Sensor network scheduling for identification of spatially distributed ...

3 downloads 359 Views 3MB Size Report
AEW01. Dariusz Ucinski, Sensor network scheduling . . . 2/58 ..... operation), automated (maintenance free), robust. (to withstand ... Software: TinyOS. They are ...
Sensor network scheduling for identification of spatially distributed processes Dariusz Uci´ nski Institute of Control and Computation Engineering University of Zielona G´ora, POLAND e-mail: [email protected]

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100

90

0.6

80 0.4 70 0.2

60

0

50

40

DAEW01

−0.2

30 −0.4

Cambridge 2011

20 −0.6

−0.8 −0.5

10

−0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

0

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100

90 0.6 80 0.4 70 0.2

60

50

0

40

DAEW01

−0.2 30 −0.4

Cambridge 2011

20 −0.6

−0.8 −0.5

10

0 −0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100

90 0.6 80 0.4 70 0.2

60

50

0

40

DAEW01

−0.2 30 −0.4

Cambridge 2011

20 −0.6

−0.8 −0.5

10

0 −0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100

90 0.6 80 0.4 70 0.2

60

50

0

40

DAEW01

−0.2 30 −0.4

Cambridge 2011

20 −0.6

−0.8 −0.5

10

0 −0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100 90

0.6 80 0.4 70 0.2

60

0

50

40

DAEW01

−0.2 30 −0.4

Cambridge 2011

20 −0.6

10 0

−0.8 −0.5

−0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100 90

0.6 80 0.4 70 0.2

60

0

50

40

DAEW01

−0.2 30 −0.4

Cambridge 2011

20 −0.6

10 0

−0.8 −0.5

−0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100

90 0.6 80 0.4 70 0.2

60

50

0

40

DAEW01

−0.2 30 −0.4

Cambridge 2011

20 −0.6

−0.8 −0.5

10

0 −0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100

90 0.6 80 0.4 70 0.2

60

50

0

40

DAEW01

−0.2 30 −0.4

Cambridge 2011

20 −0.6

−0.8 −0.5

10

0 −0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100

90

0.6

80 0.4 70 0.2

60

50

0

40

DAEW01

−0.2 30 −0.4

Cambridge 2011

20 −0.6

−0.8 −0.5

10

0 −0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Example: Heating a metal block with a crack 0.8

100

90

0.6

80 0.4 70 0.2

60

0

50

40

DAEW01

−0.2

30 −0.4

Cambridge 2011

20 −0.6 10

−0.8 −0.5

−0.4

−0.3

−0.2

−0.1

Dariusz Uci´ nski, Sensor network scheduling . . .

0

0.1

0.2

0.3

0.4

0.5

2/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Example ctd’: Mathematical model Let y(x, t) be the temperature at spatial point x and time t. Its evolution is governed by the partial differential equation (PDE) ∂y = θ ∆y for x ∈ Ω and t ∈ [0, tf ] ∂t θ being a parameter, subject to the initial condition y = 0 in Ω at t = 0 and the boundary conditions y = 100 ∂y = −10 ∂n ∂y =0 ∂n

on the left side of Ω

(Dirichlet condition)

on the right side of Ω

(Neumann condition)

on all other boundaries

(Neumann condition)

Dariusz Uci´ nski, Sensor network scheduling . . .

3/58

DAE Cambridge 2011

If thermal conductivity θ is unknown, which is rather typical, we could observe the temperature evolution at a fixed point and tune θ so that our model fits the data as best as it can.

Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Example ctd’: Calibration and measurement design

Dariusz Uci´ nski, Sensor network scheduling . . .

4/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Example ctd’: Calibration and measurement design If thermal conductivity θ is unknown, which is rather typical, we could observe the temperature evolution at a fixed point and tune θ so that our model fits the data as best as it can. Problem Where to place the pyrometer so as to get the most valuable information about θ ? Such situations (PDEs and related sensor location problems) are common in engineering practice.

Dariusz Uci´ nski, Sensor network scheduling . . .

4/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Other motivating examples environment observation and forecasting systems air pollution monitoring, groundwater resources management and river monitoring, military applications: surveillance and inspection in hazardous environments,

fault detection and isolation, emerging smart materials, intelligent building monitoring, habitat monitoring, intelligent traffic systems, computer-assisted tomography, recovery of valuable minerals and hydrocarbon from underground permeable reservoirs, and many more . . . Dariusz Uci´ nski, Sensor network scheduling . . .

5/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Distributed parameter system—dynamic system whose state depends on both time and space; its model (a PDE) is known up to a vector of unknown parameters θ. Observations—using sensors in order to estimate θ.

Cambridge 2011

DAEW01

Spatiotemporal dynamics

Dariusz Uci´ nski, Sensor network scheduling . . .

6/58

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Subject of the talk Spatial area Ω

x1 x2

x3

Sensors

Problem: How to choose optimal sensor locations? Dariusz Uci´ nski, Sensor network scheduling . . .

7/58

Stationary sensors Spatial area Ω

x1 x2

x3

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Strategies of taking measurements (1)

Sensors

How to determine the best sensor configuration? Dariusz Uci´ nski, Sensor network scheduling . . .

8/58

DAE Cambridge 2011 DAEW01

Scanning Sensors activated at time t

(x2 , t)

Area Ω

(x3 , t)

(x1 , t)

Cambridge 2011

DAEW01

Cambridge 2011

Strategies of taking measurements (2)

Sensors dormant at t

How to select optimal locations at given time instants? Dariusz Uci´ nski, Sensor network scheduling . . .

9/58

Mobile sensors Spatial area Ω

DAE DAEW01

Cambridge 2011

Strategies of taking measurements (3)

x1 (·)

Cambridge 2011

DAEW01

Cambridge 2011

x2 (·)

Starting positions

Trajectories

How to design optimal trajectories? (This is the subject of the next talk by Maciej Patan.) Dariusz Uci´ nski, Sensor network scheduling . . .

10/58

DAE Cambridge 2011

Collection of spatially distributed inexpensive, small devices equipped with sensors and interconnected by a communication network, exchanging and processing data to cooperatively monitor physical or environmental conditions (eg. temperature, sound, vibration, pressure etc.).



Cambridge 2011

DAEW01

Enabling technology: Sensor Networks (SNs)

Cambridge 2011

DAEW01

sensor node gateway sensor node communication

motes

Dariusz Uci´ nski, Sensor network scheduling . . .

11/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

SN nodes Motes must be low cost, low power (for long-term operation), automated (maintenance free), robust (to withstand errors and failures), and non-intrusive. Hardware: a microprocessor, data storage, sensors, AD-converters, a data transceiver (Bluetooth), controllers, and an energy source Software: TinyOS They are already manufactured (Crossbow, Intel).

Dariusz Uci´ nski, Sensor network scheduling . . .

12/58

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Applications: from battle field. . .

Dariusz Uci´ nski, Sensor network scheduling . . .

13/58

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Applications: . . . to our life

Dariusz Uci´ nski, Sensor network scheduling . . .

14/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Existing approaches to optimal sensor location Conversion to a non-linear problem of state estimation (Malebranche, 1988; Korbicz et al., 1988); Employing random fields analysis (Kazimierczyk, 1989; Sun, 1994); Formulation in the spirit of optimum experimental design (Uspenskii and Fedorov, 1975; Quereshi et al., 1980; Rafajlowicz, 1978–1995; Kammer, 1990; 1992; Sun, 1994; Point et al., 1996; Vande Wouwer et al., 1999; Uci´nski, 1999–2010; Patan, 2002-2010). Dariusz Uci´ nski, Sensor network scheduling . . .

15/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Existing approaches to optimal sensor location Conversion to a non-linear problem of state estimation (Malebranche, 1988; Korbicz et al., 1988); Employing random fields analysis (Kazimierczyk, 1989; Sun, 1994); Formulation in the spirit of optimum experimental design (Uspenskii and Fedorov, 1975; Quereshi et al., 1980; Rafajlowicz, 1978–1995; Kammer, 1990; 1992; Sun, 1994; Point et al., 1996; Vande Wouwer et al., 1999; Uci´nski, 1999–2011; Patan, 2001-2011). Dariusz Uci´ nski, Sensor network scheduling . . .

15/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

System description Consider a spatial domain Ω ⊂ R2 and the PDE   ∂y ∂y ∂y ∂ 2 y ∂ 2 y = F x, t, y, , , , , θ , x ∈ Ω, t ∈ T ∂t ∂x1 ∂x2 ∂x21 ∂x22 subject to the appropriate initial and boundary conditions. Notation: I x – spatial variable, t – time, T = [0, tf ]; I y = y(x, t) – state vector; I F – known function; I θ ∈ Rm – vector of unknown (constant) parameters. Dariusz Uci´ nski, Sensor network scheduling . . .

16/58

DAE Cambridge 2011

∂ y(x, t) = ∇ · [κ(x, θ)∇y(x, t)] + v(x) · ∇y(x, t) + f (x, t) ∂t y(x, 0) = y0 (x), y(x, t) = 0

Cambridge 2011

DAEW01

Cambridge 2011

Consider domain Ω ⊂ R2 with sufficiently smooth boundary Γ.

DAEW01

Example: Air pollution Advection-diffusion equation

Γ

Notation: y(x, t) – contaminant concentrat. at point x and time t, κ(x, θ) – diffusivity coefficient, parameterized by θ, f (x, t) – source term v(x) = [v1 (x), v2 (x)]T – wind velocity vector field  T ∂y( · ) ∂y( · ) ∇y( · ) = , ∂x1 ∂x2 Dariusz Uci´ nski, Sensor network scheduling . . .

17/58

DAE Cambridge 2011

 Given N sensors and a finite set X = x1 , . . . , x` ⊂ Ω ∪ ∂Ω of points at which they can be placed, consider their fixed configuration. Spatial domain Ω ∪ ∂Ω ` potential locations

Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Observations

Dariusz Uci´ nski, Sensor network scheduling . . .

18/58

DAE Cambridge 2011 DAEW01

 Given N sensors and a finite set X = x1 , . . . , x` ⊂ Ω ∪ ∂Ω of points at which they can be placed, consider their fixed configuration. Spatial domain Ω ∪ ∂Ω ` potential locations ri sensors at xi

Cambridge 2011

DAEW01

Cambridge 2011

Observations

Dariusz Uci´ nski, Sensor network scheduling . . .

18/58

DAE Cambridge 2011 DAEW01

Output equation For pointwise stationary sensors we have zij (t) = y(xi , t; θ) + εij (t),

t∈T

for i = 1, . . . , ` and j = 1, . . . , ri , where X` ri = N

Cambridge 2011

DAEW01

Cambridge 2011

i=1

εij ( · ) – white Gaussian measurement noise.

Dariusz Uci´ nski, Sensor network scheduling . . .

19/58

DAE Cambridge 2011 DAEW01

Output equation For pointwise stationary sensors we have zij (t) = y(xi , t; θ) + εij (t),

t∈T

for i = 1, . . . , ` and j = 1, . . . , ri , where X` ri = N

Cambridge 2011

DAEW01

Cambridge 2011

i=1

εij ( · ) – white Gaussian measurement noise. Least-squares criterion The LS estimate of θ is the one which minimizes `

r

i 1 XX J (θ) = 2 i=1 j=1

Z

2  zij (t) − yˆ(xi , t; θ) dt

T

where yˆ( · , · ; θ) stands for the solution to the state equation corresponding to a given value of θ. Dariusz Uci´ nski, Sensor network scheduling . . .

19/58

DAE Cambridge 2011

Determine r1 , . . . , r` (the numbers of sensors assigned to points x1 , . . . , x` ) so as to maximize the identification accuracy

Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Optimal measurement problem

Dariusz Uci´ nski, Sensor network scheduling . . .

20/58

DAE Cambridge 2011

Determine r1 , . . . , r` (the numbers of sensors assigned to points x1 , . . . , x` ) so as to maximize the identification accuracy. ←− What is it?

Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Optimal measurement problem

Dariusz Uci´ nski, Sensor network scheduling . . .

20/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Optimal measurement problem Determine r1 , . . . , r` (the numbers of sensors assigned to points x1 , . . . , x` ) so as to maximize the identification accuracy. ←− What is it? Cram´er-Rao inequality n o T ˆ ˆ ˆ cov θ = E (θ − θ)(θ − θ)  M −1 We have cov θˆ = M −1 provided that an estimator is efficient. But what is M ?

Dariusz Uci´ nski, Sensor network scheduling . . .

20/58

Up to a constant multiplier, we have Z tf ` 1 X M= ri g(xi , t)g T (xi , t) dt N tf i=1 0 T ∂y(xj , t; θ) is the vector of sensitivity where g(x , t) = ∂θ θ=θ0 coefficients, θ0 stands for a preliminary estimate of θ. i



DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Average Fisher Information Matrix (FIM)

Dariusz Uci´ nski, Sensor network scheduling . . .

21/58

Up to a constant multiplier, we have Z tf ` 1 X M= ri g(xi , t)g T (xi , t) dt N tf i=1 0

DAE Cambridge 2011

Calculation of the sensitivity vector g I Finite-difference method I Sensitivity-equation method (direct approach) I Variational method (indirect approach)

Cambridge 2011

T ∂y(xj , t; θ) is the vector of sensitivity where g(x , t) = ∂θ θ=θ0 coefficients, θ0 stands for a preliminary estimate of θ.

DAEW01

DAEW01

Cambridge 2011

Average Fisher Information Matrix (FIM)

i



Dariusz Uci´ nski, Sensor network scheduling . . .

21/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Problem of weight optimization Minimize some measure Ψ of the FIM, e.g., Ψ(M ) = ln det(M −1 ) or Ψ(M ) = trace(M −1 ) by finding a solution (called design) of the form   1 x , . . . , x` ξ= p1 , . . . , p` where pi = ri /N , i.e., the weight pi defining the proportion of sensors placed at xi , i = 1, . . . , N .

Dariusz Uci´ nski, Sensor network scheduling . . .

22/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Problem of weight optimization Minimize some measure Ψ of the FIM, e.g., Ψ(M ) = ln det(M −1 ) or Ψ(M ) = trace(M −1 ) by finding a solution (called design) of the form   1 x , . . . , x` ξ= p1 , . . ., p` where pi = ri /N , i.e., the weight pi defining the proportion of sensors placed at xi , i = 1, . . . , N .

Dariusz Uci´ nski, Sensor network scheduling . . .

22/58

DAE Cambridge 2011 DAEW01

The problem still has a discrete nature, as the sought weights pi are integer multiples of 1/N which sum up to unity. Consequently, calculus techniques cannot be exploited in the solution.

Cambridge 2011

DAEW01

Cambridge 2011

Problem relaxation

Dariusz Uci´ nski, Sensor network scheduling . . .

23/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Problem relaxation

The problem still has a discrete nature, as the sought weights pi are integer multiples of 1/N which sum up to unity. Consequently, calculus techniques cannot be exploited in the solution. Thus we extend the definition of the design: when N is large, the feasible pi ’s can be considered as any real numbers in the interval [0, 1] which sum up to unity, and not necessarily integer multiples of 1/N , i.e., elements of the canonical simplex.

Dariusz Uci´ nski, Sensor network scheduling . . .

23/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Ultimate formulation ?

Find ξ =

n

x1 , ..., x` p?1 , ..., p?`

o

such that

p? = arg min Ψ[M (ξ)] p∈S

where S is the canonical simplex, subject to M (ξ) =

` X

pi Υ(xi )

i=1

Rt Here Υ(xi ) = t1f 0 f g(xi , t)g T (xi , t) dt is the fixed contribution to the FIM associated with point xi . Dariusz Uci´ nski, Sensor network scheduling . . .

24/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Ultimate formulation ?

Find ξ =

n

x1 , ..., x` p?1 , ..., p?`

o

such that

p? = arg min Ψ[M (ξ)] p∈S

where S is the canonical simplex, subject to M (ξ) =

` X

pi Υ(xi )

i=1

Rt Here Υ(xi ) = t1f 0 f g(xi , t)g T (xi , t) dt is the fixed contribution to the FIM associated with point xi . Dariusz Uci´ nski, Sensor network scheduling . . .

24/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Ultimate formulation ?

Find ξ =

n

x1 , ..., x` p?1 , ..., p?`

o

such that

p? = arg min Ψ[M (ξ)] p∈S

where S is the canonical simplex, subject to M (ξ) =

` X

pi Υ(xi )

i=1

Rt Here Υ(xi ) = t1f 0 f g(xi , t)g T (xi , t) dt is the fixed contribution to the FIM associated with point xi . Dariusz Uci´ nski, Sensor network scheduling . . .

24/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Ultimate formulation ?

Find ξ =

n

x1 , ..., x` p?1 , ..., p?`

o

such that

p? = arg min Ψ[M (ξ)] p∈S

where S is the canonical simplex, subject to M (ξ) =

` X

pi Υ(xi )

i=1

Rt Here Υ(xi ) = t1f 0 f g(xi , t)g T (xi , t) dt is the fixed contribution to the FIM associated with point xi . Dariusz Uci´ nski, Sensor network scheduling . . .

24/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Defining ∂Ψ(M ) Ψ(ξ) = ∂M M =M (ξ) ◦

we introduce crucial functions h◦ i c(ξ) = − trace Ψ(ξ)M (ξ) h◦ i φ(x, ξ) = − trace Ψ(ξ)Υ(x)

Cambridge 2011

DAEW01

Differentiability of the design criterion

Dariusz Uci´ nski, Sensor network scheduling . . .

25/58

DAE Cambridge 2011

Theorem (Existence of solution) An optimal design exists comprising no more than m(m + 1)/2 points. Moreover, the set of optimal designs is convex.

Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Characterizations of solutions

Dariusz Uci´ nski, Sensor network scheduling . . .

26/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01

Characterizations of solutions Theorem (Existence of solution) An optimal design exists comprising no more than m(m + 1)/2 points. Moreover, the set of optimal designs is convex. Theorem (Equivalence theorem) The following characterizations of an optimal design ξ ? are equivalent: (i) (ii)

x∈X

(iii) Cambridge 2011

the design ξ ? minimizes Ψ[M (ξ)], the design ξ ? minimizes max φ(x, ξ) − c(ξ) , max φ(x, ξ ? ) = c(ξ ? ). x∈X

All the designs satisfying (i)–(iii) and their convex combinations have the same M (ξ ? ). Dariusz Uci´ nski, Sensor network scheduling . . .

26/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Numerical approach: A-optimality For Ψ[M (ξ)] = trace(M −1 (ξ)), we have to find p and the additional variable q ∈ Rm to minimize J(p, q) = 1T q subject to 1T p = 1, p ≥ 0 and the Linear Matrix Inequalities (LMIs)   M (ξ) ej  0, j = 1, . . . , m. eTj qj where ej is j-th coordinate versor. Dariusz Uci´ nski, Sensor network scheduling . . .

27/58

DAE Cambridge 2011

For Ψ[M (ξ)] = λmax [M −1 (ξ)] we have to find p and q ∈ R to minimize

Cambridge 2011

˜ q) = −q J(p, subject to

DAEW01

DAEW01

Numerical approach: E-optimality

and the LMI M (ξ)  qI.

p≥0

Cambridge 2011

1T p = 1,

Dariusz Uci´ nski, Sensor network scheduling . . .

28/58

DAE Cambridge 2011

For Ψ[M (ξ)] = λmax [M −1 (ξ)] we have to find p and q ∈ R to minimize

subject to and the LMI M (ξ)  qI.

Cambridge 2011

Cambridge 2011

˜ q) = −q J(p,

DAEW01

DAEW01

Numerical approach: E-optimality

1T p = 1,

p≥0

Note that λmax [M −1 (ξ)] is non-differentiable!

Dariusz Uci´ nski, Sensor network scheduling . . .

28/58

DAE Cambridge 2011 DAEW01

Numerical approach: D-optimality For Ψ[M (ξ)] = ln det[M −1 (ξ)] apply 1

Cambridge 2011

DAEW01

Cambridge 2011

2

3

(0)

Guess pi , i = 1, . . . , `. Set k = 0. If φ(xi , ξ (k) ) ≤ m, i = 1, . . . , `, then STOP. Evaluate (k+1)

pi

(k) φ(x

= pi

i

, ξ (k) ) , m

i = 1, . . . , `.

Form ξ (k+1) , increment k and go to Step 2.

Dariusz Uci´ nski, Sensor network scheduling . . .

29/58

DAE Cambridge 2011 DAEW01

Numerical approach: D-optimality For Ψ[M (ξ)] = ln det[M −1 (ξ)] apply 1

Cambridge 2011

DAEW01

Cambridge 2011

2

3

(0)

Guess pi , i = 1, . . . , `. Set k = 0. If φ(xi , ξ (k) ) ≤ m, i = 1, . . . , `, then STOP. Evaluate (k+1)

pi

(k) φ(x

= pi

i

, ξ (k) ) , m

i = 1, . . . , `.

Form ξ (k+1) , increment k and go to Step 2.

Dariusz Uci´ nski, Sensor network scheduling . . .

29/58

DAE Cambridge 2011 DAEW01

Numerical approach: D-optimality For Ψ[M (ξ)] = ln det[M −1 (ξ)] apply 1

Cambridge 2011

DAEW01

Cambridge 2011

2

3

(0)

Guess pi , i = 1, . . . , `. Set k = 0. If φ(xi , ξ (k) ) ≤ m, i = 1, . . . , `, then STOP. Evaluate (k+1)

pi

(k) φ(x

= pi

i

, ξ (k) ) , m

i = 1, . . . , `.

Form ξ (k+1) , increment k and go to Step 2.

Dariusz Uci´ nski, Sensor network scheduling . . .

29/58

DAE Cambridge 2011

Consider a metallic core with a rectangular crack inside. Ω

0.4 Cross-section plane of reconstruction

x2

0

Γ1

Γ5

Γ2

−0.4

−0.8

DAEW01 Cambridge 2011

Γ3

1 0.8

Cambridge 2011

DAEW01

Simulation example: material flaw detection

Γ4

−1 −1 −0.8

−0.4

0

x1

0.4

0.8

1

The left and right boundaries Γ1 and Γ2 are subjected to constant voltages forcing the flow of a low density steady current. Dariusz Uci´ nski, Sensor network scheduling . . .

30/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Computer-assisted impedance tomography Electrical voltage distribution y is described by the Laplace equation  −div γ(x)∇y(x) = 0, x ∈ Ω, with boundary conditions  y(x) = 10 x ∈ Γ1 ,   y(x) = −10 x ∈ Γ2 ,   ∂y(x) = 0 x ∈ Γ , i = 3, 4, 5. i ∂n Conductivity coefficient  γ(x) = 0.1 + 0.2 exp − θ1 (x1 − θ2 )2 − θ3 (x2 − θ4 )2 , θ0 = (30.0, 0.3, 80.0, 0.7) Dariusz Uci´ nski, Sensor network scheduling . . .

31/58

DAE Cambridge 2011

Results

1

Cambridge 2011

DAEW01

0.8

0.23 Γ3

0.25

0

DAEW01

0.24

1

0.24 0.25

0.4

0.05 0.23

0.8

0.11 0.37

0.4

Γ1

Γ2

0

Γ5

−0.4

−0.8

Cambridge 2011

0.03

−0.4

−0.8

Γ4

−1 −1 −0.8

−0.4

0

−1 0.4

D-optimal

Dariusz Uci´ nski, Sensor network scheduling . . .

0.8

1

−1 −0.8

−0.4

0

0.4

0.8

1

A-optimal

32/58

It is easy to include both the support points xj and their number as additional decision variables.

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Extensions

Dariusz Uci´ nski, Sensor network scheduling . . .

33/58

DAE Cambridge 2011 DAEW01

It is easy to include both the support points xj and their number as additional decision variables. The approach is useful as It indicates spatial regions which provide the most important information about the parameters, while quantifying their influence.

Cambridge 2011

DAEW01

Cambridge 2011

Extensions

Dariusz Uci´ nski, Sensor network scheduling . . .

33/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Extensions It is easy to include both the support points xj and their number as additional decision variables. The approach is useful as It indicates spatial regions which provide the most important information about the parameters, while quantifying their influence. Instead of several sensors placed at a point, we can use a more precise measurement device at that point.

Dariusz Uci´ nski, Sensor network scheduling . . .

33/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Extensions It is easy to include both the support points xj and their number as additional decision variables. The approach is useful as It indicates spatial regions which provide the most important information about the parameters, while quantifying their influence. Instead of several sensors placed at a point, we can use a more precise measurement device at that point. Design weights can be interpreted as measurement frequencies. Dariusz Uci´ nski, Sensor network scheduling . . .

33/58

DAE Cambridge 2011 DAEW01

With a little turning up, the results can be employed when attacking the setting with purely binary weights (ri = 0 or ri = 1), cf. (Uci´nski and Patan, 2007). This combinatorial optimization problem is dealt with the branch-and-bound method.

Cambridge 2011

DAEW01

Cambridge 2011

Extensions

Dariusz Uci´ nski, Sensor network scheduling . . .

34/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

With a little turning up, the results can be employed when attacking the setting with purely binary weights (ri = 0 or ri = 1), cf. (Uci´nski and Patan, 2007). This combinatorial optimization problem is dealt with the branch-and-bound method. We shall outline it for scanning observations.

Cambridge 2011

DAEW01

Extensions

Dariusz Uci´ nski, Sensor network scheduling . . .

34/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Scanning observations Given N 0 sensors whose spatial positions are fixed a priori, partition the observation horizon T = (0, tf ) into adjacent subintervals Tk , k = 1, . . . , K and activate a best N -element subset of sensors over each Tk . 0 Spatial domain Ω

T1 T2 T3 tf

Dariusz Uci´ nski, Sensor network scheduling . . .

35/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Scanning observations Given N 0 sensors whose spatial positions are fixed a priori, partition the observation horizon T = (0, tf ) into adjacent subintervals Tk , k = 1, . . . , K and activate a best N -element subset of sensors over each Tk . 0 Spatial domain Ω

T1 T2

– active – dormant

T3 tf

Dariusz Uci´ nski, Sensor network scheduling . . .

35/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Scanning observations Given N 0 sensors whose spatial positions are fixed a priori, partition the observation horizon T = (0, tf ) into adjacent subintervals Tk , k = 1, . . . , K and activate a best N -element subset of sensors over each Tk . 0 Spatial domain Ω

T1 T2

– active – dormant

T3 tf

Dariusz Uci´ nski, Sensor network scheduling . . .

35/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Scanning observations Given N 0 sensors whose spatial positions are fixed a priori, partition the observation horizon T = (0, tf ) into adjacent subintervals Tk , k = 1, . . . , K and activate a best N -element subset of sensors over each Tk . 0 Spatial domain Ω

T1 T2

– active – dormant

T3 tf

Dariusz Uci´ nski, Sensor network scheduling . . .

35/58

DAE Cambridge 2011 DAEW01

A reason for not using all the available sensors could be the reduction of the observation system complexity and the cost of operation and maintenance. I Another interpretation: several mobile sensors. I Sensors track points providing best information about the DPS. I Rapid progress in technology makes it affordable.

Cambridge 2011

DAEW01

Cambridge 2011

Advantages and drawbacks

Dariusz Uci´ nski, Sensor network scheduling . . .

36/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Advantages and drawbacks A reason for not using all the available sensors could be the reduction of the observation system complexity and the cost of operation and maintenance. I Another interpretation: several mobile sensors. I Sensors track points providing best information about the DPS. I Rapid progress in technology makes it affordable. But: I Lack of efficient algorithms. I Combinatorial complexity excludes direct (naive) approaches. Dariusz Uci´ nski, Sensor network scheduling . . .

36/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Observation At Stage k we have time subinterval Tk and   zki (t) = vki y(xi , t; θ) + ε(xi , t) for t ∈ Tk and i = 1, . . . , I, where ε( · , · ) – white Gaussian measurement noise, Decision variables ( 1 if the i-th sensor is active over Tk vki = 0 otherwise

Dariusz Uci´ nski, Sensor network scheduling . . .

37/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Fisher information matrix We have M (v) =

K X I X

vki Mki

k=1 i=1

where Z Mki =

g(xi , t)g(xi , t)g T (xi , t) dt

Tk

 and g(x, t) = ∇θ y (x, t; θ0 ) are, as usual, the sensitivity coefficients. Matrices Mki can be computered and stored before optimization. Dariusz Uci´ nski, Sensor network scheduling . . .

38/58

(b) balanced 1

0.9

0.9

0.8

0.8

0.7

0.7

activation time

activation time

(a) unbalanced 1

0.6 0.5 0.4

0.6 0.5 0.4

0.3

0.3

0.2

0.2

0.1 0

0.1 1

2

3

4

5

6

sensor

7

0

1

2

3

4

5

6

7

sensor

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Balanced operation scheduling

Dariusz Uci´ nski, Sensor network scheduling . . .

39/58

(b) balanced 1

0.9

0.9

0.8

0.8

0.7

0.7

activation time

activation time

(a) unbalanced 1

0.6 0.5 0.4

0.6 0.5 0.4

0.3

0.3

0.2

0.2

0.1 0

0.1 1

2

3

4

5

6

sensor

7

0

1

2

3

4

5

6

7

sensor

We would like have at least n sensors active at each stage on condition that each the total activation time of each sensor be at most τmax .

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Balanced operation scheduling

Dariusz Uci´ nski, Sensor network scheduling . . .

39/58

activation time

(a) unbalanced

(b) balanced

1

1

0.9

0.9

0.8

0.8

0.7

0.7

activation time

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Balanced operation scheduling

0.6 0.5 0.4

0.6 0.5 0.4

0.3

0.3

0.2

0.2

0.1 0

0.1 1

2

3

4

5

6

7

0

sensor

1

2

3

4

5

6

7

sensor

We would like have at least n sensors active at each stage on condition that each the total activation time of each sensor be at most τmax . Accumulated activation time τi =

K X

vki ∆tk ≤ τmax ,

∆tk = tk − tk−1

k=1 Dariusz Uci´ nski, Sensor network scheduling . . .

39/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Problem (P) Let vk = (vk1 , . . . , vkI ). Find a sequence v = (v1 , . . . , vK ) to minimize  P(v) = Ψ M (v) subject to K X vki ∆tk ≤ τmax , i = 1, . . . , N k=1 I X

vki ≥ n,

k = 1, . . . , K

vki = 0 or 1,

i = 1, . . . , N,

i=1

k = 1, . . . , K

Cambridge 2011

DAEW01

Ultimate formulation

Dariusz Uci´ nski, Sensor network scheduling . . .

40/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Ultimate formulation Problem (P) Let vk = (vk1 , . . . , vkI ). Find a sequence v = (v1 , . . . , vK ) to minimize  P(v) = Ψ M (v) subject to K X vki ∆tk ≤ τmax , i = 1, . . . , N k=1 I X

vki ≥ n,

k = 1, . . . , K

vki = 0 or 1,

i = 1, . . . , N,

i=1

k = 1, . . . , K

This is a 0-1 integer programming problem.

Dariusz Uci´ nski, Sensor network scheduling . . .

40/58

DAE Cambridge 2011 DAEW01

8 combinatorial nature of the optimization task 8 the problem dimensionality may be very high 8 difficulties in direct application of algorithms known from the area of sensor network design

Cambridge 2011

DAEW01

Cambridge 2011

Main difficulties

Dariusz Uci´ nski, Sensor network scheduling . . .

41/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Main difficulties

8 combinatorial nature of the optimization task 8 the problem dimensionality may be very high 8 difficulties in direct application of algorithms known from the area of sensor network design Remedy A way out is to apply the well-known branch and bound technique based on an efficient ‘bounding test’.

Dariusz Uci´ nski, Sensor network scheduling . . .

41/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Solution via Branch&Bound – properties It consists of a systematic enumeration of all candidate solutions, where large subsets of fruitless candidates are discarded en masse, by using upper and lower estimated bounds of the quantity being optimized. Represent all feasible solutions as the leaves of a binary tree whose branches are then recursively processed as follows: Solve the ‘relaxed problem, i.e., the one with no integrality constraints. If the relaxed problem is infeasible—backtrack (there is no integer solution in this branch) If the solution is integral—terminate (‘feasible). Otherwise, split on a variable for which the assignment is non-integral, and repeat for each case. The relaxed problem is solved using simplicial decomposition (Uci´nski and Patan, 2007). Dariusz Uci´ nski, Sensor network scheduling . . .

42/58

DAE Cambridge 2011

Branch & Bound processing V (I0 ; I1)

DAEW01

computing lower/upper bounds

V (I0 ; I1)

V (I0 ; I1)

Cambridge 2011

pruning

V (I0 ; I1)

V (I0 ; I1)

V (I0 ; I1)

V (I0 ; I1)

V (I0 ; I1)

V (I0 ; I1)

V (I0 ; I1)

V (I0 ; I1)

Cambridge 2011

DAEW01

branching

Dariusz Uci´ nski, Sensor network scheduling . . .

43/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Computer example Consider the transport-chemistry process of an air pollutant on the observation interval T = (0, 800] [s]  ∂y(x, t) + ∇ · v(x, t)y(x, t) + αy(x, t) ∂t  = ∇ · κ∇y(x, t) + f1 (x) + f2 (x),

x ∈ Ω = [0, 1 km]2 ,

with boundary and initial conditions ∂y(x, t) = 0, ∂n y(x, 0) = 0,

(x, t) ∈ ∂Ω × T, x ∈ Ω.

y(x, t) – pollutant concentration,   v(x, t) = 7.2 · (x1 + x2 − t · 10−3 ), (2x1 − 1)t · 10−3 + x2 − 1 – wind velocity field, κ = 50 m2 /s – diffusion coefficient, α = 0.01 s−1 – elimination rate. Dariusz Uci´ nski, Sensor network scheduling . . .

44/58

DAE Cambridge 2011 DAEW01

 f` (x) = µ` exp − 100kx − χ` k2 , ` = 1, 2 – active sources of pollutant located in (0.5 km, 0.75 km) and (0.75 km, 0.5 km), The observation interval has equipartitioned into 8 subintervals Tk = (100(k − 1), 100k], k = 1, . . . , 8, The maximum accumulated activation time per sensor was fixed as τmax = 300 s,

Cambridge 2011

DAEW01

Cambridge 2011

Simulation setting

Dariusz Uci´ nski, Sensor network scheduling . . .

45/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Simulation setting

 f` (x) = µ` exp − 100kx − χ` k2 , ` = 1, 2 – active sources of pollutant located in (0.5 km, 0.75 km) and (0.75 km, 0.5 km), The observation interval has equipartitioned into 8 subintervals Tk = (100(k − 1), 100k], k = 1, . . . , 8, The maximum accumulated activation time per sensor was fixed as τmax = 300 s, Objective Find a D-optimal schedule for activation of I = 460 scanning sensor nodes to identify the sources, i.e., to estimate the vector of their locations and intensities θ = (µ1 , χ11 , χ12 , µ2 , χ21 , χ22 )

Dariusz Uci´ nski, Sensor network scheduling . . .

45/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Results (1) time=0 1

0.8

0.6

0.4

0.2

0 0

0.2

0.4

0.6

0.8

1

n = 100 Dariusz Uci´ nski, Sensor network scheduling . . .

46/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Results (2) time=0 1

0.8

0.6

0.4

0.2

0 0

0.2

0.4

0.6

0.8

1

n = 50 Dariusz Uci´ nski, Sensor network scheduling . . .

47/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Finally, time-optimal paths of moving sensors Assume that the process evolves over the time horizon of [α, β], but we wish to avoid an excessive battery consumption and select its shortest subinterval [t0 , t0 + T ] to take measurements guaranteeing ‘reasonably rich’ information about θ. Therefore, for N mobile sensors we have zj (t) = y(xj (t), t; θ) + εj (t),

t ∈ [t0 , t0 + T ]

j = 1, . . . , N , where εj ( · ) is white Gaussian measurement noise.

Dariusz Uci´ nski, Sensor network scheduling . . .

48/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Dynamics of sensor movements Define the state vector s(t) = (x1 (t), x2 (t), . . . , xN (t)),

∀ t ∈ [t0 , t0 + T ]

A general model is s(t) ˙ = f (s(t), u(t)) a.e. on [t0 , t0 + T ],

s(t0 ) = s0

where s0 ∈ Rn is the initial sensor configuration, u : [t0 , t0 + T ] → Rr is a control satisfying ul ≤ u(t) ≤ uu

Dariusz Uci´ nski, Sensor network scheduling . . .

a.e. on [t0 , t0 + T ]

49/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Constraints on sensor movements The conditions of taking measurements only in a given admissible subdomain and keeping safe distances between the sensors are written as  γ` (s(t)) ≤ 0, ∀ t ∈ [t0 , t0 + T ], ` ∈ ν¯ = 1, . . . , ν where γ` : Rn → R are C 1 functions. Then the Fisher Information Matrix is M (s) =

N Z X j=1

Dariusz Uci´ nski, Sensor network scheduling . . .

t0 +T

g(xj (t), t)g T (xj (t), t) dt

t0

50/58

In the proposed time-optimal formulation, we wish to guarantee an acceptable level of the information content of the collected observations, quantified by the D-efficiency:  ED (s) =

det(M (s)) det(M (b s)

1/m

where sb stands for the D-optimal trajectories obtained for the observations over the entire feasible time interval [α, β].

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Time duration as a critical factor

Dariusz Uci´ nski, Sensor network scheduling . . .

51/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

The value of det(M (ˆ s)) can be determined beforehand, and setting a reasonable positive threshold η < 1, we can introduce the constraint relation ED (s) ≥ η, which guarantees a suboptimal yet reasonable solution. This is equivalent to Ψ[M (s)] ≤ C where C = Ψ[M (ˆ s)] − m log(η).

Cambridge 2011

DAEW01

Guaranteed information content

Dariusz Uci´ nski, Sensor network scheduling . . .

52/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Time-optimal control problem Find

min (s0 ,u,t0 ,T )∈P

T subject to h(s0 , u, t0 , T ) ≤ 0 and

J(s0 , u, t0 , T ) ≤ 0 where  P = (s0 , u, t0 , T ) : s0 ∈ X N , [t0 , t0 + T ] ⊆ [α, β], u : [t0 , t0 + T ] → Rr is measurable, ul ≤ u(t) ≤ uu a.e. on [t0 , t0 + T ]



J(s0 , u, t0 , T ) = Ψ[M (s)] − C, h(s0 , u, t0 , T ) = max γ` (s(t)) . (`,t)∈¯ ν ×[t0 ,t0 +T ]

Dariusz Uci´ nski, Sensor network scheduling . . .

53/58

It is convenient to cast the problem in question as a problem in canonical form which is acceptable by common numerical software for solving optimal-control problems (RIOTS 95, DIRCOL, MISER). The procedure is rather standard and reduces to augmenting the state vector by some functions of the sensitivity coefficients along the sensor trajectories.

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

Reduction to canonical form

Dariusz Uci´ nski, Sensor network scheduling . . .

54/58

DAE Cambridge 2011 DAEW01 Cambridge 2011

Consider the heat equation     ∂y(x, t) ∂ ∂y(x, t) ∂ ∂y(x, t) = κ(x) + κ(x) ∂t ∂x1 ∂x1 ∂x2 ∂x2  + 20 exp −50(x1 − t)2 , (x, t) ∈ (0, 1)3 , y(x, 0) = 0, x ∈ Ω y(x, t) = 0, (x, t) ∈ ∂Ω × T where κ(x) = θ1 + θ2 x1 + θ3 x2 , θ1 = 0.1, θ2 = −0.05, θ3 = 0.2, s(t) ˙ = u(t), s(t0 ) = s0 , |ui (t)| ≤ 0.7, i = 1, . . . , 6

Cambridge 2011

DAEW01

Computer example

Dariusz Uci´ nski, Sensor network scheduling . . .

55/58

1

0.8

0.8

0.6

0.6

Cambridge 2011

DAEW01

x

x

Cambridge 2011

2

1

2

DAE DAEW01

Cambridge 2011

Results

0.4

0.4

0.2

0.2

0 0

0.2

0.4

0.6

0.8

x1

D-optimum solution

Dariusz Uci´ nski, Sensor network scheduling . . .

1

0 0

0.2

0.4

0.6

0.8

1

x1

Time-optimal, D-efficiency = 0.8 t0 = 0.47, T = 0.53

56/58

DAE Cambridge 2011 DAEW01 Cambridge 2011 DAEW01 Cambridge 2011

Concluding remarks: Ongoing work

Extensions to Kalman filtering (joint work with Professor M. Demetriou from Worcester Polytechnic Instutite) Inverse problems for thermal processes (with Professor Laurent Autrique, Universit´e d’Angers) Development of parallel algorithms in clusters of PCs (with Tomasz Zi¸eba and Przemyslaw Baranowski, University of Zielona G´ora) Development of decentralized approaches (sensor nodes as intelligent autonomous agents) (with Maciej Patan, University of Zielona G´ora)

Dariusz Uci´ nski, Sensor network scheduling . . .

57/58

DAE Cambridge 2011

DAEW01

Cambridge 2011

DAEW01

Cambridge 2011

More information . . .

Dariusz Uci´ nski, Sensor network scheduling . . .

58/58

Suggest Documents