Small Wind Turbine Blade Performance Measurement ...

2 downloads 0 Views 3MB Size Report
Parameters measurement. • Phase Resistance(R). • Voltage drop across the diodes in the bridge rec`fier. Extracting performance curves for a small wind.
Small Wind Turbine Blade Performance Measurement and Analysis Through Vehicle Test Procedure Kimon Silwal1, Sulav Shrestha1, Peter Freere2, Rakesh Sinha2, Pramod Ghimire2 Kathmandu Alternative Power and Energy Group, Nepal [email protected]

2nd Global WE Conference: WeAthens2014

•  Testing a locally fabricated wind turbine system often is a daunting task specially in absence of wind tunnel testing facility and before taking the prototype to far distant mountain location specially in context to country like Nepal. •  Verification of the system performance in a short term basis has been possible through vehicle test procedure. •  Essentially during the test, velocity of the vehicle is adjusted at certain time intervals to maintain the turbine at different rotating speed. The power curve can be plotted generally to maximum of 13m/s wind speed with the developed vehicle test set-up. Wind turbine and tower clamped to truck

Turbine Tail

Upper section holding pipes

Anemometer 1 (Data Logger)

Anemometer 2 (Manual data)

Figure  1:  Fi^ng  the  components  

Variables  collecDon  from  vehicle  test   procedure   •  Ba9ery  Voltage(V)   •  Current  to  ba9ery(A)   •  Frequency(Hz)   •  Wind  speed(m/s)  

Note:  These  variables  can  either  be  manually  noted   down  or  be  saved  in  a  flash  drive  using  a  4  channel   digital  oscilloscope  while  driving  the  vehicle  at   different  speed  or  be  logged  in  a  data  logger.      

Parameters  measurement   •  Phase  Resistance(R)   •  Voltage  drop  across  the   diodes  in  the  bridge   rec6fier    

Note:  Torque  is  calculated  as  func?on  of  rota?onal   speed    with  and  without  coupling  an  unloaded   generator.  

To pulse channel

F

W

Figure  3:  Methodology  chart  for  performance   analysis        

150  

500   400  

100  

200  

50  

100  

DP1 Three Phase Bridge rectifier Unit

Resistances R1:3.3K R2: 6.8K R3:1.4K R4: 20k R5: 10K

Voltage Sensor Circuit R1 DP2

Current Sensor

0  

0   3  

4  

R2

+12V

6  

7   8   9   10   Wind  speed  (m/s)  

11  

12  

13  

14  

Turbine  Speed  (RPM)  

Figure  6:  Ba9ery  power  and  turbine  speed  as   func6on  of  wind  speed.    

DP1: Differential Probe 1 (50x) DP2: Differential Probe 2 (50X)

-

5  

Ba9ery  Power  (Wa9)  

Capacitances C1: 20uF

-12V

F: Frequency C: Current V: Voltage W: Wind Speed

Cp  and  TSR  

Dc Bus Bars

0.35  

10   9   8   7   6   5   4   3   2   1   0  

0.30   Battery Bank

0.25  

2, 12V 200Ah Battery

  DeterminaDon  of  l  osses    

•  Using  the  following  equa6ons  Cp  and  TSR  can  be  calculated.   PW  =  0.5*ρ*A*V3  wa9,      ρ  =  density  of  air  (1.29kg/m3)                                  A  =  Area  swept  by  the  blade  (m2)                              V  =  Wind  velocity  (m/s)   Cp  =  PB/PW       TSR  =  RPS*R/V  R  =  radius  of  the  blade  (m)    V  =  wind  velocity  (m/s)  

-

V

       

The  mechanical  shaT  power  supplied  by  the  blade  can  be   calculated  as   PB  =  Po  +  Prec  +  Psta  +  PFW  PB  =  Blade  Power    Po  =  Output  Power  to  ba9ery    Prec  =  Power  lost  in  the  rec6fier    PFW    =  Power  lost  as  fric6on  and  windage    

700  

300  

+

DeterminaDon  of  Blade  Power  

+

C

Current Sensor Circuit

  •  Rec6fier  loss(W):  Rec6fier  loss  can  simply  be  calculated  as  a  product   of  measured  current  at  different  vehicle  speed  and  voltage  drop   across  the  rec6fier.     •  Stator  loss(W):  Measured  current  from  the  vehicle  test  and  phase   resistance,  stator  loss  can  be  calculated.     •  Fric6on  and  windage  loss(W):  The  fric6on  and  windage  torque  can   be  calculated  from  eq1  mul6plied  with  rota6onal  speed(RPS)  will   yield  power  loss  as  fric6on  and  windage.    

200  

600  

R3

Calculate  Cp  and  TSR  

Figure  2:  Test  set-­‐up  at  the  back  of  the  truck  

7ah 12V battery for data logger Power supply

Frequency Sensor Circuit

Variable  collecDon  from  lab  test   •  Torque  as  func6on  of  generator  speed                                         TFW  =  A*Ω  +  B..eq1  (Ω  is  the  generator     angular  velocity  rads/s)  

   

800  

R5

   

Measuring  variables  and  system   p arameters    

900  

R4

Figure  4:  CR1000  data  logger  and  sensor  set-­‐up   for  KAPEG  2  rotor  blade  12  volt  system  

The graphical plots presented below are generated with the computation technique mentioned as in method section through vehicle test procedure for KAPEG 2 rotor blade design. The measurements were recorded manually from oscilloscope during the test. Losses  Graph  

100   90   80   70   60   50   40   30   20   10   0   300  

Fric6on  Loss  

Rec6fier  loss  

%  loss(stator)    

400   450   500   550   RotaDonal  Speed  (RPM)   %  loss(rec6fier)  

0.15  

0.05   0.00   2  

3  

4  

5  

6   7   8   9   10   11   12   13   14   Wind  Speed  (m/s)  

Power  Coefficient  (Cp)  

Series2  

Figure  7:  Cp  and  TSR  as  func6on  of  wind  speed  

CONCLUSION   The vehicle test procedure could be a convenient way to determine the performance of small wind turbine prototypes where wind tunnel facility or field testing facility are not available. The testing procedure could be completed in 3 or 4 hours with all the preparations done before hand with generation of power curve slightly over the rated speed. Using data loggers allows analysis of large number of collected measurements with increased precision. But loggers would be quite expensive to buy.

Stator  loss  

350  

0.20  

0.10  

VEHICLE  TEST  RESULTS  FOR  KAPEG  2  ROTOR   BLADE  DESIGN  

Percentage  of  the  total  loss  (  %  )    

INTRODUCTION  

 

250  

Rotaional  Speed  (RPM)  

A simple set of test is required initially in a lab with simple test rig mainly to model generator’s friction and windage loss expression. The test could be run without a torque meter but then the drive in the test rig needs to be modelled. A 2.5m 3’’ tower is fitted at a back of a truck with a small wind turbine system under test along with anemometer and other measuring equipments. The vehicle is driven at different speed ranging from 10km/ hr to 45km/hr to collect various measurements required for turbine performance analysis.

Power  and  Blade  Speed  

Tip  Speed  RaDo  (TSR)  

Extracting performance curves for a small wind turbine system is often a challenging and comprehensive task. There are different ways of achieving performance curves such as from wind tunnel testing or directly from field testing. The paper present methodologies, tools and techniques and graphical analyses involved in producing characteristics curves of a small wind turbine blades through vehicle test procedure. The procedure of vehicle testing is elaborated both from manual data collection and through logging the data from Campbell Scientific data logger.

Power  (WaQs)  

METHOD  

Cp  

ABSTRACT  

600  

650  

CONTACT  

%  loss(fric6on)    

Figure  5:  Different  losses  graph  as  func6on  of   turbine  speed  

Kimon Silwal : [email protected]

Suggest Documents