849
0.54588
13
int_3_2 & olrr2
39.76261
40.09824
0.33563
14
int_3_2 & olrorg2
39.76261
39.81324
0.05063
15
int_3_2 & olgp2
39.76261
39.98253
0.21992
16
olrr2 & int_1_2
39.76261
39.51075
-0.2519
17
olrr2 & int_2_2
39.76261
40.31315
0.55054
18
olrr2 & int_3_2
39.76261
40.01298
0.25037
19
olrr2 & olrorg2
39.76261
39.81965
0.05704
20
olrr2 & olgp2
39.76261
39.98842
0.22581
21
olorrg2 & int_1_2
39.76261
39.48668
-0.2759
22
olrorg2 & int_2_2
39.76261
39.89164
0.12903
23
olrorg2 & int_3_2
39.76261
39.98948
0.22687
24
olrorg2 & olrr2
39.76261
40.08115
0.31854
25
olrorg2 & olgp2
39.76261
39.9629
0.20029
26
olgp2 & int_1_2
39.76261
39.50144
-0.2612
27
olgp2 & int_2_2
39.76261
40.30728
0.54467
28
olgp2 & int_3_2
39.76261
40.00572
0.24311
29
olgp2 & olrr2
39.76261
40.09703
0.33442
30
olgp2 & olrorg2
39.76261
39.80991
0.0473
Tab le 6 .4 .2
[141]
FIR S T IN TE G R A L (2-D ) Usin g 3000 R a n d o m D a ta S .N o .
File N a m e
Tru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
int_1_3 & int_2_3
39.76261
40.02575
0.26314
2
int_1_3 & int_3_3
39.76261
39.54741
-0.2152
3
int_1_3 & olrr3
39.76261
39.69862
-0.064
4
int_1_3 & olrorg3
39.76261
39.88922
0.12661
5
int_1_3 & olgp3
39.76261
39.87184
0.10923
6
int_2_3 & int_1_3
39.76261
39.73576
-0.0269
7
int_2_3 & int_3_3
39.76261
39.57853
-0.1841
8
int_2_3 & olrr3
39.76261
39.72856
-0.0341
9
int_2_3 & olrorg3
39.76261
39.92128
0.15867
10
int_2_3 & olgp3
39.76261
39.9018
0.13919
11
int_3_3 & int_1_3
39.76261
39.68564
-0.077
12
int_3_3 & int_2_3
39.76261
40.00673
0.24412
13
int_3_3 & olrr3
39.76261
39.67741
-0.0852
14
int_3_3 & olrorg3
39.76261
39.87345
0.11084
15
int_3_3 & olgp3
39.76261
39.8499
0.08729
16
olrr3 & int_1_3
39.76261
39.70882
-0.0538
17
olrr3 & int_2_3
39.76261
40.02886
0.26625
18
olrr3 & int_3_3
39.76261
39.54942
-0.2132
19
olrr3 & olrorg3
39.76261
39.89076
0.12815
20
olrr3 & olgp3
39.76261
39.86984
0.10723
21
olorrg3 & int_1_3
39.76261
39.72508
-0.0375
22
olrorg3 & int_2_3
39.76261
40.04724
0.28463
23
olrorg3 & int_3_3
39.76261
39.57119
-0.1914
24
olrorg3 & olrr3
39.76261
39.71639
-0.0462
25
olrorg3 & olrr3
39.76261
39.89045
0.12784
26
olgp3 & int_1_3
39.76261
39.7232
-0.0394
27
olgp3 & int_2_3
39.76261
40.04326
0.28065
28
olgp3 & int_3_3
39.76261
39.56312
-0.1995
29
olgp3 & olrr3
39.76261
39.71094
-0.0517
30
olgp3 & olrorg3
39.76261
39.90593
0.14332
Tab le 6 .4 .3
[142]
FIR S T IN TE G R A L (2-D ) Usin g 4000 R a n d o m D a ta S .N o .
File N a m e
Tru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
int_1_4 & int_2_4
39.76261
39.66985
-0.0928
2
int_1_4 & int_3_4
39.76261
39.69537
-0.0672
3
int_1_4 & olrr4
39.76261
39.51314
-0.2495
4
int_1_4 & olrorg4
39.76261
39.68857
-0.074
5
int_1_4 & olgp4
39.76261
39.8647
0.10209
6
int_2_4 & int_1_4
39.76261
39.65475
-0.1079
7
int_2_4 & int_3_4
39.76261
39.69746
-0.0652
8
int_2_4 & olrr4
39.76261
39.51387
-0.2487
9
int_2_4 & olrorg4
39.76261
39.68638
-0.0762
10
int_2_4 & olgp4
39.76261
39.86355
0.10094
11
int_3_4 & int_1_4
39.76261
39.65509
-0.1075
12
int_3_4 & int_2_4
39.76261
39.67225
-0.0904
13
int_3_4 & olrr4
39.76261
39.51389
-0.2487
14
int_3_4 & olrorg4
39.76261
39.68889
-0.0737
15
int_3_4 & olgp4
39.76261
39.86892
0.10631
16
olrr4 & int_1_4
39.76261
39.64628
-0.1163
17
olrr4 & int_2_4
39.76261
39.65841
-0.1042
18
olrr4 & int_3_4
39.76261
39.68377
-0.0788
19
olrr4 & olrorg4
39.76261
39.67352
-0.0891
20
olrr4 & olgp4
39.76261
39.855504
0.09289
21
olorrg4 & int_1_4
39.76261
39.66131
-0.1013
22
olrorg4 & int_2_4
39.76261
39.67247
-0.0901
23
olrorg4 & int_3_4
39.76261
39.70189
-0.0607
24
olrorg4 & olrr4
39.76261
39.51666
-0.246
25
olrorg4 & olgp4
39.76261
39.86642
0.10381
26
olgp4 & int_1_4
39.76261
39.67253
-0.0901
27
olgp4 & int_2_4
39.76261
39.68647
-0.0761
28
olgp4 & int_3_4
39.76261
39.71711
-0.0455
29
olgp4 & olrr4
39.76261
39.53337
-0.2292
30
olgp4 & olrorg4
39.76261
39.70154
-0.0611
Tab le 6 .4 .4
[143]
FIR S T IN TE G R A L (2-D ) Usin g 5000 R a n d o m D a ta S .N o .
File N a m e
Tru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
int_1_5 & int_2_5
39.76261
39.8919
0.12929
2
int_1_5 & int_3_5
39.76261
39.65769
-0.1049
3
int_1_5 & olrr5
39.76261
39.79416
0.03155
4
int_1_5 & olrorg5
39.76261
39.88149
0.11888
5
int_1_5 & olgp5
39.76261
39.71393
-0.0487
6
int_2_5 & int_1_5
39.76261
39.8859
0.12329
7
int_2_5 & int_3_5
39.76261
39.65979
-0.1028
8
int_2_5 & olrr5
39.76261
39.79431
0.0317
9
int_2_5 & olrorg5
39.76261
39.88263
0.12002
10
int_2_5 & olgp5
39.76261
39.71556
-0.047
11
int_3_5 & int_1_5
39.76261
39.86549
0.10288
12
int_3_5 & int_2_5
39.76261
39.87347
0.11086
13
int_3_5 & olrr5
39.76261
39.77256
0.00995
14
int_3_5 & olrorg5
39.76261
39.85649
0.09388
15
int_3_5 & olgp5
39.76261
39.69173
-0.0709
16
olrr5 & int_1_5
39.76261
39.87583
0.11322
17
olrr5 & int_2_5
39.76261
39.88205
0.11944
18
olrr5 & int_3_5
39.76261
39.64663
-0.116
19
olrr5 & olrorg5
39.76261
39.86943
0.10682
20
olrr5 & olgp5
39.76261
39.70263
-0.06
21
olorrg5 & int_1_5
39.76261
39.88443
0.12182
22
olrorg5 & int_2_5
39.76261
39.89164
0.12903
23
olrorg5 & int_3_5
39.76261
39.65173
-0.1109
24
olrorg5 & olrr5
39.76261
39.79057
0.02796
25
olrorg5 & olgp5
39.76261
39.70994
-0.0527
26
olgp5 & int_1_5
39.76261
39.87074
0.10813
27
olgp5 & int_2_5
39.76261
39.8785
0.11589
28
olgp5 & int_3_5
39.76261
39.64079
-0.1218
29
olgp5 & olrr5
39.76261
39.77776
0.01515
30
olgp4 & olrorg4
39.76261
39.86379
0.10118
Tab le 6 .4 .5
[144]
FIRST INTEGRAL (2-D) (USING EQUISPACED NODES) In order to evaluate the value of the integral
I
4
By using equispaced nodes, we now present a tiny program PROG-6-1E.BAS in which the limits of integration are being supplied within the program. For different integral of 2-dimension the user defined function (line 20) should be changed and the limits of integration should be supplied in the INPUT session. By doing so the
program
concerned
will
here
be
with
more a
elaborate
specific
one.
As
integral,
we we
are have
supplied the limits inside the program. The listing of the program PROG6_1E.BAS is as below
PROG6_1E.BAS 10 20 30 40 50 60
REM "First Integral (2-D)-Equispaced Nodes" DEF FNI(A,B)= A*B + EXP(B) CLS:XLO = 1:XUP = 2:YLO = 3:YUP = 4 LOCATE 10,10: INPUT "No of Equispaced Nodes ";N DIM A(N): DIM B(N) A(0)= XLO :B(0)= YLO
[145]
70 80 90 100 110 120 130 140 150 160 170 180
H =(XUP - XLO)/N:K =(YUP - YLO)/N FOR I= 1 TO N A(I)= A(I-1)+H:B(I)= B(I-1)+K NEXT I FOR I = 1 TO N FOR J = 1 TO N ESUM = ESUM + FNI(A(I),B(J)) NEXT J NEXT I ESUM = ESUM*H*K LOCATE 15,10:PRINT "Divisions= " ;N,"Value = ";ESUM END
On execution of this program we are prompted as
No of Equispaced Nodes ?
Inputting
100
for
this
requirement
we
get
the
output as
Divisions = 100
By
repeated
200,300,...,2000
Value = 39.96033
execution divisions
observations.
[146]
of we
this get
program the
for
following
FIR S T IN T E G R A L (2-D )-B Y E Q UIS P A CE D N O D E S N o. of S. N o. Eq u isp ace d V alu e O f In te gral
Tru e V alu e
Error
39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661 39.7661
0.19423 0.09587 0.06242 0.04645 0.0367 0.03078 0.02473 0.02165 0.01782 0.02113 0.02029 0.01545 0.01172 0.00433 -0.00745 -0.01992 -0.02914 -0.03867 -0.00833 0.03199
N od e s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
39.96033 39.86197 39.82852 39.81255 39.8028 39.79688 39.79083 39.78775 39.78392 39.78723 39.78639 39.78155 39.77782 39.77043 39.75865 39.74618 39.73696 39.72743 39.75777 39.79809 Tab le 6 .4 .6
[The input (say 100) for number of division will divide the range of x and y in 100 equal parts. These points of division of x and y range are equispaced nodes for x and y series.]
The graph 6.4.1 displays the evaluated values of our first (2-D) integral using equispaced nodes.
[147]
Value Of Integral
40 3 9 .9 5 3 9 .9 3 9 .8 5 3 9 .8 3 9 .7 5 3 9 .7 0
500
1000
1500
2000
2500
No. of Nodes V a lu e O f I n t e g r a l U s in g E q u is p c e d
N ode s
T r u e V a lu e O f I n t e g r a l
G rap h 6 .4 .1
Here we find that using the files of random number of size 1000 minimum error in the value of integral is corresponding
to
combination
olrorg1
&
olrr1
and
similarly for the files of size 2000, 3000, 4000 and 5000
the
best
combinations
are
int_1_2
&
olrorg2,
int_2_3 & int_1_3, olgp4 & int_3_4 and int_3_5 & olrr5.
SECOND INTEGRAL (2-D) (USING RANDOM NODES) Our second integral under investigation is
I
5
For the evaluation of this integral we shall use the same program PROG6_1R.BAS but the line 390 which is responsible
for
the
construction
should be modified. [148]
of
the
integrand
The modified form of line 390 is 390
The
DEF FNI(A,B)= A*B*( 1 + A + B)
same
PROG6_1R.BAS
program
with
above
modification is stored by the name of PROG6_2R.BAS On
execution
of
this
program
PROG6_2R.BAS,
corresponding to data size of 1000 and choosing
INT_1_1.DAT for x-series and
INT_2_1.DAT for y-series
and Limits of integration : 1 to 2 for x-variable Limits of integration : 0 to 3 for y-variable
we get the following OUTPUT By Monte Carlo Integration:Using Random Data Files: G:INT_1_1.DAT
and G:INT_2_1.DAT
Value of Integral
=
31.43739
By repeated execution of this program for all the 30 combinations of files for x and y series, we get the observations depicted in tables numbered 6.5.1; 6.5.2 ; 6.5.3 ;6.5.4 and 6.5.5
[149]
S E CO N D IN T E G R A L (2-D ) Usin g 1000 R a n d o m D a ta S .N o .
File N a m e
T ru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
in t_1_1 & in t_2_1
30.75
31.43739
0.68739
2
in t_1_1 & in t_3_1
30.75
30.36758
-0.3824
3
in t_1_1 & olrr1
30.75
30.52351
-0.2265
4
in t_1_1 & olrorg1
30.75
31.08795
0.33795
5
in t_1_1 & olgp 1
30.75
31.46704
0.71704
6
in t_2_1 & in t_1_1
30.75
30.17116
-0.5788
7
in t_2_1 & in t_3_1
30.75
31.31632
0.56632
8
in t_2_1 & olrr1
30.75
30.97057
0.22057
9
in t_2_1 & olrorg1
30.75
31.60234
0.85234
10
in t_2_1 & olgp 1
30.75
31.96182
1.21182
11
in t_3_1 & in t_1_1
30.75
29.81905
-0.9309
12
in t_3_1 & in t_2_1
30.75
32.08098
1.33098
13
in t_3_1 & olrr1
30.75
30.95432
0.20432
14
in t_3_1 & olrorg1
30.75
31.25104
0.50104
15
in t_3_1 & olgp 1
30.75
31.38055
0.63055
16
olrr1 & in t_1_1
30.75
30.00544
-0.7446
17
olrr1 & in t_2_1
30.75
31.73992
0.98992
18
olrr1 & in t_3_1
30.75
30.98626
0.23626
19
olrr1 & olrorg1
30.75
31.17065
0.42065
20
olrr1 & olgp 1
30.75
31.55417
0.80417
21
olorrg1 & in t_1_1
30.75
30.23758
-0.5124
22
olrorg1 & in t_2_1
30.75
32.0158
1.2658
23
olrorg1 & in t_3_1
30.75
30.9384
0.1884
24
olrorg1 & olrr1
30.75
30.82553
0.07553
25
olrorg1 & olgp 1
30.75
31.83072
1.08072
26
olgp 1 & in t_1_1
30.75
30.33429
-0.4157
27
olgp 1 & in t_2_1
30.75
32.142
1.392
28
olgp 1 & in t_3_1
30.75
30.77216
0.02216
29
olgp 1 & olrr1
30.75
30.9283
0.1783
30
olgp 1 & olrorg1
30.75
31.60284
0.85284
Tab le 6 .5 .1
[150]
S E CO N D IN T E G R A L (2-D ) Usin g 2000 R a n d o m D a ta S .N o .
File N a m e
T ru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
int_1_2 & int_2_2
30.75
31.6231
0.8731
2
int_1_2 & int_3_2
30.75
30.92063
0.17063
3
int_1_2 & olrr2
30.75
31.26525
0.51525
4
int_1_2 & olrorg2
30.75
30.64673
-0.1033
5
int_1_2 & olgp2
30.75
30.87801
0.12801
6
int_2_2 & int_1_2
30.75
30.49341
-0.2566
7
int_2_2 & int_3_2
30.75
31.64652
0.89652
8
int_2_2 & olrr2
30.75
31.80289
1.05289
9
int_2_2 & olrorg2
30.75
31.19431
0.44431
10
int_2_2 & olgp2
30.75
31.627
0.877
11
int_3_2 & int_1_2
30.75
30.22645
-0.5236
12
int_3_2 & int_2_2
30.75
32.06994
1.31994
13
int_3_2 & olrr2
30.75
31.48865
0.73865
14
int_3_2 & olrorg2
30.75
30.93175
0.18175
15
int_3_2 & olgp2
30.75
31.26737
0.51737
16
olrr2 & int_1_2
30.75
30.43152
-0.3185
17
olrr2 & int_2_2
30.75
32.09504
1.34504
18
olrr2 & int_3_2
30.75
31.33867
0.58867
19
olrr2 & olrorg2
30.75
31.08956
0.33956
20
olrr2 & olgp2
30.75
31.33671
0.58671
21
olorrg2 & int_1_2
30.75
30.23398
-0.516
22
olrorg2 & int_2_2
30.75
31.8818
1.1318
23
olrorg2 & int_3_2
30.75
31.19252
0.44252
24
olrorg2 & olrr2
30.75
31.50337
0.75337
25
olrorg2 & olgp2
30.75
31.09093
0.34093
26
olgp2 & int_1_2
30.75
30.22936
-0.5206
27
olgp2 & int_2_2
30.75
32.10566
1.35566
28
olgp2 & int_3_2
30.75
31.28968
0.53968
29
olgp2 & olrr2
30.75
31.53782
0.78782
30
olgp2 & olrorg2
30.75
30.85392
0.10392
Tab le 6 .5 .2
[151]
S E CO N D IN T E G R A L (2-D ) Usin g 3000 R a n d o m D a ta S .N o .
File N a m e
T ru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
int_1_3 & int_2_3
30.75
31.25389
0.50389
2
int_1_3 & int_3_3
30.75
30.26438
-0.4856
3
int_1_3 & olrr3
30.75
30.81432
0.06432
4
int_1_3 & olrorg3
30.75
30.9223
0.1723
5
int_1_3 & olgp3
30.75
31.10889
0.35889
6
int_2_3 & int_1_3
30.75
30.80084
0.05084
7
int_2_3 & int_3_3
30.75
30.39417
-0.3558
8
int_2_3 & olrr3
30.75
30.83923
0.08923
9
int_2_3 & olrorg3
30.75
31.09344
0.34344
10
int_2_3 & olgp3
30.75
31.16709
0.41709
11
int_3_3 & int_1_3
30.75
30.47429
-0.2757
12
int_3_3 & int_2_3
30.75
31.02125
0.27125
13
int_3_3 & olrr3
30.75
30.46015
-0.2899
14
int_3_3 & olrorg3
30.75
30.91808
0.16808
15
int_3_3 & olgp3
30.75
30.72772
-0.0223
16
olrr3 & int_1_3
30.75
30.82094
0.07094
17
olrr3 & int_2_3
30.75
31.31246
0.56246
18
olrr3 & int_3_3
30.75
30.29401
-0.456
19
olrr3 & olrorg3
30.75
30.9082
0.1582
20
olrr3 & olgp3
30.75
30.87106
0.12106
21
olorrg3 & int_1_3
30.75
30.68868
-0.0613
22
olrorg3 & int_2_3
30.75
31.29243
0.54243
23
olrorg3 & int_3_3
30.75
30.48787
-0.2621
24
olrorg3 & olrr3
30.75
30.6517
-0.0983
25
olrorg3 & olrr3
30.75
30.99161
0.24161
26
olgp3 & int_1_3
30.75
30.87649
0.12649
27
olgp3 & int_2_3
30.75
31.38354
0.63354
28
olgp3 & int_3_3
30.75
30.31921
-0.4308
29
olgp3 & olrr3
30.75
30.61178
-0.1382
30
olgp3 & olrorg3
30.75
31.00903
0.25903
Tab le 6 .5 .3
[152]
S E CO N D IN T E G R A L (2-D ) Usin g 4000 R a n d o m D a ta S .N o .
File N a m e
T ru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
int_1_4 & int_2_4
30.75
30.53157
-0.2184
2
int_1_4 & int_3_4
30.75
30.48779
-0.2622
3
int_1_4 & olrr4
30.75
30.19908
-0.5509
4
int_1_4 & olrorg4
30.75
30.70143
-0.0486
5
int_1_4 & olgp4
30.75
30.89425
0.14425
6
int_2_4 & int_1_4
30.75
30.50034
-0.2497
7
int_2_4 & int_3_4
30.75
30.60579
-0.1442
8
int_2_4 & olrr4
30.75
30.24078
-0.5092
9
int_2_4 & olrorg4
30.75
30.57272
-0.1773
10
int_2_4 & olgp4
30.75
30.7978
0.0478
11
int_3_4 & int_1_4
30.75
30.42601
-0.324
12
int_3_4 & int_2_4
30.75
30.57734
-0.1727
13
int_3_4 & olrr4
30.75
30.1356
-0.6144
14
int_3_4 & olrorg4
30.75
30.61163
-0.1384
15
int_3_4 & olgp4
30.75
31.05537
0.30537
16
olrr4 & int_1_4
30.75
30.41812
-0.3319
17
olrr4 & int_2_4
30.75
30.47468
-0.2753
18
olrr4 & int_3_4
30.75
30.41425
-0.3358
19
olrr4 & olrorg4
30.75
30.41584
-0.3342
20
olrr4 & olgp4
30.75
30.95341
0.20341
21
olorrg4 & int_1_4
30.75
30.67701
-0.073
22
olrorg4 & int_2_4
30.75
30.56059
-0.1894
23
olrorg4 & int_3_4
30.75
30.64441
-0.1056
24
olrorg4 & olrr4
30.75
30.18126
-0.5687
25
olrorg4 & olgp4
30.75
30.73393
-0.0161
26
olgp4 & int_1_4
30.75
30.6046
-0.1454
27
olgp4 & int_2_4
30.75
30.53114
-0.2189
28
olgp4 & int_3_4
30.75
30.8216
0.0716
29
olgp4 & olrr4
30.75
30.44862
-0.3014
30
olgp4 & olrorg4
30.75
30.48005
-0.27
Tab le 6 .5 .4
[153]
S E CO N D IN T E G R A L (2-D ) Usin g 5000 R a n d o m D a ta S .N o .
File N a m e
T ru e v a lu e In teg ra l
Va lu e O f In teg ra l Usin g
E rro r
R a n d o m N o d es
1
int_1_5 & int_2_5
30.75
30.92533
0.17533
2
int_1_5 & int_3_5
30.75
30.51069
-0.2393
3
int_1_5 & olrr5
30.75
30.83877
0.08877
4
int_1_5 & olrorg5
30.75
31.12194
0.37194
5
int_1_5 & olgp5
30.75
30.69875
-0.0512
6
int_2_5 & int_1_5
30.75
30.91622
0.16622
7
int_2_5 & int_3_5
30.75
30.60986
-0.1401
8
int_2_5 & olrr5
30.75
30.80638
0.05638
9
int_2_5 & olrorg5
30.75
31.15211
0.40211
10
int_2_5 & olgp5
30.75
30.76805
0.01805
11
int_3_5 & int_1_5
30.75
30.83473
0.08473
12
int_3_5 & int_2_5
30.75
30.94092
0.19092
13
int_3_5 & olrr5
30.75
30.66908
-0.0809
14
int_3_5 & olrorg5
30.75
30.71139
-0.0386
15
int_3_5 & olgp5
30.75
30.46885
-0.2812
16
olrr5 & int_1_5
30.75
30.95884
0.20884
17
olrr5 & int_2_5
30.75
30.92807
0.17807
18
olrr5 & int_3_5
30.75
30.45995
-0.2901
19
olrr5 & olrorg5
30.75
30.96872
0.21872
20
olrr5 & olgp5
30.75
30.6121
-0.1379
21
olorrg5 & int_1_5
30.75
31.10125
0.35125
22
olrorg5 & int_2_5
30.75
31.14019
0.39019
23
olrorg5 & int_3_5
30.75
30.36779
-0.3822
24
olrorg5 & olrr5
30.75
30.84071
0.09071
25
olrorg5 & olgp5
30.75
30.68909
-0.0609
26
olgp5 & int_1_5
30.75
30.92736
0.17736
27
olgp5 & int_2_5
30.75
31.02853
0.27853
28
olgp5 & int_3_5
30.75
30.3857
-0.3643
29
olgp5 & olrr5
30.75
30.74625
-0.0038
30
olgp4 & olrorg4
30.75
30.92493
0.17493
Tab le 6 .5 .5
[154]
SECOND INTEGRAL (2-D) (USING EQUISPACED NODES) For the evaluation of the integral
I
5
By using equispaced nodes, we shall take use of the same program PROG6_1E.BAS in which the limits of integration are being supplied within the program. For different
integral
of
2-dimension
the
user
defined
function (line 20 ) should be changed and the limits of integration should be supplied in the INPUT session. By doing so the program will be more elaborate one.As we are concerned here with a specific integral, we have supplied the limits inside the program. The modified forms of line 20 and 30 should be 20
DEF FNI(A,B)= A*B *( 1+ A + B )
30
CLS:XLO = 1:XUP = 2:YLO = 0:YUP = 3
The PROG6_1E.BAS with above two modifications is being stored by the name of PROG6_2E.BAS. On execution of this program PROG6_2E.BAS we are prompted as
No of Equispaced Nodes ?
Inputting 100 for this requirement we get the output as [155]
Divisions = 100 By
repeated
200,300,...,
2000
Value = 31.26226 execution divisions
of
this
we
get
program the
observations S ECO N D IN TEGRA L (2-D )-BY EQ UIS P A CED N O D ES N o. of S. N o. Equispace d V alue O f Inte gral True V alue
Error
N ode s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
31.26226 31.00549 30.92027 30.87804 30.85209 30.83486 30.82266 30.81346 30.80615 30.79992 30.7935 30.79036 30.7849 30.77986 30.7731 30.77006 30.76382 30.76133 30.75408 30.74195 Table 6 .5 .6
[156]
30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75
0.51226 0.25549 0.17027 0.12804 0.10209 0.08486 0.07266 0.06346 0.05615 0.04992 0.0435 0.04036 0.0349 0.02986 0.0231 0.02006 0.01382 0.01133 0.00408 -0.00805
for
following
The graph 6.5.1 displays the evaluated values of
Value Of Integral
our first (2-D) integral using equispaced nodes.
No. of Nodes
Here we find that using the files of random number of size 1000 minimum error in the value of integral is corresponding
to
combination
olgp1
&
int_3_1
and
similarly for the files of size 2000, 3000, 4000 and 5000
the
best
combinations
are
int_1_2
&
olrorg2,
int_3_3 & olgp3, olrorg4 & olgp4 and olgp5 & olrr5.
[157]
THIRD INTEGRAL (2-D) (USING RANDOM NODES) Our third and last integral under investigation is
I
6
For the evaluation of this integral we shall use the same program PROG6_1R.BAS but the line 390 which is responsible
for
the
construction
of
the
integrand
should be modified. The modified form of line 390 is 390
DEF FNI(A,B)= A/B + B/A
The program PROG6_1R.BAS with above modification is stored by the name of PROG6_3R.BAS In this program the limits of integration are to be
supplied
at
every
execution.
IF
the
limits
of
integration are submitted in the program then execution will be quite fast. By repeated execution of this program for all the 30 combinations of files for x and y series, we get the observations depicted in tables 6.6.1, 6.6.2, 6.6.3, 6.6.4 & 6.6.5 on next pages. The high lighted entry in each table is for the least error. [158]
TH IRD IN TEGRA L (2-D ) Usin g 1000 Ran d o m D ata S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
File N am e int_1_1 & int_2_1 int_1_1 & int_3_1 int_1_1 & olrr1 int_1_1 & olrorg1 int_1_1 & olgp1 int_2_1 & int_1_1 int_2_1 & int_3_1 int_2_1 & olrr1 int_2_1 & olrorg1 int_2_1 & olgp1 int_3_1 & int_1_1 int_3_1 & int_2_1 int_3_1 & olrr1 int_3_1 & olrorg1 int_3_1 & olgp1 olrr1 & int_1_1 olrr1 & int_2_1 olrr1 & int_3_1 olrr1 & olrorg1 olrr1 & olgp1 olorrg1 & int_1_1 olrorg1 & int_2_1 olrorg1 & int_3_1 olrorg1 & olrr1 olrorg1 & olgp1 olgp1 & int_1_1 olgp1 & int_2_1 olgp1 & int_3_1 olgp1 & olrr1 olgp1 & olrorg1
Tru e v alu e In teg ral 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 Table 6 .6 .1
[159]
Valu e O f In teg ral Usin g
Erro r
Ran d o m N o d es 9.420214 9.366838 9.34217 9.366514 9.372259 9.318706 9.304336 9.338642 9.340624 9.358641 9.350452 9.378662 9.333392 9.371546 9.422638 9.335342 9.426064 9.34276 9.391445 9.404498 9.328801 9.41467 9.363309 9.376181 9.399275 9.258329 9.335519 9.332606 9.30249 9.301378
0.05595 0.00258 -0.0221 0.00225 0.008 -0.0456 -0.0599 -0.0256 -0.0236 -0.0056 -0.0138 0.0144 -0.0309 0.00728 0.05838 -0.0289 0.0618 -0.0215 0.02718 0.04024 -0.0355 0.05041 -0.001 0.01192 0.03501 -0.1059 -0.0287 -0.0317 -0.0618 0.06288
TH IR D IN TE G R A L (2-D ) Usin g 2000 R an d o m D ata S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
File N am e int_1_2 & int_2_2 int_1_2 & int_3_2 int_1_2 & olrr2 int_1_2 & olrorg2 int_1_2 & olgp2 int_2_2 & int_1_2 int_2_2 & int_3_2 int_2_2 & olrr2 int_2_2 & olrorg2 int_2_2 & olgp2 int_3_2 & int_1_2 int_3_2 & int_2_2 int_3_2 & olrr2 int_3_2 & olrorg2 int_3_2 & olgp2 olrr2 & int_1_2 olrr2 & int_2_2 olrr2 & int_3_2 olrr2 & olrorg2 olrr2 & olgp2 olorrg2 & int_1_2 olrorg2 & int_2_2 olrorg2 & int_3_2 olrorg2 & olrr2 olrorg2 & olgp2 olgp2 & int_1_2 olgp2 & int_2_2 olgp2 & int_3_2 olgp2 & olrr2 olgp2 & olrorg2
Tru e v alu e In teg ral 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 Table 6 .6 .2
[160]
Valu e O f In teg ral Usin g
E rro r
R an d o m N o d es 9.447456 9.42229 9.4193 9.39709 9.423319 9.317266 9.336551 9.349521 9.325439 9.328248 9.326523 9.372768 9.364449 9.340219 9.355754 9.322908 9.381931 9.368069 9.351855 9.364408 9.337916 9.403285 9.382279 9.390222 9.392703 9.328907 9.364824 9.363936 9.36267 9.358396
0.08319 0.05803 0.05504 0.03283 0.05906 -0.047 -0.0277 -0.0147 -0.0388 -0.036 -0.0377 0.00851 0.00019 -0.024 -0.0085 -0.0414 0.01767 0.00381 -0.0124 0.00015 -0.0263 0.03902 0.01802 0.02596 0.02844 -0.0354 0.00056 -0.0003 -0.0016 -0.0059
TH IR D IN TE G R A L (2-D ) Usin g 3000 R an d o m D ata S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
File N am e int_1_3 & int_2_3 int_1_3 & int_3_3 int_1_3 & olrr3 int_1_3 & olrorg3 int_1_3 & olgp3 int_2_3 & int_1_3 int_2_3 & int_3_3 int_2_3 & olrr3 int_2_3 & olrorg3 int_2_3 & olgp3 int_3_3 & int_1_3 int_3_3 & int_2_3 int_3_3 & olrr3 int_3_3 & olrorg3 int_3_3 & olgp3 olrr3 & int_1_3 olrr3 & int_2_3 olrr3 & int_3_3 olrr3 & olrorg3 olrr3 & olgp3 olorrg3 & int_1_3 olrorg3 & int_2_3 olrorg3 & int_3_3 olrorg3 & olrr3 olrorg3 & olrr3 olgp3 & int_1_3 olgp3 & int_2_3 olgp3 & int_3_3 olgp3 & olrr3 olgp3 & olrorg3
Tru e v alu e In teg ral 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 Table 6 .6 .3
[161]
Valu e O f In teg ral Usin g
E rro r
R an d o m N o d es 9.400719 9.3655601 9.347464 9.392529 9.366111 9.341566 9.331951 9.32712 9.352968 9.346246 9.401212 9.436951 9.400928 9.406551 9.425275 9.339031 9.37653 9.348746 9.3812 9.37525 9.339586 9.364608 9.313887 9.340745 9.351619 9.33574 9.376961 9.350988 9.358706 9.370641
0.03646 0.0013 -0.0168 0.02827 0.00185 -0.0227 -0.0323 -0.0371 -0.0113 -0.018 0.03695 0.07269 0.03667 0.04229 0.06101 -0.0252 0.01227 -0.0155 0.01694 0.01099 -0.0247 0.00035 -0.0504 -0.0235 -0.0126 -0.0285 0.0127 -0.0133 -0.0056 0.00638
TH IRD IN TEGRA L (2-D ) Usin g 4000 Ran d o m D ata S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
File N am e int_1_4 & int_2_4 int_1_4 & int_3_4 int_1_4 & olrr4 int_1_4 & olrorg4 int_1_4 & olgp4 int_2_4 & int_1_4 int_2_4 & int_3_4 int_2_4 & olrr4 int_2_4 & olrorg4 int_2_4 & olgp4 int_3_4 & int_1_4 int_3_4 & int_2_4 int_3_4 & olrr4 int_3_4 & olrorg4 int_3_4 & olgp4 olrr4 & int_1_4 olrr4 & int_2_4 olrr4 & int_3_4 olrr4 & olrorg4 olrr4 & olgp4 olorrg4 & int_1_4 olrorg4 & int_2_4 olrorg4 & int_3_4 olrorg4 & olrr4 olrorg4 & olgp4 olgp4 & int_1_4 olgp4 & int_2_4 olgp4 & int_3_4 olgp4 & olrr4 olgp4 & olrorg4
Tru e v alu e In teg ral 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 Table 6 .6 .4
[162]
Valu e O f In teg ral Usin g
Erro r
Ran d o m N o d es 9.362626 9.375683 9.354184 9.353345 9.387814 9.365006 9.365537 9.352472 9.369393 9.394846 9.373025 9.358821 9.359627 9.36331 9.372267 9.366014 9.36462 9.375156 9.377719 9.376168 9.33679 9.354339 9.349858 9.346869 9.346869 9.353461 9.359831 9.341652 9.329079 9.371125
-0.0016 0.01142 -0.0101 -0.0109 0.02355 0.00074 0.00127 -0.0118 0.00513 0.03058 0.00876 -0.0054 -0.0046 -0.001 0.00801 0.00175 0.00036 0.01089 0.01346 0.01191 -0.0275 -0.0099 -0.0144 -0.0174 -0.0174 -0.0108 -0.0044 -0.0226 -0.0352 0.00686
TH IRD IN TEGRA L (2-D ) Usin g 5000 Ran d o m D ata S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
File N am e int_1_5 & int_2_5 int_1_5 & int_3_5 int_1_5 & olrr5 int_1_5 & olrorg5 int_1_5 & olgp5 int_2_5 & int_1_5 int_2_5 & int_3_5 int_2_5 & olrr5 int_2_5 & olrorg5 int_2_5 & olgp5 int_3_5 & int_1_5 int_3_5 & int_2_5 int_3_5 & olrr5 int_3_5 & olrorg5 int_3_5 & olgp5 olrr5 & int_1_5 olrr5 & int_2_5 olrr5 & int_3_5 olrr5 & olrorg5 olrr5 & olgp5 olorrg5 & int_1_5 olrorg5 & int_2_5 olrorg5 & int_3_5 olrorg5 & olrr5 olrorg5 & olgp5 olgp5 & int_1_5 olgp5 & int_2_5 olgp5 & int_3_5 olgp5 & olrr5 olgp4 & olrorg4
Tru e v alu e In teg ral 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 9.364262 Table 6 .6 .5
[163]
Valu e O f In teg ral Usin g
Erro r
Ran d o m N o d es 9.368461 9.338088 9.350269 9.345494 9.339171 9.367647 9.334116 9.353012 9.34354 9.339539 9.371835 9.368114 9.372702 9.387006 9.366412 9.379161 9.383882 9.367675 9.375089 9.369307 9.367277 9.365444 9.374842 9.365746 9.361262 9.375604 9.370334 9.365906 9.371795 9.378934
0.0042 -0.0262 -0.014 -0.0188 -0.0251 0.00338 -0.0301 -0.0113 -0.0207 -0.0247 0.00757 0.00385 0.00844 0.02274 0.00215 0.0149 0.01962 0.00341 0.01083 0.00504 0.00301 0.00118 0.01058 0.00148 -0.003 0.01134 0.00607 0.00164 0.00753 0.01467
THIRD INTEGRAL (2-D) (USING EQUISPACED NODES) For the evaluation of our third integral
I
6
By using equispaced nodes, we shall take use of the same program PROG6_1E.BAS with a change in line 20 and 30.The modified forms of line 20 and 30 should be
20
DEF FNI (A,B)= (A/B) + (B/A)
30
CLS: XLO = 1: XUP = 3: YLO = 2: YUP = 4
The PROG6_1E.BAS with above two modifications is being stored by the name of PROG6_3E.BAS.
Just to ease our repeated execution of the program for same limits of integration we have supplied the limits of integration within the program in line 30 On execution of this program PROG6_3E.BAS we are prompted as
No of Equispaced Nodes?
[164]
Inputting 100 for this requirement we get the output as
Divisions = 100
By
repeated
200,300,...,2000
Value = 31.26226
execution divisions
of we
this get
program the
for
following
observations
Here we find that using the files of random number of size 1000 minimum error in the value of integral is corresponding
to
combination
olrorg1
&
int_3_1
and
similarly for the files of size 2000, 3000, 4000 and 5000 the best combinations are olrr2 & olgp2, olrorg3 & int_2_3, olrr4 & int_2_4, olrorg5 & int_2_5.
Observations: Value
of
integral
corresponding
to
the
best
combinations for the files of size 1000 is not giving the same or better accuracy for the files of size 2000, 3000, 4000 and 5000 [see tables of this chapter] which makes our observation as.
[165]
Observation 6.1 Value of all the single integrals doesn't follow any
pattern
combinations
corresponding which
files
of
random
nodes
the
value
steadily
is
best
numbers of
approaches
to for
whereas
integral to
the
any any
exact
size
using
follow
of
a
value
of
the data
equispaced pattern of
and
integral
[see graph 6.4.1, 6.5.1, 6.6.1].
Observation 6.2 True value of integral is almost achieved using only 2000 equispaced points for x and y range.
[166]
CHAPTER -7 M C INTEGRATION (3-DIMENSION)
[167]
INTEGRAL EVALUATION (THREE DIMENSIONAL) (USING RANDOM & EQUISPACED NODES) During the course of this chapter we shall evaluate two 3-D Integrals[31,34]using random as well as equispaced nodes. Our first integral under investigation is
I
7
Whose exact value is 224. [168]
Where as the second integral is
I
8
Whose exact value is 5.073214.
FIRST INTEGRAL (3-D) (USING RANDOM NODES) In order to evaluate the integral
I
7
We
shall
dimension.The
modify
the
modified
program form
of
PROG6_1R.BAS
this
to
program
PROG7_1R.BAS given as below
PROG7_1R.BAS 10 20 30 40 50 60 70 80 90 100
CLS: KEY OFF:DIM F$(30) LOCATE 10,5: INPUT "Give drive letter of data files"; D$ :CLS FOR I = 1 TO 30 :READ F$(I) : NEXT I DATA"INT_1_1.DAT","INT_2_1.DAT", "INT_3_1.DAT","olrr1.DAT", "olrorg1.DAT" ,"olgp1.DAT" DATA "INT_1_2.DAT", "INT_2_2.DAT", INT_3_2.DAT", "olrr2.DAT", "olrorg2.DAT", "olgp2.DAT" DATA "INT_1_3.DAT", "INT_2_3.DAT", "INT_3_3.DAT", "olrr3.DAT","olrorg3.DAT", "olgp3.DAT" DATA "INT_1_4.DAT" ,"INT_2_4.DAT", "INT_3_4.DAT"," olrr4.DAT","olrorg4.DAT", "olgp4.DAT" DATA "INT_1_5.DAT","INT_2_5.DAT", "INT_3_5.DAT", "olrr5.DAT","olrorg5.DAT", "olgp5.DAT" FOR I = 1 TO 30 : F$(I)=D$+":"+F$(I) :NEXT I LOCATE 10,2: PRINT "Choose your DATA FILE size": LOCATE 16,1
[169]
3is
110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 325 330 340 350 360 361 370
380
390
400
410
420
FOR I=1 TO 5: PRINT I; ". ";I*1000, :NEXT I LOCATE 18,2:INPUT "Select choice Number" ; C : CLS IF C=1 THEN LOI = 1:IF C = 1 THEN UPI = 6 IF C=2 THEN LOI =7:IF C = 2 THEN UPI = 12 IF C=3 THEN LOI =13:IF C=3 THEN UPI = 18 IF C=4 THEN LOI =19:IF C=4 THEN UPI = 24 IF C=5 THEN LOI = 25:IF C=5 THEN UPI= 30 DS=C*1000 LOCATE 10,5:PRINT "Select the Data file " : LOCATE 12,1 FOR I= LOI TO UPI : PRINT K+1;". "+F$(I),:K=K+1:NEXT I LOCATE 15,1:INPUT "For x-range type your File Number";C1 IF C1 =< 0 OR C1 > 6 THEN 230 ELSE 240 LOCATE 15,1:PRINT " " : GOTO 210 LOCATE 17,1:INPUT "For y-range type your File Number";C2 IF C2 =< 0 OR C2 > 6 THEN 260 ELSE 270 LOCATE 17,1:PRINT " " : GOTO 240 LOCATE 19,1:INPUT "For z-range type your File Number";C3 IF C3 =< 0 OR C3 > 6 THEN 290 ELSE 300 LOCATE 19,1:PRINT " " : GOTO 240 IF C1=C2 OR C2=C3 OR C3=C1 THEN 310 ELSE 370 LOCATE 22,1 : PRINT"You have to choose distinct files" ANS$=INKEY$:IF ANS$="" THEN 320 ELSE 325 LOCATE 22,1:PRINT" " LOCATE 15,1:PRINT" " LOCATE 17,1:PRINT" " LOCATE 18,1:PRINT" " LOCATE 19,1:PRINT" " : GOTO 210 LOCATE 22,1:PRINT" " : GOTO 210 IF C=1 THEN C1=C1 : IF C=1 THEN C2=C2 : IF C=1 THEN C3=C3 IF C=2 THEN C1=C1+6 : IF C=2 THEN C2=C2+6: IF C=2 THEN C3=C3+6 IF C=3 THEN C1=C1+12 : IF C=3 THEN C2=C2+12 : IF C=3 THEN C3=C3+12 IF C=4 THEN C1=C1+18 : IF C=4 THEN C2=C2+18 : IF C=4 THEN C3=C3+18 IF C=5 THEN C1=C1+24 : IF C=5 THEN C2=C2+24 : IF C=5 THEN C3=C3+24 F1$=F$(C1):F2$=F$(C2):F3$=F$(C3):CLS
[170]
430 440 450 460 470 480 490 500
510 520 530 540 550 560 570 580 590 600 610 620 630
DEF FNI(A,B,C)= A*A+B*B+C*C LOCATE 10,5: INPUT "Lower limit for x-variable ";XLO LOCATE 12,5: INPUT "Upper limit for x-variable ";XUP LOCATE 14,5: INPUT "Lower limit for y-variable ";YLO LOCATE 16,5: INPUT "Upper limit for y-variable ";YUP LOCATE 18,5: INPUT "Lower limit for z-variable ";ZLO LOCATE 20,5: INPUT "Upper limit for z-variable ";ZUP:CLS H=(XUP-XLO)/DS: K=(YUP-YLO)/DS: L=(ZUP-ZLO)/DS OPEN F1$ FOR INPUT AS #1 OPEN F2$ FOR INPUT AS #2 OPEN F3$ FOR INPUT AS #3 INPUT #1,X : X=X*(XUP-XLO) INPUT #2,Y : Y=Y*(YUP-YLO) INPUT #3,Z : Z=Z*(ZUP-ZLO) Y = YLO+Y:X = XLO+X:Z = ZLO+Z: SUM = SUM + FNI(X,Y,Z) IF NOT EOF(1) THEN 540 SUM = SUM/DS : SUM = SUM*(XUP-XLO)*(YUP-YLO)*(ZUP-ZLO) LOCATE 8,10 : PRINT "By Monte-Carlo Integration :-" LOCATE 10,10 : PRINT "Using Random data files: "; F1$;" , ";F2$;" , ";F3$ LOCATE 12,10 : PRINT "Value of integral ";SUM CLOSE:END
On execution of this program we are first required to input the drive letter where the Random Data Files are stored. Then after we are required to choose the size of the DATA FILE by inputting the choice number 1,2,3,4 or 5 corresponding to the sizes of 1000, 2000, 3000, 4000 and 5000 data. Next, all the six data files of the required size are depicted on the screen. Out of these six data files we have to choose one data file for x-series and one data file for y-series and one data files for z-series. [171]
All these three files should be distinct otherwise the program will remind the user to select different data files
and
the
control
will
again
go
to
the
file
selection module. After this selection, limits of integration for xvariable as well as for y-variable and z-variable are to be inputted. Now the INPUT session is complete and finally the evaluated values of the integral by Monte Carlo Method using random nodes are displayed. Corresponding to data size of 1000 and choosing INT_1_1.DAT for x-series INT_2_1.DAT for y-series INT_3_1.DAT for y-series While Limits of integration are inputted as -1 to +1 for x-variable -2 to +2 for y-variable -3 to +3 for z-variable We get the following OUTPUT By Monte Carlo Integration:Using Random Data Files:
[172]
G:INT_1_1.DAT,G:INT_2_1.DAT,G:INT_3_1.DAT Value of Integral = 223.1427
Out of the six data files for 1000 data size there can be 120 different combinations of data files for xseries and y-series and z-series. The execution of this program 120 times is a time consuming
job
coupled
with
a
strain
of
awarding
distinct possible codes for the files of x, y and z series which seems very ludicrous. To avoid this drawback we shall now modify this program to get all the results of 120 combinations of files one by one. PROG7_2R.BAS 10 15 20 25 30 35 40 45 50 55 60 65 70
DIM KC1(120):DIM KC2(120):DIM KC3(120): DIM F$(30):CD=1:CLS:COUNT=1 DEF FNI(A,B,C)= A*A+B*B+C*C XLO=-1:XUP=1:YLO=-2:YUP=2:ZLO=-3:ZUP=3 FOR I=1 TO 6 FOR J=1 TO 6 FOR K=1 TO 6 IF I J AND JK AND K I THEN 45 ELSE 55 KC1(CD)= I:KC2(CD)=J:KC3(CD)=K CD = CD + 1 NEXT K:NEXT J:NEXT I LOCATE 10,5:INPUT "Give drive letter of data files";D$:CLS FOR I = 1 TO 30 :READ F$(I) :NEXT I DATA "INT_1_1.DAT", "INT_2_1.DAT", "INT_3_1.DAT", "olrr1.DAT", "olrorg1.DAT", "olgp1.DAT"
[173]
75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240
DATA "INT_1_2.DAT", "INT_2_2.DAT", "INT_3_2.DAT", "olrr2.DAT", "olrorg2.DAT", "olgp2.DAT" DATA "INT_1_3.DAT", "INT_2_3.DAT", "INT_3_3.DAT", "olrr3.DAT", "olrorg3.DAT", "olgp3.DAT" DATA "INT_1_4.DAT", "INT_2_4.DAT", "INT_3_4.DAT", "olrr4.DAT", "olrorg4.DAT", "olgp4.DAT" DATA "INT_1_5.DAT", "INT_2_5.DAT", "INT_3_5.DAT", "olrr5.DAT", "olrorg5.DAT", "olgp5.DAT" FOR I = 1 TO 30:F$(I)=D$+":"+F$(I):NEXT I LOCATE 10,2 : PRINT "Choose your DATA FILE Size": LOCATE 16,1 FOR I=1 TO 5: PRINT I;". ";I*1000,:NEXT I LOCATE 18,2: INPUT "Select choice Number";C :CLS IF C=1 THEN LOI=1:IF C=1 THEN UPI=6 IF C=2 THEN LOI=7:IF C=2 THEN UPI=12 IF C=3 THEN LOI=13:IF C=3 THEN UPI=18 IF C=4 THEN LOI=19:IF C=4 THEN UPI=24 IF C=5 THEN LOI=25:IF C=5 THEN UPI=30 DS=C*1000 CLS:LOCATE 10,10: PRINT "You have two choices" LOCATE 12,10: PRINT "1. To evaluate the integral for specific files" LOCATE 14,10: PRINT "2. Auto evaluation for all 120 combinations" LOCATE 18,10 : INPUT "Type your choice no...";CHOICE IF CHOICE>2 OR CHOICE 6 THEN 220 ELSE 225 LOCATE 15,1:PRINT " " :GOTO 210 LOCATE 17,1: INPUT "For y-range type your File Number";C2 IF C2 =< 0 OR C2 > 6 THEN 235 ELSE 240 LOCATE 17,1: PRINT " " : GOTO 225 LOCATE 19,1: INPUT "For z-range type your File Number";C3
[174]
245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435
IF C3 =< 0 OR C3 > 6 THEN 250 ELSE 255 LOCATE 19,1:PRINT " " : GOTO 225 IF C1=C2 OR C2=C3 OR C3=C1 THEN 260 ELSE 300 LOCATE 22,1: PRINT"You have to choose distinct files" ANS$=INKEY$:IF ANS$="" THEN 265 ELSE 270 LOCATE 22,1:PRINT" " LOCATE 15,1:PRINT" " LOCATE 17,1:PRINT" " LOCATE 18,1:PRINT" " LOCATE 19,1:PRINT" " : GOTO 210 LOCATE 22,1:PRINT" " : GOTO 210 IF C=1 THEN C1=C1 :IF C=1 THEN C2=C2 :IF C=1 THEN C3=C3 IF C=2 THEN C1=C1+6 :IF C=2 THEN C2=C2+6 :IF C=2 THEN C3=C3+6 IF C=3 THEN C1=C1+12 : IF C=3 THEN C2=C2+12 : IF C=3 THEN C3=C3+12 IF C=4 THEN C1=C1+18 : IF C=4 THEN C2=C2+18 : IF C=4 THEN C3=C3+18 IF C=5 THEN C1=C1+24 : IF C=5 THEN C2=C2+24 : IF C=5 THEN C3=C3+24 F1$=F$(C1):F2$=F$(C2):F3$=F$(C3):CLS LOCATE 10,5 : INPUT "Lower limit for x-variable ";XLO LOCATE 12,5 : INPUT "Upper limit for x-variable ";XUP LOCATE 14,5 : INPUT "Lower limit for y-variable ";YLO LOCATE 16,5 : INPUT "Upper limit for y-variable ";YUP LOCATE 18,5 : INPUT "Lower limit for z-variable ";ZLO LOCATE 20,5 : INPUT "Upper limit for z-variable ";ZUP:CLS H =(XUP-XLO)/DS : K =(YUP-YLO)/DS : L=(ZUP-ZLO)/DS OPEN F1$ FOR INPUT AS #1 OPEN F2$ FOR INPUT AS #2 OPEN F3$ FOR INPUT AS #3 INPUT #1,X : X=X*(XUP-XLO) INPUT #2,Y : Y=Y*(YUP-YLO) INPUT #3,Z : Z=Z*(ZUP-ZLO) Y = YLO+Y: X = XLO+X: Z = ZLO+Z: SUM=SUM+ FNI(X,Y,Z) IF NOT EOF(1) THEN 385 SUM = SUM/DS : SUM = SUM*(XUP-XLO)*(YUP-YLO)*(ZUP-ZLO) LOCATE 8,10 : PRINT "By Monte-Carlo Integration :-" LOCATE 10,10 : PRINT "Using Random data files: "; F1$;" , ";F2$;" , ";F3$ LOCATE 12,10 : PRINT "Value of integral " ; SUM IF CHOICE =1 THEN 435 ELSE 440 CLOSE #1:CLOSE #2 :CLOSE #3:END
[175]
440 445 455 456 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560
On
CLS LOCATE 10,10: PRINT"You have to press any key for next file combination" ANS$ = INKEY$: IF ANS$="" THEN 455 LOCATE 10,10:PRINT" " : CLS C1=KC1(COUNT):C2= KC2(COUNT):C3=KC3(COUNT) IF C=1 THEN C1=C1 :IF C=1 THEN C2=C2: IF C=1 THEN C3=C3 IF C=2 THEN C1=C1+6 :IF C=2 THEN C2=C2+6: :IF C=2 THEN C3=C3+6 IF C=3 THEN C1=C1+12 :IF C=3 THEN C2=C2+12: IF C=3 THEN C3=C3+12 IF C=4 THEN C1=C1+18:IF C=4 THEN C2=C2+18: IF C=4 THEN C3=C3+18 IF C=5 THEN C1=C1+24:IF C=5 THEN C2=C2+24: IF C=5 THEN C3=C3+24 F1$=F$(C1):F2$=F$(C2):F3$=F$(C3) OPEN F1$ FOR INPUT AS #1 OPEN F2$ FOR INPUT AS #2 OPEN F3$ FOR INPUT AS #3 INPUT #1,X: X=X*(XUP-XLO): X=XLO+X INPUT #2,Y: Y=Y*(YUP-YLO): Y=YLO+Y INPUT #3,Z: Z=Z*(ZUP-ZLO): Z=ZLO+Z SUM = SUM+FNI(X,Y,Z) IF NOT EOF(1) THEN 510 SUM = SUM/DS: SUM = SUM*(XUP-XLO)*(YUP-YLO)*(ZUP-ZLO) PRINT " File Codes:";C1;" ";C2;" ";C3; " Value of Integral= ";SUM SUM = 0:COUNT = COUNT+1: CLOSE #1:CLOSE #2:CLOSE #3 IF COUNT < 121 THEN 555 ELSE END ANS$=INKEY$: IF ANS$="" THEN 555 GOTO 460
execution
of
this
program
the
initial
input
session is same as in the previous program. After which the following message appears on screen You have two choices 1. To evaluate the integral for specific files 2. Auto evaluation for all 120 combinations [176]
The choice 1 will give the same execution as that of previous program. Here we choose the choice number 2 to
get
the
value
of
our
first
3-D
integral
corresponding to all the file combinations for x,y and z variable from the set of six data files of chosen size.
As
a
result
of
this
choice
selection
the
following message appears You have to press any key For next file combination Informing the user to press any key after getting one result Pressing
any
key
one
by
one
we
get
the
output
in
following fashion File Codes:- 1 2 3
Value of Integral = 223.1427
File Codes:- 1 2 4
Value of Integral = 223.3168
File Codes:- 1 2 5
Value of Integral = 228.6895 .... ........................ .... ........................
File Codes:- 6 5 2
Value of Integral = 229.8215
File Codes:- 6 5 3
Value of Integral = 223.5679
File Codes:- 6 5 4
Value of Integral = 223.7418
All the above noted 120 results are tabulated in three tables of 40 results as [177]
FIR S T IN T E G R A L (3 -D ) U S IN G 1 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 1 1 1 1 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
3 4 5 6 2 4 5 6 2 3 5 6 2 3 4 6 2 3 4 5 3 4 5 6 1 4 5 6 1 3 5 6 1 3 4 6 1 3 4 5
Va lu e o f In t e g r a l 223.1427 223.3168 228.6895 221.908 226.617 220.5375 225.9102 219.1285 226.6942 220.4405 225.9874 219.2058 229.0823 222.8283 223.0026 221.5936 226.0681 219.8146 219.9887 225.3612 218.4288 218.6027 223.9755 217.194 214.0466 222.1087 227.4816 220.6999 214.1236 222.0119 227.5588 220.7771 216.5118 224.4 224.5739 223.165 213.4977 221.3858 221.5598 226.9325 Tab le 7.7.1
[178]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
- 0.8573 - 0.6832 4.6895 - 2.092 2.617 - 3.4625 1.9102 - 4.8715 2.6942 - 3.5595 1.9874 - 4.7942 5.0823 - 1.1717 - 0.9974 - 2.4064 2.0681 - 4.1854 - 4.0113 1.3612 - 5.5712 - 5.3973 - 0.0245 - 6.806 - 9.9534 - 1.8913 3.4816 - 3.3001 - 9.8764 - 1.9881 3.5588 - 3.2229 - 7.4882 0.4 0.5739 - 0.835 - 10.5023 - 2.6142 - 2.4402 2.9325
FIR S T IN T E G R A L (3-D ) U S IN G 1000 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 1 1 1 2 2 2 2 4 4 4 4 5 5 5 5 6 6 6 6 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 6 6 6 6
2 4 5 6 1 4 5 6 1 2 5 6 1 2 4 6 1 2 4 5 2 3 5 6 1 3 5 6 1 2 5 6 1 2 3 6 1 2 3 5
Va lu e o f In t e g r a l 223.988 217.9078 223.2806 216.4992 216.1311 224.193 229.5659 222.7846 213.4289 227.5707 226.8639 220.0823 215.8167 229.9588 223.879 222.4701 212.8027 226.9446 220.8649 226.2379 224.0069 217.7531 223.2999 216.5183 216.1502 224.0383 229.5854 222.8036 213.371 227.5126 226.8058 220.0244 215.8361 229.978 223.7243 222.4897 212.8221 226.9638 220.7104 226.2571 Tab le 7.7.2
[179]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
- 0.012 - 6.0922 - 0.7194 - 7.5008 - 7.8689 0.193 5.5659 - 1.2154 - 10.5711 3.5707 2.8639 - 3.9177 - 8.1833 5.9588 - 0.121 - 1.5299 - 11.1973 2.9446 - 3.1351 2.2379 0.0069 - 6.2469 - 0.7001 - 7.4817 - 7.8498 0.0383 5.5854 - 1.1964 - 10.629 3.5126 2.8058 - 3.9756 - 8.1639 5.978 - 0.2757 - 1.5103 - 11.1779 2.9638 - 3.2896 2.2571
FIR S T IN T E G R A L (3 -D ) U S IN G 1 0 0 0 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 6 6 6 6 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
2 3 4 6 1 3 4 6 1 2 4 6 1 2 3 6 1 2 3 4 2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4
Va lu e o f In t e g r a l 224.604 218.3503 218.5242 217.1152 216.7474 224.6354 224.8096 223.4007 213.968 228.1097 222.0301 220.6213 214.0451 228.1873 221.9332 220.6987 213.4192 227.5608 221.3074 221.4814 223.8503 217.5968 217.7707 223.1435 215.9936 223.882 224.0559 229.4287 213.2145 227.3563 221.2766 226.6496 213.2916 227.4335 221.1799 226.7269 215.6797 229.8215 223.5679 223.7418 Tab le 7.7.3
[180]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
0.604 - 5.6497 - 5.4758 - 6.8848 - 7.2526 0.6354 0.8096 - 0.5993 - 10.032 4.1097 - 1.9699 - 3.3787 - 9.9549 4.1873 - 2.0668 - 3.3013 - 10.5808 3.5608 - 2.6926 - 2.5186 - 0.1497 - 6.4032 - 6.2293 - 0.8565 - 8.0064 - 0.118 0.0559 5.4287 - 10.7855 3.3563 - 2.7234 2.6496 - 10.7084 3.4335 - 2.8201 2.7269 - 8.3203 5.8215 - 0.4321 - 0.2582
FIR S T IN T E G R A L (3-D ) U S IN G 2000 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12 7 7 7 7 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12
9 10 11 12 8 10 11 12 8 9 11 12 8 9 10 12 8 9 10 11 9 10 11 12 7 10 11 12 7 9 11 12 7 9 10 12 7 9 10 11
Va lu e o f In t e g r a l 226.6495 230.4067 226.804 226.426 228.8221 228.6691 225.0664 224.6883 230.492 226.5815 226.7358 226.3576 228.8908 224.9802 228.7377 224.7568 228.7228 224.8123 228.5699 224.9667 225.3182 229.0758 225.4727 225.0943 225.272 229.1129 225.5095 225.1322 226.9418 227.0251 227.1798 226.8015 225.3407 225.4242 229.1814 225.2003 225.1725 225.2564 229.0135 225.4104 Tab le 7.7.4
[181]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
2.6495 6.4067 2.804 2.426 4.8221 4.6691 1.0664 0.6883 6.492 2.5815 2.7358 2.3576 4.8908 0.9802 4.7377 0.7568 4.7228 0.8123 4.5699 0.9667 1.3182 5.0758 1.4727 1.0943 1.272 5.1129 1.5095 1.1322 2.9418 3.0251 3.1798 2.8015 1.3407 1.4242 5.1814 1.2003 1.1725 1.2564 5.0135 1.4104
FIR S T IN T E G R A L (3 -D ) U S IN G 2 0 0 0 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
7 7 7 7 8 8 8 8 10 10 10 10 11 11 11 11 12 12 12 12 7 7 7 7 8 8 8 8 9 9 9 9 11 11 11 11 12 12 12 12
8 10 11 12 7 10 11 12 7 8 11 12 7 8 10 12 7 8 10 11 8 9 11 12 7 9 11 12 7 8 11 12 7 8 9 12 7 8 9 11
Va lu e o f In t e g r a l 228.7941 228.6411 225.0382 224.6601 226.5755 230.4161 226.8132 226.4353 226.5075 230.5012 226.7453 226.3676 224.906 228.8999 228.7467 224.766 224.738 228.7318 228.5787 224.9762 229.2116 225.3015 225.4559 225.0777 226.9931 227.0762 227.2306 226.8527 225.2548 229.2488 225.493 225.1151 225.3237 229.3174 225.407 225.1835 225.1555 229.1498 225.239 225.3934 Tab le 7.7.5
[182]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
4.7941 4.6411 1.0382 0.6601 2.5755 6.4161 2.8132 2.4353 2.5075 6.5012 2.7453 2.3676 0.906 4.8999 4.7467 0.766 0.738 4.7318 4.5787 0.9762 5.2116 1.3015 1.4559 1.0777 2.9931 3.0762 3.2306 2.8527 1.2548 5.2488 1.493 1.1151 1.3237 5.3174 1.407 1.1835 1.1555 5.1498 1.239 1.3934
FIR S T IN T E G R A L (3 -D ) U S IN G 2 0 0 0 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 12 12 12 12 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11
8 9 10 12 7 9 10 12 7 8 10 12 7 8 9 12 7 8 9 10 8 9 10 11 7 9 10 11 7 8 10 11 7 8 9 11 7 8 9 10
Va lu e o f In t e g r a l 228.8115 224.901 228.6584 224.6775 226.5925 226.6759 230.4335 226.4525 224.8546 228.8486 228.6954 224.7145 226.5248 230.5183 226.608 226.3842 224.7553 228.7492 224.8386 228.596 228.7694 224.859 228.6165 225.0135 226.5507 226.634 230.3915 226.7884 224.8128 228.8063 228.6534 225.0505 226.4827 230.4764 226.5663 226.72 224.8811 228.8752 224.9645 228.7221 Tab le 7.7.6
[183]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
4.8115 0.901 4.6584 0.6775 2.5925 2.6759 6.4335 2.4525 0.8546 4.8486 4.6954 0.7145 2.5248 6.5183 2.608 2.3842 0.7553 4.7492 0.8386 4.596 4.7694 0.859 4.6165 1.0135 2.5507 2.634 6.3915 2.7884 0.8128 4.8063 4.6534 1.0505 2.4827 6.4764 2.5663 2.72 0.8811 4.8752 0.9645 4.7221
FIR S T IN T E G R A L (3 -D ) U S IN G 3 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 13 13 13 13 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18
15 16 17 18 14 16 17 18 14 15 17 18 14 15 16 18 14 15 16 17 15 16 17 18 13 16 17 18 13 15 17 18 13 15 16 18 13 15 16 17
Va lu e o f In t e g r a l 227.7389 222.6383 221.3875 224.8448 225.955 224.0657 222.8147 226.2725 223.688 226.8996 220.5478 224.0057 223.1319 226.3432 221.2428 223.4494 224.6689 227.88 222.7796 221.5285 228.0767 222.9759 221.7254 225.1825 226.856 223.9532 222.7025 226.1599 224.5887 226.7866 220.4353 223.893 224.0327 226.231 221.1304 223.3368 225.5695 227.7675 222.667 221.4161 Tab le 7.7.7
[184]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
3.7389 - 1.3617 - 2.6125 0.8448 1.955 0.0657 - 1.1853 2.2725 - 0.312 2.8996 - 3.4522 0.0057 - 0.8681 2.3432 - 2.7572 - 0.5506 0.6689 3.88 - 1.2204 - 2.4715 4.0767 - 1.0241 - 2.2746 1.1825 2.856 - 0.0468 - 1.2975 2.1599 0.5887 2.7866 - 3.5647 - 0.107 0.0327 2.231 - 2.8696 - 0.6632 1.5695 3.7675 - 1.333 - 2.5839
FIR S T IN T E G R A L (3 -D ) U S IN G 3 0 0 0 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
13 13 13 13 14 14 14 14 16 16 16 16 17 17 17 17 18 18 18 18 13 13 13 13 14 14 14 14 15 15 15 15 17 17 17 17 18 18 18 18
14 16 17 18 13 16 17 18 13 14 17 18 13 14 16 18 13 14 16 17 14 15 17 18 13 15 17 18 13 14 17 18 13 14 15 18 13 14 15 17
Va lu e o f In t e g r a l 225.2221 223.3331 222.082 225.5399 225.7851 222.8829 221.6315 225.089 224.9452 223.932 220.7922 224.2496 224.3896 223.3762 221.4874 223.6935 225.9263 224.9127 223.0236 221.7728 224.6554 227.8669 221.5154 224.973 225.2186 227.4162 221.065 224.5227 226.6458 225.6322 222.4922 225.95 223.8226 222.8094 226.0211 223.1269 225.3596 224.3462 227.5574 221.2059 Tab le 7.7.8
[185]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
1.2221 - 0.6669 - 1.918 1.5399 1.7851 - 1.1171 - 2.3685 1.089 0.9452 - 0.068 - 3.2078 0.2496 0.3896 - 0.6238 - 2.5126 - 0.3065 1.9263 0.9127 - 0.9764 - 2.2272 0.6554 3.8669 - 2.4846 0.973 1.2186 3.4162 - 2.935 0.5227 2.6458 1.6322 - 1.5078 1.95 - 0.1774 - 1.1906 2.0211 - 0.8731 1.3596 0.3462 3.5574 - 2.7941
FIR S T IN T E G R A L (3 -D ) U S IN G 3 0 0 0 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 18 18 18 18 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17
14 15 16 18 13 15 16 18 13 14 16 18 13 14 15 18 13 14 15 16 14 15 16 17 13 15 16 17 13 14 16 17 13 14 15 17 13 14 15 16
Va lu e o f In t e g r a l 224.5162 227.728 222.6273 224.834 225.0798 227.2774 222.177 224.3836 226.5068 225.4932 223.604 225.8109 224.2399 223.2262 226.4377 223.5441 225.2208 224.207 227.4188 222.3178 224.9007 228.112 223.0117 221.7609 225.4639 227.6613 222.5609 221.3099 226.891 225.8774 223.9879 222.7375 224.6242 223.6103 226.822 220.4707 224.0684 223.0545 226.2661 221.1656 Tab le 7.7.9
[186]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
0.5162 3.728 - 1.3727 0.834 1.0798 3.2774 - 1.823 0.3836 2.5068 1.4932 - 0.396 1.8109 0.2399 - 0.7738 2.4377 - 0.4559 1.2208 0.207 3.4188 - 1.6822 0.9007 4.112 - 0.9883 - 2.2391 1.4639 3.6613 - 1.4391 - 2.6901 2.891 1.8774 - 0.0121 - 1.2625 0.6242 - 0.3897 2.822 - 3.5293 0.0684 - 0.9455 2.2661 - 2.8344
FIR S T IN T E G R A L (3 -D ) U S IN G 4 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23 24 24 24 24 19 19 19 19 21 21 21 21 22 22 22 22 23 23 23 23 24 24 24 24
21 22 23 24 20 22 23 24 20 21 23 24 20 21 22 24 20 21 22 23 21 22 23 24 19 22 23 24 19 21 23 24 19 21 22 24 19 21 22 23
Va lu e o f In t e g r a l 225.2803 221.1351 221.8344 224.917 224.8623 221.4694 222.1687 225.251 223.0198 223.7728 220.3263 223.4089 223.331 224.0832 219.9381 223.7196 224.7009 225.4528 221.3074 222.0072 224.8898 220.7447 221.4439 224.5262 223.8211 221.5996 222.2989 225.3817 221.9786 223.9026 220.4562 223.5389 222.2895 224.2138 220.068 223.8496 223.6591 225.5831 221.4378 222.1378 Tab le 7.7.10
[187]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
1.2803 - 2.8649 - 2.1656 0.917 0.8623 - 2.5306 - 1.8313 1.251 - 0.9802 - 0.2272 - 3.6737 - 0.5911 - 0.669 0.0832 - 4.0619 - 0.2804 0.7009 1.4528 - 2.6926 - 1.9928 0.8898 - 3.2553 - 2.5561 0.5262 - 0.1789 - 2.4004 - 1.7011 1.3817 - 2.0214 - 0.0974 - 3.5438 - 0.4611 - 1.7105 0.2138 - 3.932 - 0.1504 - 0.3409 1.5831 - 2.5622 - 1.8622
FIR S T IN T E G R A L (3 -D ) U S IN G 4 0 0 0 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 23 22 22 22 22 22 22 22 22 22 22 22
19 19 19 19 20 20 20 20 22 22 22 22 23 23 23 23 24 24 24 24 19 19 19 19 20 20 20 20 21 21 21 21 23 23 23 23 24 24 24 24
20 22 23 24 19 22 23 24 19 20 23 24 19 20 22 24 19 20 22 23 20 21 23 24 19 21 23 24 19 20 23 24 19 20 21 24 19 20 21 23
Va lu e o f In t e g r a l 224.221 220.8283 221.5274 224.6098 223.57 221.3488 222.0483 225.1304 222.0624 223.2339 220.5402 223.6224 222.3731 223.5446 220.1518 223.9338 223.7425 224.9145 221.5214 222.2211 223.7604 224.5128 221.067 224.1495 223.1097 225.0332 221.5878 224.6697 223.444 224.6155 221.9219 225.004 221.913 223.0837 223.8366 223.4727 223.2826 224.4541 225.2063 221.7602 Tab le 7.7.11
[188]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
0.221 - 3.1717 - 2.4726 0.6098 - 0.43 - 2.6512 - 1.9517 1.1304 - 1.9376 - 0.7661 - 3.4598 - 0.3776 - 1.6269 - 0.4554 - 3.8482 - 0.0662 - 0.2575 0.9145 - 2.4786 - 1.7789 - 0.2396 0.5128 - 2.933 0.1495 - 0.8903 1.0332 - 2.4122 0.6697 - 0.556 0.6155 - 2.0781 1.004 - 2.087 - 0.9163 - 0.1634 - 0.5273 - 0.7174 0.4541 1.2063 - 2.2398
FIR S T IN T E G R A L (3 -D ) U S IN G 4 0 0 0 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 22 24 24 24 24 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23
20 21 22 24 19 21 22 24 19 20 22 24 19 20 21 24 19 20 21 22 20 21 22 23 19 21 22 23 19 20 22 23 19 20 21 23 19 20 21 22
Va lu e o f In t e g r a l 223.8382 224.5904 220.4451 224.227 223.1875 225.1109 220.9657 224.7473 223.5217 224.693 221.3006 225.0817 221.6794 222.8508 222.6033 222.2394 223.3598 224.5312 225.284 221.1387 224.1807 224.9333 220.7877 221.4872 223.5299 225.4538 221.3085 222.0081 223.8642 225.0353 221.6427 222.3425 222.0219 223.1931 223.9459 220.4997 222.3328 223.5041 224.2566 220.1115 Tab le 7.7.12
[189]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
- 0.1618 0.5904 - 3.5549 0.227 - 0.8125 1.1109 - 3.0343 0.7473 - 0.4783 0.693 - 2.6994 1.0817 - 2.3206 - 1.1492 - 1.3967 - 1.7606 - 0.6402 0.5312 1.284 - 2.8613 0.1807 0.9333 - 3.2123 - 2.5128 - 0.4701 1.4538 - 2.6915 - 1.9919 - 0.1358 1.0353 - 2.3573 - 1.6575 - 1.9781 - 0.8069 - 0.0541 - 3.5003 - 1.6672 - 0.4959 0.2566 - 3.8885
FIR S T IN T E G R A L (3 -D ) U S IN G 5 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29 30 30 30 30 25 25 25 25 27 27 27 27 28 28 28 28 29 29 29 29 30 30 30 30
27 28 29 30 26 28 29 30 26 27 29 30 26 27 28 30 26 27 28 29 27 28 29 30 25 28 29 30 25 27 29 30 25 27 28 30 25 27 28 29
Va lu e o f In t e g r a l 220.5313 224.2124 225.7165 221.9446 221.4248 223.4985 225.0032 221.2303 223.0604 221.4534 226.6385 222.8663 223.7292 222.1222 225.8033 223.5351 222.0533 220.4451 224.1263 225.6308 220.5481 224.2291 225.7341 221.9607 221.4682 223.4928 224.9974 221.2244 223.1046 221.448 226.6338 222.861 223.7733 222.1166 225.7978 223.5293 222.0966 220.4396 224.1206 225.6253 Tab le 7.7.13
[190]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
- 3.4687 0.2124 1.7165 - 2.0554 - 2.5752 - 0.5015 1.0032 - 2.7697 - 0.9396 - 2.5466 2.6385 - 1.1337 - 0.2708 - 1.8778 1.8033 - 0.4649 - 1.9467 - 3.5549 0.1263 1.6308 - 3.4519 0.2291 1.7341 - 2.0393 - 2.5318 - 0.5072 0.9974 - 2.7756 - 0.8954 - 2.552 2.6338 - 1.139 - 0.2267 - 1.8834 1.7978 - 0.4707 - 1.9034 - 3.5604 0.1206 1.6253
FIR S T IN T E G R A L (3 -D ) U S IN G 5 0 0 0 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
25 25 25 25 26 26 26 26 28 28 28 28 29 29 29 29 30 30 30 30 25 25 25 25 26 26 26 26 27 27 27 27 29 29 29 29 30 30 30 30
26 28 29 30 25 28 29 30 25 26 29 30 25 26 28 30 25 26 28 29 26 27 29 30 25 27 29 30 25 26 29 30 25 26 27 30 25 26 27 29
Va lu e o f In t e g r a l 221.9768 224.0509 225.5553 221.7823 222.0047 224.0287 225.5335 221.7606 222.9256 222.8765 226.4551 222.6819 223.5948 223.5451 225.6191 223.3509 221.9175 221.8684 223.9423 225.4468 222.3857 220.7785 225.9645 222.1916 222.4133 220.7568 225.9422 222.1692 221.6992 221.6498 225.2277 221.4549 224.0038 223.9543 222.347 223.7596 222.3268 222.2774 220.6703 225.856 Tab le 7.7.14
[191]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
- 2.0232 0.0509 1.5553 - 2.2177 - 1.9953 0.0287 1.5335 - 2.2394 - 1.0744 - 1.1235 2.4551 - 1.3181 - 0.4052 - 0.4549 1.6191 - 0.6491 - 2.0825 - 2.1316 - 0.0577 1.4468 - 1.6143 - 3.2215 1.9645 - 1.8084 - 1.5867 - 3.2432 1.9422 - 1.8308 - 2.3008 - 2.3502 1.2277 - 2.5451 0.0038 - 0.0457 - 1.653 - 0.2404 - 1.6732 - 1.7226 - 3.3297 1.856
FIR S T IN T E G R A L (3-D ) U S IN G 5000 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28 30 30 30 30 25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29
26 27 28 30 25 27 28 30 25 26 28 30 25 26 27 30 25 26 27 28 26 27 28 29 25 27 28 29 25 26 28 29 25 26 27 29 25 26 27 28
Va lu e o f In t e g r a l 222.5529 220.9459 224.627 222.3586 222.5807 220.9236 224.6048 222.3369 221.8663 221.8171 223.8905 221.6222 223.5019 223.4527 221.8461 223.2587 222.4936 222.4447 220.8378 224.5184 222.1336 220.5267 224.2075 225.7124 222.1611 220.5045 224.1865 225.6906 221.4472 221.3977 223.4715 224.9762 223.0834 223.0337 221.4266 226.6124 223.7515 223.702 222.0953 225.7764 Tab le 7.7.15
[192]
E xa c t Va lu e
Erro r
224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
- 3.0541 0.627 - 1.6414 - 1.4193 - 3.0764 0.6048 - 1.6631 - 2.1337 - 2.1829 - 0.1095 - 2.3778 - 0.4981 - 0.5473 - 2.1539 - 0.7413 - 1.5064 - 1.5553 - 3.1622 0.5184 - 1.8664 - 3.4733 0.2075 1.7124 - 1.8389 - 3.4955 0.1865 1.6906 - 2.5528 - 2.6023 - 0.5285 0.9762 - 0.9166 - 0.9663 - 2.5734 2.6124 - 0.2485 - 0.298 - 1.9047 1.7764 - 224
FIRST INTEGRAL (3-D) (USING EQUISPACED NODES) For the evaluation of our first 3-D integral is
I
7
By Monte Carlo Integration using equispaced nodes we now present the following program PROG7_3E.BAS(PRGEQ1) 10 20 30 40 41 50 60 70 80 90 100 110 130 140 150
CLS : KEY OFF : DEF FNI(A,B,C)=A*A+B*B+C*C XLO = -1 : YLO = -2 : ZLO = -3 : XUP =1 : YUP = 2 : ZUP =3 LOCATE 10,10 : INPUT "No of Divisions";N DIM X(N+1) : DIM Y(N+1) : DIM Z(N+1) X(0)= XLO : Y(0) = YLO : Z(0) = ZLO H =(XUP - XLO)/N : K =(YUP - YLO)/N : L=(ZUP - ZLO)/N FOR I = 1 TO N X(I)= X(I-1)+ H : Y(I)= Y(I-1)+ K : Z(I)= Z(I-1)+ L NEXT I FOR I = 1 TO N : FOR J = 1 TO N : FOR M = 1 TO N SUM = SUM + FNI(X(I),Y(J),Z(M)) NEXT M : NEXT J : NEXT I SUM = SUM*H*K*L LOCATE 12,10: PRINT "No of Divisions = "; N ; " Integral Value = ";SUM END
As a result of execution of this program we are first required to input the number of divisions of x, y and
z
ranges.
Here
we
are
making
equal
numbers
of
divisions in x, y and z range. If we desire to make different numbers of division of x-range, y-range and [193]
z-range then we should modify this program by allowing two inputs for y-range division and z-range division separately.
Corresponding
to
different
numbers
of
division starting from 25 up to 250 with step of 25 we get the following observations. FIR S T IN T E G R A L (3 -D )-B Y E Q U IS P A CE D N O D E S N o. of S. N o.
Eq u isp ace d
V alu e O f In te g ral
Tru e V alu e
Erro r
224 224 224 224 224 224 224 224 224 224
0.7172 0.1805 0.0768 0.0409 0.0107 - 0.0178 - 0.0877 - 0.6685 - 1.6516 - 3.1458
N ode s 1 2 3 4 5 6 7 8 9 10
25 50 75 100 125 150 175 200 225 250
224.7172 224.1805 224.0768 224.0409 224.0107 223.9822 223.9123 223.3315 222.3484 220.8542 Tab le 7.7.16
The graphic display of these observations is as
Value Of Integral
under.
No. of Nodes
[194]
It should be noted that as we increase the number of divisions (i.e increasing the number of equispaced nodes)
the
time
sufficiently
of
execution
increased.
For
of
250
this
program
divisions,
it
gets takes
more than one minute. For higher divisions it will increase exponentially e.g. for 1000 nodes the time of execution is more than 8 minutes. Here we find that using the files of random number of size 1000, minimum error in the value of integral is corresponding to combination of files code as (4,1,2) and similarly for the files of size 2000, 3000, 4000 and
5000
(9,7,12),
the
best
combinations
of
files
code
(13,16,18), (24,22,21) and (28,29,25)
[195]
as
SECOND INTEGRAL (3-D) (USING RANDOM NODES) Our
second
integral
(3-dimension)
under
investigation is
I
8
Whose exact value is 5.073214 For
the
evaluation
utilize
the
same
of
program
this
integral
PROG7_1R.BAS
but
we
shall
with
a
difference in line 430 which is corresponding to the integrand of our integral. The modified form of this line should be 430
DEF FNI(A,B,C)= EXP(A + B + C)
The program PROG7_1R.BAS with above modification is stored by the name of PROG7_4R.BAS. On execution of the program PROG7_2R.BAS, we observe that corresponding to data size of 1000 and choosing INT_1_1.DAT for x-series INT_2_1.DAT for y-series INT_3_1.DAT for y-series While
Limits of integration are inputted as 0 to +1 for x-variable [196]
0 to +1 for y-variable 0 to +1 for z-variable The final OUTPUT is By Monte Carlo Integration :Using Random Data Files: G:INT_1_1.DAT, G:INT_2_1.DAT, G:INT_3_1.DAT Value of Integral
=
5.085666
Out of the six data files for 1000 data size there can be 120 different combinations of data files for xseries and y-series and z-series. For
different
data
sizes
and
different
file
combinations for x, y and z variable we have to use the program PROG7_1.BAS with proper modifications in line 15 and 20 which are corresponding to the integrand and limits of integration respectively.
For
the
integrand
line
15
and
20
in
modified
should be 15
DEF FNI(A,B,C)= EXP( A + B + C)
20
XLO =0:XUP =1:YLO =0:YUP =1:ZLO =0:ZUP =1
[197]
form
The
program
PROG7_1R.BAS
with
above
two
modifications is stored by the name of PROG7_5.BAS Execution
of
the
program
PROG7_5.BAS
will
give
the
output as File Codes:- 1 2 3
Value of Integral = 5.085666
File Codes:- 1 2 4
Value of Integral = 5.066642
File Codes:- 1 2 5
Value of Integral = 5.118641
File Codes:- 1 2 6
Value of Integral = 5.132347
File Codes:- 1 3 2
Value of Integral = 5.085666 .... .... .... .... .... .... ... .... .... .... .... .... .... ... .... .... .... .... .... .... ...
File Codes:- 6 4 3
Value of Integral = 5.114694
File Codes:- 6 4 5
Value of Integral = 5.148062
File Codes:- 6 5 1
Value of Integral = 5.117213
File Codes:- 6 5 2
Value of Integral = 5.237199
File Codes:- 6 5 3
Value of Integral = 5.143739
File Codes:- 6 5 4
Value of Integral = 5.148062
All the above noted 120 results are tabulated in three tables of 40 results as
[198]
S E CO N D IN T E G R A L (3 -D ) U S IN G 1 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 1 1 1 1 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
3 4 5 6 2 4 5 6 2 3 5 6 2 3 4 6 2 3 4 5 3 4 5 6 1 4 5 6 1 3 5 6 1 3 4 6 1 3 4 5
Va lu e o f In t e g r a l 5.085666 5.066642 5.118641 5.132347 5.085666 5.029499 5.04979 5.048343 5.066642 5.029498 5.054847 5.075778 5.118641 5.04979 5.054847 5.117213 5.132347 5.048343 5.075778 5.117213 5.085666 5.066642 5.118641 5.132347 5.085666 5.172802 5.183777 5.189154 5.066642 5.172802 5.167766 5.174385 5.118641 5.183777 5.167766 5.237199 5.132348 5.189154 5.174385 5.237199 Tab le 7.8.1
[199]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
0.012452 - 0.006572 0.045427 0.059133 0.012452 - 0.043715 - 0.023424 - 0.024871 - 0.006572 - 0.043716 - 0.018367 0.002564 0.045427 - 0.023424 - 0.018367 0.043999 0.059133 - 0.024871 0.002564 0.043999 0.012452 - 0.006572 0.045427 0.059133 0.012452 0.099588 0.110563 0.11594 - 0.006572 0.099588 0.094552 0.101171 0.045427 0.110563 0.094552 0.163985 0.059134 0.11594 0.101171 0.163985
S E CO N D IN T E G R A L (3 -D ) U S IN G 1 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 1 1 1 1 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
3 4 5 6 2 4 5 6 2 3 5 6 2 3 4 6 2 3 4 5 3 4 5 6 1 4 5 6 1 3 5 6 1 3 4 6 1 3 4 5
Va lu e o f In t e g r a l 5.085666 5.066642 5.118641 5.132347 5.085666 5.029499 5.04979 5.048343 5.066642 5.029498 5.054847 5.075778 5.118641 5.04979 5.054847 5.117213 5.132347 5.048343 5.075778 5.117213 5.085666 5.066642 5.118641 5.132347 5.085666 5.172802 5.183777 5.189154 5.066642 5.172802 5.167766 5.174385 5.118641 5.183777 5.167766 5.237199 5.132348 5.189154 5.174385 5.237199 Tab le 7.8.1
[200]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
0.012452 - 0.006572 0.045427 0.059133 0.012452 - 0.043715 - 0.023424 - 0.024871 - 0.006572 - 0.043716 - 0.018367 0.002564 0.045427 - 0.023424 - 0.018367 0.043999 0.059133 - 0.024871 0.002564 0.043999 0.012452 - 0.006572 0.045427 0.059133 0.012452 0.099588 0.110563 0.11594 - 0.006572 0.099588 0.094552 0.101171 0.045427 0.110563 0.094552 0.163985 0.059134 0.11594 0.101171 0.163985
S E CO N D IN T E G R A L (3 -D ) U S IN G 1 0 0 0 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 1 1 1 2 2 2 2 4 4 4 4 5 5 5 5 6 6 6 6 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 6 6 6 6
2 4 5 6 1 4 5 6 1 2 5 6 1 2 4 6 1 2 4 5 2 3 5 6 1 3 5 6 1 2 5 6 1 2 3 6 1 2 3 5
Va lu e o f In t e g r a l 5.085666 5.029499 5.04979 5.048343 5.085666 5.172802 5.183777 5.189154 5.029498 5.172802 5.123346 5.114694 5.04979 5.183777 5.123346 5.143739 5.048343 5.189154 5.114694 5.143739 5.066642 5.029498 5.054847 5.075778 5.066642 5.172802 5.167766 5.174385 5.029498 5.172802 5.123346 5.114694 5.054847 5.167766 5.123346 5.148062 5.075778 5.174385 5.114694 5.148062 Tab le 7.8.2
[201]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
0.012452 - 0.043715 - 0.023424 - 0.024871 0.012452 0.099588 0.110563 0.11594 - 0.043716 0.099588 0.050132 0.04148 - 0.023424 0.110563 0.050132 0.070525 - 0.024871 0.11594 0.04148 0.070525 - 0.006572 - 0.043716 - 0.018367 0.002564 - 0.006572 0.099588 0.094552 0.101171 - 0.043716 0.099588 0.050132 0.04148 - 0.018367 0.094552 0.050132 0.074848 0.002564 0.101171 0.04148 0.074848
S E CO N D IN T E G R A L (3-D ) U S IN G 1000 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 6 6 6 6 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
2 3 4 6 1 3 4 6 1 2 4 6 1 2 3 6 1 2 3 4 2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4
Va lu e o f In t e g r a l 5.118641 5.04979 5.054847 5.117213 5.118641 5.183777 5.167766 5.237199 5.04979 5.183777 5.123346 5.143739 5.054847 5.167766 5.123346 5.148062 5.117213 5.237199 5.143739 5.148062 5.132347 5.048343 5.075778 5.117213 5.132348 5.189154 5.174385 5.237199 5.048343 5.189154 5.114694 5.143739 5.075778 5.174385 5.114694 5.148062 5.117213 5.237199 5.143739 5.148062 Tab le 7.8.3
[202]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
0.045427 - 0.023424 - 0.018367 0.043999 0.045427 0.110563 0.094552 0.163985 - 0.023424 0.110563 0.050132 0.070525 - 0.018367 0.094552 0.050132 0.074848 0.043999 0.163985 0.070525 0.074848 0.059133 - 0.024871 0.002564 0.043999 0.059134 0.11594 0.101171 0.163985 - 0.024871 0.11594 0.04148 0.070525 0.002564 0.101171 0.04148 0.074848 0.043999 0.163985 0.070525 0.074848
S E CO N D IN T E G R A L (3 -D ) U S IN G 2 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12 7 7 7 7 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12
9 10 11 12 8 10 11 12 8 9 11 12 8 9 10 12 8 9 10 11 9 10 11 12 7 10 11 12 7 9 11 12 7 9 10 12 7 9 10 11
Va lu e o f In t e g r a l 5.128258 5.155837 5.114981 5.129356 5.128258 5.09828 5.062138 5.076116 5.155837 5.09828 5.096472 5.100609 5.114981 5.062138 5.096472 5.057083 5.129356 5.076116 5.100609 5.057083 5.128258 5.155837 5.114981 5.129356 5.128259 5.22187 5.17632 5.21138 5.155836 5.22187 5.199028 5.221964 5.114981 5.17632 5.199027 5.172807 5.129356 5.21138 5.221964 5.172807 Tab le 7.8.4
[203]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
0.055044 0.082623 0.041767 0.056142 0.055044 0.025066 - 0.011076 0.002902 0.082623 0.025066 0.023258 0.027395 0.041767 - 0.011076 0.023258 - 0.016131 0.056142 0.002902 0.027395 - 0.016131 0.055044 0.082623 0.041767 0.056142 0.055045 0.148656 0.103106 0.138166 0.082622 0.148656 0.125814 0.14875 0.041767 0.103106 0.125813 0.099593 0.056142 0.138166 0.14875 0.099593
S E CO N D IN T E G R A L (3 -D ) U S IN G 2 0 0 0 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
7 7 7 7 8 8 8 8 10 10 10 10 11 11 11 11 12 12 12 12 7 7 7 7 8 8 8 8 9 9 9 9 11 11 11 11 12 12 12 12
8 10 11 12 7 10 11 12 7 8 11 12 7 8 10 12 7 8 10 11 8 9 11 12 7 9 11 12 7 8 11 12 7 8 9 12 7 8 9 11
Va lu e o f In t e g r a l 5.128258 5.09828 5.062138 5.076116 5.128259 5.22187 5.17632 5.21138 5.09828 5.22187 5.146701 5.160304 5.062138 5.17632 5.146701 5.113843 5.076116 5.21138 5.160304 5.113843 5.155837 5.09828 5.096472 5.100609 5.155836 5.22187 5.199028 5.221964 5.09828 5.22187 5.146701 5.160304 5.096472 5.199028 5.146701 5.146989 5.100609 5.221964 5.160304 5.146989 Tab le 7.8.5
[204]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
0.055044 0.025066 - 0.011076 0.002902 0.055045 0.148656 0.103106 0.138166 0.025066 0.148656 0.073487 0.08709 - 0.011076 0.103106 0.073487 0.040629 0.002902 0.138166 0.08709 0.040629 0.082623 0.025066 0.023258 0.027395 0.082622 0.148656 0.125814 0.14875 0.025066 0.148656 0.073487 0.08709 0.023258 0.125814 0.073487 0.073775 0.027395 0.14875 0.08709 0.073775
S E CO N D IN T E G R A L (3-D ) U S IN G 2000 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 12 12 12 12 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11
8 9 10 12 7 9 10 12 7 8 10 12 7 8 9 12 7 8 9 10 8 9 10 11 7 9 10 11 7 8 10 11 7 8 9 11 7 8 9 10
Va lu e o f In t e g r a l 5.114981 5.062138 5.096472 5.057083 5.114981 5.17632 5.199027 5.172807 5.062138 5.17632 5.146701 5.113843 5.096472 5.199028 5.146701 5.146989 5.057083 5.172807 5.113843 5.146989 5.129356 5.076116 5.100609 5.057083 5.129356 5.21138 5.221964 5.172807 5.076116 5.21138 5.160304 5.113843 5.100609 5.221964 5.160304 5.146989 5.057083 5.172807 5.113843 5.146989 Tab le 7.8.6
[205]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
0.041767 - 0.011076 0.023258 - 0.016131 0.041767 0.103106 0.125813 0.099593 - 0.011076 0.103106 0.073487 0.040629 0.023258 0.125814 0.073487 0.073775 - 0.016131 0.099593 0.040629 0.073775 0.056142 0.002902 0.027395 - 0.016131 0.056142 0.138166 0.14875 0.099593 0.002902 0.138166 0.08709 0.040629 0.027395 0.14875 0.08709 0.073775 - 0.016131 0.099593 0.040629 0.073775
S E CO N D IN T E G R A L (3 -D ) U S IN G 3 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 13 13 13 13 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18
15 16 17 18 14 16 17 18 14 15 17 18 14 15 16 18 14 15 16 17 15 16 17 18 13 16 17 18 13 15 17 18 13 15 16 18 13 15 16 17
Va lu e o f In t e g r a l 5.065516 5.11569 5.100337 5.133231 5.065516 5.051322 5.057026 5.054974 5.11569 5.051322 5.086244 5.095438 5.100337 5.057026 5.086244 5.096504 5.133231 5.054973 5.095438 5.096504 5.065516 5.11569 5.100337 5.133231 5.065516 5.069314 5.083435 5.079914 5.11569 5.069314 5.1005 5.112329 5.100337 5.083436 5.1005 5.121818 5.133231 5.079914 5.112329 5.121819 Tab le 7.8.7
[206]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
- 0.007698 0.042476 0.027123 0.060017 - 0.007698 - 0.021892 - 0.016188 - 0.01824 0.042476 - 0.021892 0.01303 0.022224 0.027123 - 0.016188 0.01303 0.02329 0.060017 - 0.018241 0.022224 0.02329 - 0.007698 0.042476 0.027123 0.060017 - 0.007698 - 0.0039 0.010221 0.0067 0.042476 - 0.0039 0.027286 0.039115 0.027123 0.010222 0.027286 0.048604 0.060017 0.0067 0.039115 0.048605
S E CO N D IN T E G R A L (3 -D ) U S IN G 3 0 0 0 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
13 13 13 13 14 14 14 14 16 16 16 16 17 17 17 17 18 18 18 18 13 13 13 13 14 14 14 14 15 15 15 15 17 17 17 17 18 18 18 18
14 16 17 18 13 16 17 18 13 14 17 18 13 14 16 18 13 14 16 17 14 15 17 18 13 15 17 18 13 14 17 18 13 14 15 18 13 14 15 17
Va lu e o f In t e g r a l 5.065516 5.051322 5.057026 5.054974 5.065516 5.069314 5.083435 5.079914 5.051322 5.069314 5.056247 5.040864 5.057026 5.083435 5.056247 5.069862 5.054974 5.079914 5.040864 5.069862 5.11569 5.051322 5.086244 5.095438 5.11569 5.069314 5.1005 5.112329 5.051322 5.069314 5.056247 5.040864 5.086244 5.1005 5.056247 5.074502 5.095438 5.112329 5.040865 5.074502 Tab le 7.8.8
[207]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
- 0.007698 - 0.021892 - 0.016188 - 0.01824 - 0.007698 - 0.0039 0.010221 0.0067 - 0.021892 - 0.0039 - 0.016967 - 0.03235 - 0.016188 0.010221 - 0.016967 - 0.003352 - 0.01824 0.0067 - 0.03235 - 0.003352 0.042476 - 0.021892 0.01303 0.022224 0.042476 - 0.0039 0.027286 0.039115 - 0.021892 - 0.0039 - 0.016967 - 0.03235 0.01303 0.027286 - 0.016967 0.001288 0.022224 0.039115 - 0.032349 0.001288
S E CO N D IN T E G R A L (3 -D ) U S IN G 3 0 0 0 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 18 18 18 18 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17
14 15 16 18 13 15 16 18 13 14 16 18 13 14 15 18 13 14 15 16 14 15 16 17 13 15 16 17 13 14 16 17 13 14 15 17 13 14 15 16
Va lu e o f In t e g r a l 5.100337 5.057026 5.086244 5.096504 5.100337 5.083436 5.1005 5.121818 5.057026 5.083435 5.056247 5.069862 5.086244 5.1005 5.056247 5.074502 5.096504 5.121819 5.069862 5.074502 5.133231 5.054973 5.095438 5.096504 5.133231 5.079914 5.112329 5.121819 5.054974 5.079914 5.040864 5.069862 5.095438 5.112329 5.040865 5.074502 5.096504 5.121819 5.069862 5.074502 Tab le 7.8.9
[208]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
0.027123 - 0.016188 0.01303 0.02329 0.027123 0.010222 0.027286 0.048604 - 0.016188 0.010221 - 0.016967 - 0.003352 0.01303 0.027286 - 0.016967 0.001288 0.02329 0.048605 - 0.003352 0.001288 0.060017 - 0.018241 0.022224 0.02329 0.060017 0.0067 0.039115 0.048605 - 0.01824 0.0067 - 0.03235 - 0.003352 0.022224 0.039115 - 0.032349 0.001288 0.02329 0.048605 - 0.003352 0.001288
S E CO N D IN T E G R A L (3 -D ) U S IN G 4 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23 24 24 24 24 19 19 19 19 21 21 21 21 22 22 22 22 23 23 23 23 24 24 24 24
21 22 23 24 20 22 23 24 20 21 23 24 20 21 22 24 20 21 22 23 21 22 23 24 19 22 23 24 19 21 23 24 19 21 22 24 19 21 22 23
Va lu e o f In t e g r a l 5.03309 5.023766 5.056416 5.056689 5.03309 5.011062 5.051912 5.069182 5.023766 5.011062 5.030187 5.050992 5.056416 5.051912 5.030187 5.063813 5.056689 5.069181 5.050992 5.063813 5.03309 5.023766 5.056416 5.056689 5.03309 5.025306 5.055874 5.069605 5.023766 5.025306 5.024117 5.051709 5.056416 5.055874 5.024117 5.044433 5.056689 5.069605 5.051709 5.044434 Tab le 7.8.10
[209]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
- 0.040124 - 0.049448 - 0.016798 - 0.016525 - 0.040124 - 0.062152 - 0.021302 - 0.004032 - 0.049448 - 0.062152 - 0.043027 - 0.022222 - 0.016798 - 0.021302 - 0.043027 - 0.009401 - 0.016525 - 0.004033 - 0.022222 - 0.009401 - 0.040124 - 0.049448 - 0.016798 - 0.016525 - 0.040124 - 0.047908 - 0.01734 - 0.003609 - 0.049448 - 0.047908 - 0.049097 - 0.021505 - 0.016798 - 0.01734 - 0.049097 - 0.028781 - 0.016525 - 0.003609 - 0.021505 - 0.02878
S E CO N D IN T E G R A L (3 -D ) U S IN G 4 0 0 0 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 23 22 22 22 22 22 22 22 22 22 22 22
19 19 19 19 20 20 20 20 22 22 22 22 23 23 23 23 24 24 24 24 19 19 19 19 20 20 20 20 21 21 21 21 23 23 23 23 24 24 24 24
20 22 23 24 19 22 23 24 19 20 23 24 19 20 22 24 19 20 22 23 20 21 23 24 19 21 23 24 19 20 23 24 19 20 21 24 19 20 21 23
Va lu e o f In t e g r a l 5.03309 5.011062 5.051912 5.069182 5.03309 5.025306 5.055874 5.069605 5.011062 5.025306 5.020749 5.064091 5.051912 5.055874 5.020749 5.072349 5.069182 5.069605 5.064091 5.072349 5.023766 5.011062 5.030187 5.050992 5.023766 5.025306 5.024117 5.051709 5.011062 5.025306 5.020749 5.064091 5.030188 5.024117 5.020749 5.041605 5.050993 5.051709 5.064091 5.041605 Tab le 7.8.11
[210]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
- 0.040124 - 0.062152 - 0.021302 - 0.004032 - 0.040124 - 0.047908 - 0.01734 - 0.003609 - 0.062152 - 0.047908 - 0.052465 - 0.009123 - 0.021302 - 0.01734 - 0.052465 - 0.000865 - 0.004032 - 0.003609 - 0.009123 - 0.000865 - 0.049448 - 0.062152 - 0.043027 - 0.022222 - 0.049448 - 0.047908 - 0.049097 - 0.021505 - 0.062152 - 0.047908 - 0.052465 - 0.009123 - 0.043026 - 0.049097 - 0.052465 - 0.031609 - 0.022221 - 0.021505 - 0.009123 - 0.031609
S E CO N D IN T E G R A L (3 -D ) U S IN G 4 0 0 0 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 22 24 24 24 24 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23
20 21 22 24 19 21 22 24 19 20 22 24 19 20 21 24 19 20 21 22 20 21 22 23 19 21 22 23 19 20 22 23 19 20 21 23 19 20 21 22
Va lu e o f In t e g r a l 5.056416 5.051912 5.030187 5.063813 5.056416 5.055874 5.024117 5.044433 5.051912 5.055874 5.020749 5.072349 5.030188 5.024117 5.020749 5.041605 5.063813 5.044434 5.072349 5.041605 5.056689 5.069181 5.050992 5.063813 5.056689 5.069605 5.051709 5.044434 5.069182 5.069605 5.064091 5.072349 5.050993 5.051709 5.064091 5.041605 5.063813 5.044434 5.072349 5.041605 Tab le 7.8.12
[211]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
- 0.016798 - 0.021302 - 0.043027 - 0.009401 - 0.016798 - 0.01734 - 0.049097 - 0.028781 - 0.021302 - 0.01734 - 0.052465 - 0.000865 - 0.043026 - 0.049097 - 0.052465 - 0.031609 - 0.009401 - 0.02878 - 0.000865 - 0.031609 - 0.016525 - 0.004033 - 0.022222 - 0.009401 - 0.016525 - 0.003609 - 0.021505 - 0.02878 - 0.004032 - 0.003609 - 0.009123 - 0.000865 - 0.022221 - 0.021505 - 0.009123 - 0.031609 - 0.009401 - 0.02878 - 0.000865 - 0.031609
S E CO N D IN T E G R A L (3 -D ) U S IN G 5 0 0 0 R A N D O M D A T A S .N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
File Co d e x
y
z
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29 30 30 30 30 25 25 25 25 27 27 27 27 28 28 28 28 29 29 29 29 30 30 30 30
27 28 29 30 26 28 29 30 26 27 29 30 26 27 28 30 26 27 28 29 27 28 29 30 25 28 29 30 25 27 29 30 25 27 28 30 25 27 28 29
Va lu e o f In t e g r a l 5.068664 5.084953 5.119282 5.086981 5.068664 5.062157 5.068712 5.049951 5.084952 5.062157 5.10236 5.075117 5.119282 5.068712 5.10236 5.100452 5.086981 5.049951 5.075117 5.100452 5.068664 5.084953 5.119282 5.086981 5.068664 5.068774 5.083639 5.065771 5.084952 5.068774 5.104379 5.082748 5.119282 5.083639 5.104379 5.106157 5.086981 5.065771 5.082748 5.106157 Tab le 7.8.13
[212]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
- 0.00455 0.011739 0.046068 0.013767 - 0.00455 - 0.011057 - 0.004502 - 0.023263 0.011738 - 0.011057 0.029146 0.001903 0.046068 - 0.004502 0.029146 0.027238 0.013767 - 0.023263 0.001903 0.027238 - 0.00455 0.011739 0.046068 0.013767 - 0.00455 - 0.00444 0.010425 - 0.007443 0.011738 - 0.00444 0.031165 0.009534 0.046068 0.010425 0.031165 0.032943 0.013767 - 0.007443 0.009534 0.032943
S E CO N D IN T E G R A L (3 -D ) U S IN G 5 0 0 0 R A N D O M D A T A S .N o . 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
File Co d e x
y
z
27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
25 25 25 25 26 26 26 26 28 28 28 28 29 29 29 29 30 30 30 30 25 25 25 25 26 26 26 26 27 27 27 27 29 29 29 29 30 30 30 30
26 28 29 30 25 28 29 30 25 26 29 30 25 26 28 30 25 26 28 29 26 27 29 30 25 27 29 30 25 26 29 30 25 26 27 30 25 26 27 29
Va lu e o f In t e g r a l 5.068664 5.062157 5.068712 5.049951 5.068664 5.068774 5.083639 5.065771 5.062157 5.068774 5.054073 5.039469 5.068713 5.083639 5.054073 5.044781 5.049951 5.065771 5.039469 5.044781 5.084952 5.062157 5.10236 5.075117 5.084952 5.068774 5.104379 5.082748 5.062157 5.068774 5.054073 5.039469 5.10236 5.104379 5.054073 5.075595 5.075117 5.082748 5.039469 5.075595 Tab le 7.8.14
[213]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
- 0.00455 - 0.011057 - 0.004502 - 0.023263 - 0.00455 - 0.00444 0.010425 - 0.007443 - 0.011057 - 0.00444 - 0.019141 - 0.033745 - 0.004501 0.010425 - 0.019141 - 0.028433 - 0.023263 - 0.007443 - 0.033745 - 0.028433 0.011738 - 0.011057 0.029146 0.001903 0.011738 - 0.00444 0.031165 0.009534 - 0.011057 - 0.00444 - 0.019141 - 0.033745 0.029146 0.031165 - 0.019141 0.002381 0.001903 0.009534 - 0.033745 0.002381
S E CO N D IN T E G R A L (3 -D ) U S IN G 5 0 0 0 R A N D O M D A T A S .N o . 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
File Co d e x
y
z
29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28 30 30 30 30 25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29
26 27 28 30 25 27 28 30 25 26 28 30 25 26 27 30 25 26 27 28 26 27 28 29 25 27 28 29 25 26 28 29 25 26 27 29 25 26 27 28
Va lu e o f In t e g r a l 5.119282 5.068712 5.10236 5.100452 5.119282 5.083639 5.104379 5.106157 5.068713 5.083639 5.054073 5.044781 5.10236 5.104379 5.054073 5.075595 5.100452 5.106157 5.044781 5.075595 5.086981 5.049951 5.075117 5.100452 5.086981 5.065771 5.082748 5.106157 5.049951 5.065771 5.039469 5.044781 5.075117 5.082748 5.039469 5.075595 5.100452 5.106157 5.044781 5.075595 Tab le 7.8.15
[214]
E xa c t Va lu e
Erro r
5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214 5.073214
0.046068 - 0.004502 0.029146 0.027238 0.046068 0.010425 0.031165 0.032943 - 0.004501 0.010425 - 0.019141 - 0.028433 0.029146 0.031165 - 0.019141 0.002381 0.027238 0.032943 - 0.028433 0.002381 0.013767 - 0.023263 0.001903 0.027238 0.013767 - 0.007443 0.009534 0.032943 - 0.023263 - 0.007443 - 0.033745 - 0.028433 0.001903 0.009534 - 0.033745 0.002381 0.027238 0.032943 - 0.028433 0.002381
SECOND INTEGRAL (3-D) (USING EQUISPACED NODES) For the evaluation of our second 3-D integral
I
8
By Monte Carlo Integration using equispaced nodes we shall take use of the same program PROG7_3E.BAS with following modifications in line 10 and 20 10
CLS : KEY OFF : DEF FNI(A,B,C)= EXP(A + B + C)
20
XLO = 0 : YLO = 0 : ZLO = 0 : XUP = 1 : YUP = 1 : ZUP = 1
With these two modifications the program is stored by the name PROG7_6E.BAS. As
a
result
of
execution
of
this
program
PROG7_6E.BAS we are first required to input the number
of divisions of x, y and z ranges. Here we are making equal numbers of divisions in x, y and z range. If we desire to make different numbers of division of xrange, y-range and z-range then we should modify this program by allowing two inputs for y-range division and z-range division separately. Corresponding to different numbers of division starting from 25 up to 250 with step of 25 we get the following observations. [215]
S E CO N D IN T E G R A L (3 -D )-B Y E Q U IS P A CE D N O D E S N o. of S. N o .
Eq u isp ace d
V alu e O f In te gral
Tru e V alu e
Erro r
N ode s 1
25
5.385863
5.073214
0.312649
2
50
5.227309
5.073214
0.154095
3
75
5.175625
5.073214
0.102411
4
100
5.148397
5.073214
0.075183
5
125
5.134983
5.073214
0.061769
6
150
5.125162
5.073214
0.051948
7
175
5.117739
5.073214
0.044525
8
200
5.110171
5.073214
0.036957
9
225
5.099688
5.073214
0.026474
10
250
5.162626
5.073214
0.089412
Tab le 7.7.17
The graphic display of these observations is as under.
Value Of Integral
5 .4 5 5 .4 5 .3 5 5 .3 5 .2 5 5 .2 5 .1 5 5 .1 5 .0 5 0
50
100
150 No. of Nodes
V a lu e O f I n t e g r a l U s in g E q u is p c e d N o d e s
200
250
300
T r u e V a lu e O f I n t e g r a l
G rap h 7 .7 .2
Here we find that using the files of random number of size 1000, minimum error in the value of integral is corresponding to combination of files code as (1,4,6) and similarly for the files of size 2000, 3000, 4000 and
5000
the
best
combinations
of
files
code
(7,9,12), (16,17,18), (21,23,24) and (28,25,30). [216]
as
Observations: Value
of
integral
corresponding
to
the
best
combinations of files code for the files of size 1000 is not giving the same or better accuracy for the files of size 2000, 3000, 4000 and 5000 [see tables of this chapter] which makes our observation as.
Observation 7.1 Value of all the single integrals doesn't follow any
pattern
combinations
corresponding which
files
of
random
nodes
the
value
steadily
is
best
numbers of
approaches
for
whereas
integral to
the
to
any any
exact
size
using
follow
of
a
value
of
the data
equispaced pattern of
and
integral
[see graph 7.7.1, 7.8.1].
Observation 7.2 True value of integral is almost achieved using only 250 equispaced points for x, y and z range.
[217]
CHAPTER -8 ANALYSIS AND CONCLUSION
[218]
We first took two sets of random numbers. One is obtained through the online available software and sites which claims to provide true random numbers and the other set is obtained through a computer program in GWBASIC which actually happens to be pseudo in nature.
To check the randomness of these numbers we apply test to check the two most important attributes i.e. independence and uniformity of random numbers given by Knuth.
[219]
We
applied
POKER
and
RUN
test
to
test
the
independence and FREQUENCY and FREQUENCY MONOBIT test to test the uniformity of these random numbers [see chapter 3].
We evaluated different integrals of One, Two and Three dimensions and analyze the following points
Analysis for Single Integral We
evaluated
three
different
single
integrals
using random numbers as well as equispaced nodes and observe that
Value of all the single integrals doesn't follow any pattern corresponding to different size of random numbers [see graph 5.1.1, 5.2.1 ,5.3.1] and also seems to be random in nature whereas using equispaced nodes the value of integral follow a pattern and steadily approaches to the exact value of integral [see graph 5.1.2, 5.2.2, 5.3.2].
Also
true
value
of
integral
using only 5000 equispaced points.
[220]
is
almost
achieved
Analysis for Double Integral We
evaluated
three
different
double
integrals
using random numbers as well as equispaced nodes and observe that
Value of all the double integrals doesn't follow any pattern corresponding to any of the combinations which is best for any size of data files of random numbers [see tables 6.4.1 - 6.4.5, 6.5.1 - 6.5.5, 6.6.1 - 6.6.5] whereas using equispaced nodes the value of integral follow a pattern and steadily approaches to the exact value of integral [see graph 6.4.1, 6.5.1, 6.6.1].
Also
true
value
of
integral
is
almost
achieved
using only 2000 equispaced points.
Analysis for Triple Integral We evaluated two different triple integrals using random numbers as well as equispaced nodes and observe that
[221]
Value of all the triple integrals doesn't follow any pattern corresponding to any of the combinations which is best for any size of data files of random numbers [see table 7.7.1 - 7.7.15, 7.8.1 - 7.8.15] whereas using equispaced nodes the value of integral follow a pattern and steadily approaches to the exact value of integral [see graph 7.7.1, 7.8.1].
Also
true
value
of
integral
is
almost
achieved
using only 250 equispaced points.
Conclusion However random the numbers (True or Pseudo) are used in Monte Carlo integration it is not necessary that the set of random numbers which gives the best approximation of one integral (single or multiple) will also yield the same accuracy in the evaluation of other integral whereas if we use equispaced numbers in a given range of integration then we get almost smooth curve corresponding to the values of integral having a regular
decrement
in
the
error
integral.
[222]
of
the
value
of
It
is
different
also
not
number
of
necessary random
that
numbers
corresponding obtained
to
through
same source will give the value of integral more and more approximated i.e. increase in the random numbers doesn't give the assurance for regular decrement in error whereas using equispaced nodes we get a regular decrement in the error of value of integral.
It
seems
that
as
the
dimension
of
integral
increases the requirement of equispaced nodes decreases whereas in case of random numbers no such type of logic holds good. But the fact is some what different. In case of three dimensional integral if x ,y and z are taken from random files then the triplets (x, y, z)so formed will not be uniformly distributed in the range of integration whereas if x , y and z are taken from equispaced nodes then the class of triplets so formed will be uniformly distributed in the range of integration.
This
is
the
reason
for
getting
better
approximation by equispaced nodes.
In view of the above observations coupled with our proposal we are in position to agree with following facts.
[223]
As far as the first requirement "Sample should be random" of Monte Carlo method is concerned, we totally disagree with it in numerical integration only. Instead of taking random nodes if we take equispaced nodes then numerical
integration
is
more
accurate
which
is
established for each of three 1-dimensional, three 2dimensional and two 3-dimension integrals in this work.
In
respect
of
second
requirement
"Sample
size
should be large" we have partial agreement. We admit the fact that by increasing the sample size the error decreases but upto certain limits. Beyond which the integral deviates significantly from its exact value.
The
random
nodes
created
by
the
random
numbers
from any data files ( either self generated or online generated )are not uniformly distributed in the range of
integration
while
the
equispaced
nodes
form
a
network of uniform distribution. The division of x and y range in 10 equal parts will form a network of 10x10 i.e. 100 equispaced nodes in case of double integral while the division of x,y and z range in 10 equal parts will form 10x10x10 i.e. 1000 nodes. These 1000 nodes are uniformly distributed in the range of integration while 1000 random nodes created from data files are not [224]
as much uniform as equispaced nodes. This is the main reason for getting better approximation by equispaced nodes.
Hence we conclude that for Monte Carlo integration equispaced
nodes
play
a
better
role
than
random
nodes(true or pseudo).
The
only
drawback
in
using
equispaced
nodes
is
that of time of execution of the computer program, which can be tolerated as the precision in the integral value is our main requirement.
[225]
CHAPTER -9 BIBLIOGRAPHY
[226]
BIBLIOGRAPHY 1.
Andrew Rukhin,Juan Soto,James Nechvatal,Miles Smid,Elaine Barker,Stefan Leigh,Mark Levenson, Mark Vangel,David Banks,
Alan
Heckert,James
Dray,San Vo (2001) A
statistical
test
suite
for
random
and
pseudorandom number generators for cryptographic applications. NIST, Special Publication 800-22 with dated May 15,2001)
[227]
revisions
2.
Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods. Acta Numerica7.Cambridge University-Press.pp.1-49
3.
Carter, Everett F. (1996): Markov Chains and the Monte Carlo Method. Random Walks,Monterey, California :Taygeta. (www.taygeta.com/rwalks/rwalks.html)
4.
Chaitin, Gregory J. (1975) Randomness and mathematical proof. Scientific American 232 (5), 47-52, May 1975.
5.
Compagner,Aaldert (1995) Operational
conditions
for
random-number
generation. Physics Review E 52, 5634-5645.
6.
Computational Science Education Project (1995) Introduction to Monte Carlo Methods. Oak
Ridge,Tennessee:
Oak
Ridge
National
laboratory.(csep1.phy.ornl.gov/mc/mc.html)
7.
Davis, P.J. & Rabinowitz, P. (1984). Methods of Numerical Integration. Academic Press, New York.
8.
Eckhardt, Roger (1987). "Stan Ulam, John von Neumann, and the Monte Carlo method". Los Alamos Science, Special Issue (15): 131-137.
[228]
9.
Eddelbuettel, D (2007) Random: True random numbers using random.org. URL: http://www.random.org
10. Evans, A.; Swartz. T (2000) Approximating
Integrals
via
Monte
Carlo
and
deterministic methods. Oxford University Press, 2000, Oxford, UK
11. Evans, G. (1993). Practical Numerical Integration. Wiley, New York.
12. Fishman, G. S. (1995). Monte
Carlo:
Concepts,
Algorithms,
and
Applications. New York: Springer. ISBN 0-387-94527-X.
13. Gentle, J. E. (2003) Random Number Generation and Monte Carlo Methods Springer, New York, second edition.
14. Gordon K.(1998) Numerical Integration, (ISBN 0471 975761) Edited
by,
Peter
Armitage
and
Theodore
John Wiley & Sons, Ltd, Chichester,1998
15. Guan Yang (2002) A Monte Carlo Method of Integration, Extended Essay in Mathematics,
16. Harvey Gould,Jan Tobochnik, [229]
Denmark.
Colton,
& Wolfgang Christian,(2001) Numerical Integration and Monte Carlo Methods 10 April 2001
17. Hammersley, J. M.; Handscomb, D. C.(1975). Monte Carlo Methods. London: Methuen. ISBN 0-416-52340-4.
18. Hellekalek, Peter (1998) Good random number generators are (not so) easy to find. Mathematics and Computers in Simulation 46,485-505
19. J. M. Hammersley and D. C. Handscomb,(1964) Monte Carlo Methods Chapman and Hall, London & New York, .
20. Kalos, Malvin H.; Whitlock, Paula A. (2008). Monte Carlo Methods. Wiley-VCH. ISBN 978-3-527-40760-6.
21. Kroese, D. P.; Taimre, T.; Botev, Z.I. (2011). Handbook of Monte Carlo Methods. New York: John Wiley & Sons. p. 772. ISBN 0-470-17793-4. http://www.montecarlohandbook.org.
22. Lalmohan, Bhar Non-parametric Test Indian Agricultural Statistics Research Institute, LIbrary Avenue, New Delhi
23. Lindholm, J. H. (1968) [230]
An analysis of the pseudo-randomness properties of subsequences of long m-sequences. IEEE Trans. Inform. Theory IT-14, 569-576.
24. L. Devroye,(1986) Nonuniform Variate Generation. Springer-Verlag, Berlin, Heidelberg, New York,
25. L'Ecuyer, P. Pseudorandom Number Generators. Encyclopedia
of
Quantitative
Finance,
pp.1431-
1437.
26. L'Ecuyer, P (1994) Uniform random number generation Ann.Oper.Res.53, 77-120.
27. M. H. Kalos and P. A. Whitlock,(1986) Monte Carlo Methods Volume I:Basics, Wiley-Interscience Publications, John Wiley and Sons, New York, 1986.
28. Metropolis, N. (1987). "The beginning of the Monte Carlo method". Los Alamos Science (1987 Special Issue dedicated to Stanis?aw Ulam): 125-130. http://iibrary.lanl.gov/la-pubs/00326866.pdf.
29. Metropolis, N.C. & Ulam, S.M. (1949). The Monte Carlo method Journal of the American Statistical Association
[231]
44, 335-341. montecarlomod.html
30. Park S. K. and Miller K. W.(1988) Random number generators: Good ones are hard to find Communications of the ACM,31(1988),pp. 1192-1201.
31. Stroud, A.H. (1971). Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs.
32. TODD J
AND TAUSSKY O (1956)
Generation of pseudo-random numbers In Symposium on Monte Carlo Methods (H.A.Meyer,Ed.) (John Wiley and Sons, New York, 1956),pp.15-28
33. Vattulainen,I.,Ala-Nissila,T. & Kankaala, K.(1994) Physical tests for random numbers in simulations Phys. Rev. Lett. 73, 2513-2516.
34. Van Dooren, P. & de Ridder, L. (1976). An adaptive algorithm for numerical integration over an N-dimensional cube, Journal
of
Computational
Applied
Mathematics
2,207-217.
35. Von Neumann, John (1951) Various techniques used in connection with random digits.
[232]
Proceedings of Symposium on "Monte Carlo Method" held June-July,1949,in Los Angeles),chapter 13.
36. Wegenkittl, S.and Matsumoto, M.(1999) Getting
rid
of
correlations
among
pseudorandom
numbers: discarding versus tempering ACMTrans. On Modeling & Computer Simulation 9,282294.
Site References 37. For Error Function evaluation http://en.wikipedia.org/wiki/Error_function
38. Error with mid point method http://farside.ph.utexas.edu/teaching/329/lectures node109.html
39. Frequency Monobit Test csrc.nist.gov/publications/nistpubs/800-22... SP80022rev1a.pdf
40. Graph Pad calci softwere for online Random Numbers http://graphpad.com/quickcalcs/randomn1.cfm
41. LCG and other generator. http://crypto.mat.sbg.ac.at/results/karl/server node3.html
42. Research Randomizer for online Random Numbers [233]
http://www.randomizer.org/form.htm
43. Run test www.cse.msu.edu/~cse808/note/lecture6.ppt
44. Run test: test statistic. www.iasri.res.in/ebook/EB_SMAR/e.../4-Non Parametric_test.pdf
45. Monte Carlo module http://math.fullerton.edu/mathews/n2003 montecarlomod.html
46. Monte carlo Method http://math.fullerton.edu/mathews/n2003/
47. Poker Test www.cse.msu.edu/~cse808/note/lecture6.pp
48. Random number generator www.cse.msu.edu/~cse808/note/lecture6.pp
49. The Basics of Monte Carlo Simulations http://www.chem.unl.edu/zeng/joy/mclab/mcintro.hml
50. Uniformity test www.lix.polytechnique.fr/~catuscia/teaching/... pseudo_random.ppt
51. Use of monte carlo methods in mathematics http://en.wikipedia.org/wiki/Monte_Carlo_method
[234]