Stability of a Generalized Mixed Type Additive, Quadratic ... - EMIS

1 downloads 0 Views 638KB Size Report
Jul 6, 2009 - of Z. Gajda, as well as of Th.M. Rassias and P. Semrl [27] have stimulated several mathematicians to ... Hyers-Ulam-Rassias stability of functional equations. .... 4f(x) and f(2x) = 16f(x) is said to be a quadratic - quartic function.
STABILITY OF A GENERALIZED MIXED TYPE ADDITIVE, QUADRATIC, CUBIC AND QUARTIC FUNCTIONAL EQUATION K. RAVI

J.M. RASSIAS

Department of Mathematics Sacred Heart College Tirupattur - 635 601 TamilNadu, India. EMail: [email protected]

Pedagogical Dept. E.E., Sect. Math. & Informatics National and Capodistrian University of Athens 4, Agamemnonos Str. Aghia Paraskevi Athens 15342, Greece. EMail: [email protected]

M. ARUNKUMAR

R. KODANDAN

Department of Mathematics Sacred Heart College, Tirupattur - 635 601 TamilNadu, India. EMail: [email protected]

Department of Mathematics Srinivasa Institute of Tech. & Management Studies Chittoor - 517 127, Andhra Pradesh. EMail: [email protected]

Received:

06 July, 2009

Accepted:

06 November, 2009

Communicated by:

S.S. Dragomir

2000 AMS Sub. Class.:

39B52, 39B82

Key words:

Additive function, Quadratic function, Cubic function, Quartic function, Generalized Hyers-Ulam-Rassias stability, Ulam-Gavruta-Rassias stability, J.M. Rassias stability.

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 1 of 57 Go Back Full Screen Close

Abstract:

In this paper, we obtain the general solution and the generalized HyersUlam-Rassias stability of the generalized mixed type of functional equation f (x + ay) + f (x − ay)  = a2 [f (x + y) + f (x − y)] + 2 1 − a2 f (x)  a4 − a2 [f (2y) + f ( −2y) − 4f (y) − 4f ( −y)] . + 12 for fixed integers a with a 6= 0, ±1.

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 2 of 57 Go Back Full Screen Close

Contents 1

Introduction

4

2

General Solution

11

3

Stability of the Functional Equation (1.20)

20 Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 3 of 57 Go Back Full Screen Close

1.

Introduction

S.M. Ulam [31] is the pioneer of the stability problem in functional equations. In 1940, while he was delivering a talk before the Mathematics Club of the University of Wisconsin, he discussed a number of unsolved problems. Among them was the following question concerning the stability of homomorphisms: "Let G be group and H be a metric group with metric d(·, ·). Given  > 0 does there exist a δ > 0 such that if a function f : G → H satisfies d (f (xy), f (x)f (y)) < δ

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

for all x, y ∈ G, then there exists a homomorphism a : G → H with d (f (x), a(x)) < ε

Title Page

for all x ∈ G." In 1941, D.H. Hyers [12] gave the first affirmative partial answer to the question of Ulam for Banach spaces. He proved the following celebrated theorem.

Contents

JJ

II

J

I

Theorem 1.1 ([12]). Let X, Y be Banach spaces and let f : X → Y be a mapping satisfying

Page 4 of 57

kf (x + y) − f (x) − f (y)k ≤ ε

Go Back

(1.1)

for all x, y ∈ X. Then the limit

Full Screen

f (2n x) n→∞ 2n exists for all x ∈ X and a : X → Y is the unique additive mapping satisfying

(1.2)

a(x) = lim

(1.3)

kf (x) − a (x)k ≤ ε

for all x ∈ X.

Close

In 1950, Aoki [2] generalized the Hyers theorem for additive mappings. In 1978, Th.M. Rassias [26] provided a generalized version of the Hyers theorem which permitted the Cauchy difference to become unbounded. He proved the following: Theorem 1.2 ([26]). Let X be a normed vector space and Y be a Banach space. If a function f : X → Y satisfies the inequality (1.4)

kf (x + y) − f (x) − f (y)k ≤ θ (||x||p + ||y||p )

for all x, y ∈ X, where θ and p are constants with θ > 0 and p < 1, then the limit

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

(1.5)

f (2n x) T (x) = lim n→∞ 2n

Title Page

exists for all x ∈ X and T : X → Y is the unique additive mapping which satisfies (1.6)

2θ kf (x) − T (x)k ≤ ||x||p p 2−2

for all x ∈ X. If p < 0, then inequality (1.4) holds for x, y 6= 0 and (1.6) for x 6= 0. Also if for each x ∈ X the function f (tx) is continuous in t ∈ R, then T is linear. It was shown by Z. Gajda [9], as well as Th.M. Rassias and P. Semrl [27] that one cannot prove a Th.M. Rassias type theorem when p = 1. The counter examples of Z. Gajda, as well as of Th.M. Rassias and P. Semrl [27] have stimulated several mathematicians to invent new definitions of approximately additive or approximately linear mappings; P. Gavruta [10] and S.M. Jung [17] among others have studied the Hyers-Ulam-Rassias stability of functional equations. The inequality (1.4) that was introduced by Th.M. Rassias [26] provided much influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as the Hyers-Ulam-Rassias stability of functions.

Contents

JJ

II

J

I

Page 5 of 57 Go Back Full Screen Close

In 1982, J.M. Rassias [24] following the spirit of the approach of Th.M. Rassias [26] for the unbounded Cauchy difference proved a similar stability theorem in which he replaced the factor ||x||p + ||y||p by ||x||p ||y||q for p, q ∈ R with p + q 6= 1. Theorem 1.3 ([24]). Let X be a real normed linear space and Y be a real completed normed linear space. Assume that f : X → Y is an approximately additive mapping for which there exists constants θ > 0 and p, q ∈ R such that r = p + q 6= 1 and f satisfies the inequality (1.7)

kf (x + y) − f (x) − f (y)k ≤ θ kxkp kykq

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

for all x, y ∈ X. Then the limit (1.8)

f (2n x) n→∞ 2n

exists for all x ∈ X and L : X → Y is the unique additive mapping which satisfies (1.9)

Title Page

L(x) = lim

kf (x) − L(x)k ≤

θ kxkr |2 − 2r |

for all x ∈ X. If, in addition f : X → Y is a mapping such that the transformation t → f (tx) is continuous in t ∈ R for each fixed x ∈ X, then L is an R− linear mapping. However, the case r = 1 in inequality (1.9) is singular. A counter example has been given by P. Gavruta [11]. The above-mentioned stability involving a product of different powers of norms was called Ulam-Gavruta-Rassias stability by M.A. Sibaha et al., [30], as well as by K. Ravi and M. Arunkumar [28]. This stability result was also called the Hyers-Ulam-Rassias stability involving a product of different powers of norms by Park [23].

Contents

JJ

II

J

I

Page 6 of 57 Go Back Full Screen Close

In 1994, a generalization of Th.M. Rassias’ theorem and J.M. Rassias’ theorem was obtained by P. Gavruta [10], who replaced the factors θ (||x||p + ||y||p ) and θ (||x||p ||y||p ) by a general control function ϕ(x, y). In the past few years several mathematicians have published various generalizations and applications of HyersUlam- Rassias stability to a number of functional equations and mappings (see [4, 5, 13, 18, 19]). Very recently, J.M. Rassias [29] in the inequality (1.7) replaced the bound by a mixed one involving the product and sum of powers of norms, that is, θ{||x||p ||y||p + (||x||2p + ||y||2p )}. The functional equation

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

(1.10)

f (x + y) + f (x − y) = 2f (x) + 2f (y)

is said to be a quadratic functional equation because the quadratic function f (x) = ax2 is a solution of the functional equation (1.10). A quadratic functional equation was used to characterize inner product spaces [1, 20]. It is well known that a function f is a solution of (1.10) if and only if there exists a unique symmetric biadditive function B such that f (x) = B(x, x) for all x (see [20]). The biadditive function B is given by (1.11)

1 B (x, y) = [f (x + y) + f (x − y)] . 4

The functional equation (1.12)

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x)

is called a cubic functional equation, because the cubic function f (x) = cx3 is a solution of the equation (1.12). The general solution and the generalized HyersUlam-Rassias stability for the functional equation (1.12) was discussed by K.W. Jun and H.M. Kim [14]. They proved that a function f between real vector spaces

Title Page Contents

JJ

II

J

I

Page 7 of 57 Go Back Full Screen Close

X and Y is a solution of (1.12) if and only if there exists a unique function C : X × X × X → Y such that f (x) = C(x, x, x) for all x ∈ X and C is symmetric for each fixed one variable and is additive for fixed two variables. The quartic functional equation (1.13) f (x + 2y) + f (x − 2y) − 6f (x) = 4 [f (x + y) + f (x − y)] + 24f (y) was introduced by J.M. Rassias [25]. Later S.H. Lee et al., [21] remodified J.M. Rassias’s equation and obtained a new quartic functional equation of the form (1.14) f (2x + y) + f (2x − y) = 4 [f (x + y) + f (x − y)] + 24f (x) − 6f (y) and discussed its general solution. In fact S.H. Lee et al., [21] proved that a function f between vector spaces X and Y is a solution of (1.14) if and only if there exists a unique symmetric multi - additive function Q : X × X × X × X → Y such that f (x) = Q(x, x, x, x) for all x ∈ X. It is easy to show that the function f (x) = kx4 is the solution of (1.13) and (1.14). A function

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

f (x) = Q(x1 , x2 , x3 , x4 )

Page 8 of 57

is called symmetric multi additive if Q is additive with respect to each variable xi , i = 1, 2, 3, 4 in (1.15). A function f is defined as

Go Back

(1.15)

Full Screen Close

β(x) − α(x) f (x) = 12 where α(x) = f (2x) − 16f (x), β(x) = f (2x) − 4f (x), further, f satisfies f (2x) = 4f (x) and f (2x) = 16f (x) is said to be a quadratic - quartic function.

K.W. Jun and H.M. Kim [16] introduced the following generalized quadratic and additive type functional equation ! n n X X X (1.16) f xi + (n − 2) f (xi ) = f (xi + xj ) i=1

i=1

1≤i 0, we have



α (2n+m x) α (2m x)

α (2n 2m x)

1 m



− α (2 x)

4n+m − 4m = 4m 4n  n−1 1 X Φb 2k+m x ≤ 4 k=0 4k+m  ∞ 1 X Φb 2k+m x ≤ 4 k=0 4k+m →0 as m→∞ n n o for all x ∈ E1 . Hence the sequence α(24n x) is a Cauchy sequence. Since E2 is complete, there exists a quadratic mapping B : E1 → E2 such that α (2n x) B (x) = lim n→∞ 4n

∀x ∈ E1 .

Letting n → ∞ in (3.19) and using (2.24), we see that (3.3) holds for all x ∈ E1 . To prove that B satisfies (1.20), replace (x, y) by (2n x, 2n y) and divide by 4n in (3.2). We obtain 1

f (2n (x + ay)) + f (2n (x − ay)) − a2 [f (2n (x + y)) + f (2n (x − y))] n 4  (a4 − a2 ) − 2 1 − a2 f (2n x) − [f (2n (2y)) + f (2n (−2y))] 12

φ (2n x, 2n y) (a4 − a2 ) [−4f (2n y) − 4f (2n (−y))] −

≤ 12 4n

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 25 of 57 Go Back Full Screen Close

for all x, y ∈ E1 . Letting n → ∞ in the above inequality, we see that



B (x + ay) + B (x − ay) − a2 [B (x + y) + B (x − y)] − 2 1 − a2 B (x)

(a4 − a2 ) − [B (2y) + B (−2y) − 4B (y) − 4Bf (−y)]

≤ 0, 12 which gives

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan

B (x + ay) + B (x − ay)

vol. 10, iss. 4, art. 114, 2009

 = a2 [B (x + y) + B (x − y)] + 2 1 − a2 B (x) (a4 − a2 ) [B (2y) + B (−2y) − 4B (y) − 4Bf (−y)] + 12 for all x, y ∈ E1 . Hence B satisfies (1.20). To prove that B is unique, let B 0 be another quadratic function satisfying (1.20) and (3.3). We have 1 kB (2n x) − B 0 (2n x)k 4n 1 ≤ n {kB (2n x) − α (2n x)k + kα (2n x) − B 0 (2n x)k} 4  ∞ 1 1 X Φb 2k x ≤ n 4 2 k=0 4k

kB (x) − B 0 (x)k =

→0

as

n→∞

for all x ∈ E1 . Hence B is unique. This completes the proof of the theorem. The following corollary is an immediate consequence of Theorem 3.1 concerning the stability of (1.20).

Title Page Contents

JJ

II

J

I

Page 26 of 57 Go Back Full Screen Close

Corollary 3.2. Let ε, p be nonnegative real numbers. Suppose that an even function f : E1 → E2 satisfies the inequality  ε (kxkp + kykp ) , 0 ≤ p < 2;      ε, 0 ≤ p < 1; (3.20) kDf (x, y)k ≤ p p  ε kxk kyk , 0 ≤ p < 1;      p p 2p 2p  , ε kxk kyk + kxk + kyk for all x, y ∈ E1 . Then there exists a unique quadratic function B : E1 → E2 such that  λ kxkp 1  ,  4−2p     10λ2 , (3.21) kf (2x) − 16f (x) − B (x)k ≤ λ3 kxk2p  ,  4−22p    2p  λ4 kxk , 4−22p where ε {24 + 12a2 + 12 (ap ) + 6 (2p )} ε λ1 = , λ2 = 4 , 4 2 a −a a − a2 12ε {a2 + ap } ε {24 + 24a2 + 12 (ap ) + 12 (a2p ) + 6 (22p )} λ3 = and λ = 4 a4 − a2 a4 − a2 for all x ∈ E1 . Theorem 3.3. Let φd : E1 × E1 → [0, ∞) be a function such that (3.22)

∞ X φd (2n x, 2n y) n=0

16n

converges and

φd (2n x, 2n y) =0 n→∞ 16n lim

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 27 of 57 Go Back Full Screen Close

for all x, y ∈ E1 and let f : E1 → E2 be an even function which satisfies the inequality kDf (x, y)k ≤ φd (x, y)

(3.23)

for all x, y ∈ E1 . Then there exists a unique quartic function D : E1 → E2 such that  ∞ 1 X Φd 2k x (3.24) kf (2x) − 4f (x) − D (x)k ≤ 16 k=0 16k

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

for all x ∈ E1 , where the mapping D(x) and Φd (2k x) are defined by  1  D (x) = lim n f 2n+1 x − 4f (2n x) , n→∞ 16

(3.25)

(3.26) Φd

   1 h k k 2 k 2 φ 0, 2 x + 12a φ 2 x, 2 x 2 x = 4 12 1 − a d d a − a2  i + 6φd 0, 2k+1 x + 12φd 2k ax, 2k x k



Title Page Contents

JJ

II

J

I

Page 28 of 57 Go Back

for all x ∈ E1 .

Full Screen

Proof. Along similar lines to those in the proof of Theorem 3.1, we have Close

(3.27)

kf (4x) − 20f (2x) + 64f (x)k ≤ Φd (x) ,

where Φd (x) =

   1 2 2 12 1 − a φ (0, x) + 12a φ (x, x) + 6φ (0, 2x) + 12φ (ax, x) d d d d a4 − a2

for all x ∈ E1 . It is easy to see from (3.27) that (3.28)

kf (4x) − 4f (2x) − 16 {f (2x) − 4f (x)}k ≤ Φd (x)

for all x ∈ E1 . Using (2.31) in (3.28), we obtain (3.29)

kβ (2x) − 16β (x)k ≤ Φd (x)

for all x ∈ E1 . From (3.29), we have

β (2x)

Φd (x)

≤ (3.30) − β (x)

16

16 for all x ∈ E1 . Now replacing x by 2x and dividing by 16 in (3.30), we obtain

β (22 x) β (2x) Φd (2x)

(3.31)

162 − 16 ≤ 162 for all x ∈ E1 . From (3.30) and (3.31), we arrive at





β (22 x)

β (22 x) β (2x) β (2x)





(3.32)

162 − β (x) ≤ 162 − 16 + 16 − β (x)   1 Φd (2x) ≤ Φd (x) + 16 16 for all x ∈ E1 . In general for any positive integer n, we get 

n−1 k X

β (2n x) Φ 1 d 2 x

(3.33)

16n − β (x) ≤ 16 16k k=0  ∞ 1 X Φd 2k x ≤ 16 k=0 16k

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 29 of 57 Go Back Full Screen Close

n

β(2n x) 16n

for all x ∈ E1 . In order to prove the convergence of the sequence x by 2m x and divide by 16m in (3.33). For any m, n > 0, we then have



β (2n+m x) β (2m x)

β (2n 2m x)

1 m

=

− − β (2 x)

16n+m

16m 16m 16n  n−1 1 X Φd 2k+m x ≤ 16 k=0 16k+m  ∞ 1 X Φd 2k+m x ≤ 16 k=0 16k+m → 0 as n n o

o , replace

m→∞

x) for all x ∈ E1 . Hence the sequence β(2 is a Cauchy sequence. Since E2 is 16n complete, there exists a quartic mapping D : E1 → E2 such that

β (2n x) n→∞ 16n

D (x) = lim

∀x ∈ E1 .

Letting n → ∞ in (3.33) and using (2.31) we see that (3.24) holds for all x ∈ E1 . The proof that D satisfies (1.20) and is unique is similar to that for Theorem 3.1.

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 30 of 57 Go Back Full Screen

The following corollary is an immediate consequence of Theorem 3.3 concerning the stability of (1.20). Corollary 3.4. Let ε, p be nonnegative real numbers. Suppose that an even function

Close

f : E1 → E2 satisfies the inequality  ε (kxkp + kykp ) , 0 ≤ p < 4;        ε, (3.34) kDf (x, y)k ≤  ε kxkp kykp , 0 ≤ p < 2;         ε kxkp kykp + kxk2p + kyk2p , 0 ≤ p < 2 for all x, y ∈ E1 . Then there exists a unique quartic function D : E1 → E2 such that  λ kxkp 1  ,  16−2p       2λ2 , (3.35) kf (2x) − 4f (x) − D (x)k ≤ λ3 kxk2p   ,  16−22p      λ4 kxk2p , 16−22p for all x ∈ E1 , where λi (i = 1, 2, 3, 4) are given in Corollary 3.2. Theorem 3.5. Let φ : E1 × E1 → [0, ∞) be a function such that (3.36)

∞ X n=0

φb (2n x, 2n y) , 4n

∞ X n=0

φd (2n x, 2n y) 16n

converges

and (3.37)

φb (2n x, 2n y) φd (2n x, 2n y) lim = 0 = lim n→∞ n→∞ 4n 16n

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 31 of 57 Go Back Full Screen Close

for all x, y ∈ E1 . Suppose that an even function f : E1 → E2 satisfies the inequalities (3.2) and (3.23) for all x, y ∈ E1 . Then there exists a unique quadratic function B : E1 → E2 and a unique quartic function D : E1 → E2 such that ( ∞  ) ∞ 1 X Φd 2k x 1 1 X Φb 2k x (3.38) kf (x) − B (x) − D (x)k ≤ + 12 4 k=0 4k 16 k=0 16k   for all x ∈ E1 , where Φb 2k x and Φd 2k x are defined in (3.5) and (3.26), respectively for all x ∈ E1 .

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Proof. By Theorems 3.1 and 3.3, there exists a unique quadratic function B1 : E1 → E2 and a unique quartic function D1 : E1 → E2 such that  ∞ 1 X Φb 2k x (3.39) kf (2x) − 16f (x) − B1 (x)k ≤ 4 k=0 4k and (3.40)

∞ 1 X Φd 2k x kf (2x) − 4f (x) − D1 (x)k ≤ 16 k=0 16k

Title Page Contents

JJ

II

J

I



for all x ∈ E1 . Now from (3.39) and (3.40), one can see that



1 1

f (x) + B1 (x) − D1 (x)

12 12

   

16f (x) B (x) f (2x) 4f (x) D (x) f (2x) 1 1

= + + + − − −

12 12 12 12 12 12 1 {kf (2x) − 16f (x) − B1 (x)k + kf (2x) − 4f (x) − D1 (x)k} ≤ 12

Page 32 of 57 Go Back Full Screen Close

1 ≤ 12

(

 ) ∞ ∞ 1 X Φb 2k x 1 X Φd 2k x + 4 k=0 4k 16 k=0 16k

for all x ∈ E1 . Thus weobtain (3.38) by defining B (x) = −1 B (x) and D (x) = 12 1 1 k k D (x), where Φb 2 x and Φd 2 x are defined in (3.5) and (3.26), respectively 12 1 for all X ∈ E1 . The following corollary is the immediate consequence of Theorem 3.5 concerning the stability of (1.20).

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Corollary 3.6. Let , p be nonnegative real numbers. Suppose f : E1 → E2 satisfies the inequality  ε (kxkp + kykp ) ,     ε, (3.41) kDf (x, y)k ≤  ε kxkp kykp ,      ε kxkp kykp + kxk2p + kyk2p ,

an even function Title Page

0 ≤ p < 2; 0 ≤ p < 1;

JJ

II

0≤p 0, we have



γ (2n+m x) γ (2m x)

γ (2n 2m x)

1 m

=

− − γ (2 x)

2n+m

2m 2m 2n  n−1 1 X Φa 2k+m x ≤ 2 k=0 2k+m  ∞ 1 X Φa 2k+m x ≤ 2 k=0 2k+m

o , replace

→ 0 as m → ∞ n n o for all x ∈ E1 . Hence the sequence γ(22n x) is a Cauchy sequence. Since E2 is complete, there exists a additive mapping A : E1 → E2 such that γ (2n x) n→∞ 2n

A (x) = lim

∀x ∈ E1 .

Letting n → ∞ in (3.70) and using (3.65) we see that (3.45) holds for all x ∈ E1 . The proof that A satisfies (1.20) and is unique is similar to that of Theorem 3.1.

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 41 of 57 Go Back Full Screen

The following corollary is the immediate consequence of Theorem 3.7 concerning the stability of (1.20). Corollary 3.8. Let ε, p be nonnegative real numbers. Suppose that an odd function

Close

f : E1 → E2 with f (0) = 0 satisfies the inequality  ε (kxkp + kykp ) , 0 ≤ p < 2;     ε, (3.71) kDf (x, y)k ≤  ε kxkp kykp , 0 ≤ p < 12 ;      ε kxkp kykp + kxk2p + kyk2p , 0 ≤ p < 12 for all x, y ∈ E1 . Then there exists a unique additive function A : E1 → E2 such that  λ5 kxkp  ,  2−2p     λ6 , (3.72) kf (2x) − 8f (x) − A (x)k ≤ λ7 kxk2p  ,  2−22p   2p   λ8 kxk , 2−22p where  ε  2 p 2 21 − 8a + 2 2a + 4 + 3p + 2 (1 + a)p 4 2 a −a + 2 (1 − a)p + (1 + 2a)p + (1 − 2a)p , ε (16 − 3a2 ) λ6 = , a4 − a2 ε  5 − 4a2 + 22p a2 + 4 (2p ) + 3p + 2 (1 + a)p λ7 = 4 2 a −a + 2 (1 − a)p + (1 + 2a)p + (1 − 2a)p

λ5 =

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 42 of 57 Go Back Full Screen Close

and λ8 =

  ε 2 2p 2 + 4 + 32p 26 − 12a + 2 3a a4 − a2 +2 (1 + a)2p + 2 (1 − a)2p + (1 + 2a)2p + (1 − 2a)2p + 4 (2p ) +3p + 2 (1 + a)p + 2 (1 − a)p + (1 + 2a)p + (1 − 2a)p }

for all x ∈ E1 .

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan

Theorem 3.9. Let φc : E1 × E1 → [0, ∞) be a function such that (3.73)

∞ X n=0

n

n

φc (2 x, 2 y) 8n

n

converges and

vol. 10, iss. 4, art. 114, 2009

n

φc (2 x, 2 y) =0 n→∞ 8n lim

Title Page Contents

for all x, y ∈ E1 and let f : E1 → E2 be an odd function with f (0) = 0 that satisfies the inequality

JJ

II

kDf (x, y)k ≤ φc (x, y)

J

I

(3.74)

for all x, y ∈ E1 . Then there exists a unique cubic function C : E1 → E2 such that  ∞ 1 X Φc 2k x (3.75) kf (2x) − 2f (x) − C (x)k ≤ 8 k=0 8k for all x ∈ E1 , where the mapping C(x) and Φc (2k x) are defined by (3.76)

 1  n+1 n f 2 x − 2f (2 x) n→∞ 8n

C (x) = lim

Page 43 of 57 Go Back Full Screen Close

    1 5 − 4a2 φc 2k x, 2k x + a2 φc 2k+1 x, 2k+1 x 2 −a    2 k+1 +2a φc 2 x, 2k x + 4 − 2a2 φc 2k x, 2k+1 x + φc 2k x, 2k 3x   + 2φc 2k (1 + a) x, 2k x +2φc 2k (1 − a) x, 2k x   +φc 2k (1 + 2a) x, 2k x + φc 2k (1 − 2a) x, 2k x

 (3.77) Φc 2k x =

a4

for all x ∈ E1 . Proof. Following along similar lines to those in the proof of Theorem 3.7, we have

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

(3.78)

kf (4x) − 10f (2x) + 16f (x)k ≤ Φc (x) , Title Page

where Φc (x) =

  1 5 − 4a2 φc (x, x) + a2 φc (2x, 2x) + 2a2 φc (2x, x) 4 2 (a − a )  + 4 − 2a2 φc (x, 2x) + φc (x, 3x) + 2φc ((1 + a) x, x) + 2φc ((1 − a) x, x) +φc ((1 + 2a) x, x) + φc ((1 − 2a) x, x)]

for all x ∈ E1 . It is easy to see from (3.78) that (3.79)

kf (4x) − 2f (2x) − 8 {f (2x) − 2f (x)}k ≤ Φc (x)

for all x ∈ E1 . Define a mapping δ : E1 → E2 by (3.80)

δ (x) = f (2x) − 2f (x)

for all x ∈ E1 . Using (3.80) in (3.79), we obtain (3.81)

kδ (2x) − 8δ (x)k ≤ Φc (x)

Contents

JJ

II

J

I

Page 44 of 57 Go Back Full Screen Close

for all x ∈ E1 . From (3.81), we have

Φc (x)

δ (2x)

(3.82)

8 − δ (x) ≤ 8 for all x ∈ E1 . Now replacing x by 2x and dividing by 8 in (3.82), we obtain

δ (22 x) δ (2x) Φc (2x)

(3.83)

82 − 8 ≤ 82 for all x ∈ E1 . From (3.82) and (3.83), we arrive at





δ (22 x)

δ (22 x) δ (2x) δ (2x)





(3.84) − δ (x) ≤ − + − δ (x)

82

82

8 8   1 Φc (2x) ≤ Φc (x) + 8 8 for all x ∈ E1 . In general for any positive integer n, we get 

n−1 k

δ (2n x)

1X Φ c 2 x

(3.85)

8n − δ (x) ≤ 8 8k k=0  ∞ 1 X Φc 2k x ≤ 8 k=0 8k for all x ∈ E1 . In order to prove the convergence of the sequence

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 45 of 57 Go Back Full Screen Close

n

o δ(2n x) , replace 8n

x by 2m x and divide by 8m in (3.85). Then for any m, n > 0, we have



δ (2n+m x) δ (2m x)

δ (2n 2m x)

1 m



− δ (2 x)

8n+m − 8m = 8m 8n  n−1 1 X Φc 2k+m x ≤ 8 k=0 8k+m  ∞ 1 X Φc 2k+m x ≤ 8 k=0 8k+m → 0 as m → ∞ n n o for all x ∈ E1 . Hence the sequence δ(28nx) is a Cauchy sequence. Since E2 is complete, there exists a cubic mapping C : E1 → E2 such that δ (2n x) C (x) = lim n→∞ 8n

∀x ∈ E1 .

Letting n → ∞ in (3.84) and using (3.80) we see that (3.75) holds for all x ∈ E1 . The rest of the proof, which proves that C satisfies (1.20) and is unique, is similar to that of Theorem 3.1. The following corollary is an immediate consequence of Theorem 3.9 concerning the stability of (1.20). Corollary 3.10. Let ε, p be nonnegative real numbers. Suppose that an odd function

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 46 of 57 Go Back Full Screen Close

f : E1 → E2 with f (0) = 0 satisfies the inequality  ε (kxkp + kykp ) , 0 ≤ p < 3;        ε, (3.86) kDf (x, y)k ≤  ε kxkp kykp , 0 ≤ p < 32 ;         ε kxkp kykp + kxk2p + kyk2p , 0 ≤ p < 32 for all x, y ∈ E1 . Then there exists a unique cubic function C : E1 → E2 such that  λ kxkp 5 ,   8−2p       λ76 , (3.87) kf (2x) − 8f (x) − A (x)k ≤ λ7 kxk2p   ,  8−22p      λ8 kxk2p , 8−22p for all x ∈ E1 , where λi (i = 5, 6, 7, 8) are given in Corollary 3.8. Theorem 3.11. Let φ : E1 × E1 → [0, ∞) be a function such that (3.88)

∞ X φa (2n x, 2n y)

2n

n=0

,

∞ X φc (2n x, 2n y) n=0

8n

converges

φc (2n x, 2n y) φa (2n x, 2n y) = 0 = lim n→∞ n→∞ 2n 8n lim

vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 47 of 57 Go Back Full Screen

and (3.89)

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan

Close

for all x, y ∈ E1 . Suppose that an odd function f : E1 → E2 with f (0) = 0 satisfies the inequalities (3.44) and (3.74) for all x, y ∈ E1 . Then there exists a unique additive function A : E1 → E2 and a unique cubic function C : E1 → E2 such that ( ∞  ) ∞ 1 1 X Φa 2k x 1 X Φc 2k x (3.90) kf (x) − A (x) − C (x)k ≤ + 6 2 k=0 2k 8 k=0 8k   for all x ∈ E1 , where Φa 2k x and Φc 2k x are defined by (3.47) and (3.77), respectively for all x ∈ E1 .

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Proof. By Theorems 3.7 and 3.9, there exists a unique additive function A1 : E1 → E2 and a unique cubic function C1 : E1 → E2 such that  ∞ 1 X Φa 2k x (3.91) kf (2x) − 8f (x) − A1 (x)k ≤ 2 k=0 2k

JJ

II

and

J

I

(3.92)

kf (2x) − 2f (x) − C1 (x)k ≤

1 8

∞ X k=0

Φc 2k x 8k



for all x ∈ E1 . Now from (3.91) and (3.92), one can see that



1 1

f (x) + A1 (x) − C1 (x)

6 6

   

f (2x) 8f (x) A1 (x) f (2x) 2f (x) C1 (x)

= − + + + − −

6 6 6 6 6 6 1 ≤ {kf (2x) − 8f (x) − A1 (x)k + kf (2x) − 2f (x) − C1 (x)k} 6

Title Page Contents

Page 48 of 57 Go Back Full Screen Close

1 ≤ 6

(

 ) ∞ ∞ 1 X Φa 2k x 1 X Φc 2k x + 2 k=0 2k 8 k=0 8k

for all x ∈ E1 . Thus we obtain (3.90) by defining A (x) = −1 A1 (x) and C (x) = 6 1 k k C (x), where Φa 2 x and Φc 2 x are defined in (3.47) and (3.77), respectively 6 1 for all x ∈ E1 . The following corollary is an immediate consequence of Theorem 3.11 concerning the stability of (1.20).

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Corollary 3.12. Let ε, p be nonnegative real numbers. Suppose that an odd function f : E1 → E2 with f (0) = 0 satisfies the inequality  ε (kxkp + kykp ) , 0 ≤ p < 1;        ε, (3.93) kDf (x, y)k ≤  ε kxkp kykp , 0 ≤ p < 21 ;         ε kxkp kykp + kxk2p + kyk2p , 0 ≤ p < 12 for all x, y ∈ E1 . Then there exists a unique additive function A : E1 → E2 and a unique cubic function C : E1 → E2 such that  λ kxkp  1 1 5  , p + 8−2p  6 2−2     6  ,  4λ 21 (3.94) kf (x) − A (x) − C (x)k ≤ λ7 kxk2p  1  1  + ,  2p 2p 6 2−2 8−2      λ8 kxkp  1 + 8−21 2p , 6 2−22p

Title Page Contents

JJ

II

J

I

Page 49 of 57 Go Back Full Screen Close

for all x ∈ E1 , where λi (i = 5, 6, 7, 8) are given in Corollary 3.8. Theorem 3.13. Let φ : E1 × E1 → [0, ∞) be a function that satisfies (3.36), (3.37), (3.88) and (3.89) for all x, y ∈ E1 . Suppose that a function f : E1 → E2 with f (0) = 0 satisfies the inequalities (3.2), (3.23), (3.44) and (3.74) for all x, y ∈ E1 . Then there exists a unique additive function A : E1 → E2 , a unique quadratic function B : E1 → E2 , a unique cubic function C : E1 → E2 and a unique quartic function D : E1 → E2 such that kf (x) − A (x) − B (x) − C (x) − D (x)k o 1 ne e e e ≤ Φa (x) + Φb (x) + Φc (x) + Φd (x) 2 e a (x) , Φ e b (x) , Φ e c (x) and Φ e d (x) are defined by for all x ∈ E1 , where Φ ( ∞  ) ∞ k X Φa 2k x X Φ −2 x 1 1 1 a e a (x) = , (3.96) Φ + 6 2 k=0 2k 2 k=0 2k (3.95)

(3.97)

(3.98)

(3.99)

e b (x) = 1 Φ 12

(

e c (x) = 1 Φ 6

(

e d (x) = 1 Φ 12

(

respectively for all x ∈ E1 .

 ) ∞ ∞ 1 X Φb 2k x 1 X Φb −2k x + , 4 k=0 4k 4 k=0 4k ∞





1 X Φc 2k x 1 X Φc −2k x + 8 k=0 8k 8 k=0 8k

)

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 50 of 57 Go Back Full Screen

,

 ) ∞ ∞ 1 X Φd 2k x 1 X Φd −2k x + , 16 k=0 16k 16 k=0 16k

Close

Proof. Let fe (x) = fe (−x). Hence

1 2

{f (x) + f (−x)} for all x ∈ E1 . Then fe (0) = 0, fe (x) = 1 {kDf (x, y) + Df (−x, −y)k} 2 1 ≤ {kDf (x, y)k + kDf (−x, −y)k} 2 1 ≤ {φ (x, y) + φ (−x, −y)} 2

kDfe (x, y)k =

for all x ∈ E1 . Hence from Theorem 3.5, there exists a unique quadratic function B : E1 → E2 and a unique quartic function D : E1 → E2 such that (3.100)

kf (x) − B (x) − D (x)k ( " ∞  # ∞ 1 X Φd 2k x 1 1 1 X Φb 2k x ≤ + 2 12 4 k=0 4k 16 k=0 16k " ∞   #) ∞ 1 1 X Φb −2k x 1 X Φd −2k x + + 12 4 k=0 4k 16 k=0 16k o 1 ne e d (x) , ≤ Φb (x) + Φ 2

e b (x) and Φ e d (x) are given in (3.97) and (3.99) for all x ∈ E1 . Again fo (x) = where Φ 1 {f (x) − f ( −x)} for all x ∈ E1 . Then fo (0) = 0, fo (x) = −fo (−x). Hence 2 1 {kDf (x, y) − Df ( −x, −y)k} 2 1 ≤ {kDf (x, y)k + kDf ( −x, −y)k} 2

kDfo (x, y)k =

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 51 of 57 Go Back Full Screen Close



1 {φ (x, y) + φ ( −x, −y)} 2

for all x ∈ E1 . Hence from Theorem 3.11, there exists a unique additive function A : E1 → E2 and a unique cubic function C : E1 → E2 such that (3.101)

kf (x) − A (x) − C (x)k ( " ∞  # ∞ 1 X Φc 2k x 1 1 1 X Φa 2k x + ≤ 2 6 2 k=0 2k 8 k=0 8k " ∞   #) ∞ 1 1 X Φa −2k x 1 X Φc −2k x + + 6 2 k=0 2k 8 k=0 8k o 1 ne e c (x) , ≤ Φa (x) + Φ 2

e a (x) and Φ e c (x) are given in (3.96) and (3.98) for all x ∈ E1 . Since f (x) = where Φ fe (x) + fo (x), then it follows from (3.100) and (3.101) that kf (x) − A (x) − B (x) − C (x) − D (x)k = k{fe (x) − B (x) − D (x)} + {fo (x) − C (x) − D (x)}k ≤ kfe (x) − B (x) − D (x)k + kfo (x) − C (x) − D (x)k o 1 ne e b (x) + Φ e c (x) + Φ e d (x) ≤ Φa (x) + Φ 2 for all x ∈ E1 . Hence the proof of the theorem is complete. The following corollary is an immediate consequence of Theorem 3.13 concerning the stability of (1.20).

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 52 of 57 Go Back Full Screen Close

Corollary 3.14. Let ε, p be nonnegative real numbers. Suppose a function f : E1 → E2 with f (0) = 0 satisfies the inequality  ε (kxkp + kykp ) , 0 ≤ p < 1;        ε, (3.102) kDf (x, y)k ≤  ε kxkp kykp , 0 ≤ p < 21 ;         ε kxkp kykp + kxk2p + kyk2p , 0 ≤ p < 12 for all x, y ∈ E1 . Then there exists a unique additive function A : E1 → E2 , a unique quadratic function B : E1 → E2 , a unique cubic function C : E1 → E2 and a unique quartic function D : E1 → E2 such that (3.103)

kf (x) − A (x) − B (x) − C (x) − D (x)k  λ  λ5  1 1 1 1 1 1  + + + kxkp ; p p p p  2 6 4−2 16−2 3 2−2 8−2      1 λ2 + 4λ6 ; 2 21 ≤   1 λ  1 1 λ3 1  + 16−2 + 37 2−22p + 8−21 2p kxk2p ;  2p 2 6 4−22p     1  λ4  1 + 1 + λ8  1 + 1 kxk2p 2 6 4−22p 16−22p 3 2−22p 8−22p

for all x ∈ E1 , where λi (i = 1, . . . , 8) are respectively, given in Corollaries 3.6 and 3.12.

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 53 of 57 Go Back Full Screen Close

References [1] J. ACZEL AND J. DHOMBRES, Functional Equations in Several Variables, Cambridge University, Press, Cambridge, 1989. [2] T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1951), 64–66. [3] I.S. CHANG, E.H. LEE AND H.M. KIM, On the Hyers-Ulam-Rassias stability of a quadratic functional equations, Math. Ineq. Appl., 6(1) (2003), 87–95.

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

[4] S. CZERWIK, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, 2002. Title Page

[5] S. CZERWIK, Stability of Functional Equations of Ulam-Hyers Rassias Type, Hadronic Press, Plam Harbor, Florida, 2003. [6] M. ESHAGHI GORDJI, A. EBADIAN AND S. ZOLFAGHRI, Stability of a functional equation deriving from cubic and quartic functions, Abstract and Applied Analysis, (submitted). [7] M. ESHAGHI GORDJI, S. KABOLI AND S. ZOLFAGHRI, Stability of a mixed type quadratic, cubic and quartic functional equations, arxiv: 0812.2939v1 Math FA, 15 Dec 2008. [8] M. ESHAGHI GORDJI AND H. KHODAIE, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasiBanach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008. [9] Z. GAJDA, On the stability of additive mappings, Inter. J. Math. Math. Sci., 14 (1991), 431–434.

Contents

JJ

II

J

I

Page 54 of 57 Go Back Full Screen Close

[10] P. GAVURUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. [11] P. GAVURUTA, An answer to a question of J.M.Rassias concerning the stability of Cauchy functional equation, Advances in Equations and Inequalities, Hadronic Math. Ser., (1999), 67–71. [12] D.H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27 (1941), 222–224.

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan

[13] D.H. HYERS, G. ISAC AND Th.M. RASSIAS, Stability of Functional Equations in Several Variables, Birkhauser Basel, 1998.

vol. 10, iss. 4, art. 114, 2009

[14] K.W. JUN AND H.M. KIM, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 867–878.

Title Page

[15] K.W. JUN AND H.M. KIM, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive type functional equation, Bull. Korean Math. Soc., 42(1) (2005), 133–148. [16] K.W. JUN AND H.M. KIM, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. Appl., 9(1) (2006), 153–165. [17] S.M. JUNG, On the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 204 (1996), 221–226. [18] S.M. JUNG, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126–137. [19] S.M. JUNG, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl., 232 (1999), 384–393.

Contents

JJ

II

J

I

Page 55 of 57 Go Back Full Screen Close

[20] Pl. KANNAPPAN, Quadratic functional equation inner product spaces, Results Math., 27(3-4) (1995), 368–372. [21] S.H. LEE, S.M. IM AND I.S. HWANG, Quartic functional equations, J. Math. Anal. Appl., 307 (2005), 387–394. [22] A. NAJATI AND M.B. MOGHIMI, On the stability of a quadratic and additive functional equation, J. Math. Anal. Appl., 337 (2008), 399–415. ∗

[23] C. PARK, Homomorphisms and derivations in C −algebras, Hindawi Publ. Co., Abstract and Applied Analysis, Volume 2007, Article ID 80630, doi:10.1155/2007/80630, 1–12. [24] J.M. RASSIAS, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46 (1982), 126–130. [25] J.M. RASSIAS, Solution of the Ulam stability problem for the quartic mapping, Glasnik Mathematica, 34(54) (1999), 243–252. [26] Th.M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. [27] Th.M. RASSIAS AND P. SEMRL, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., 173 (1993), 325–338. [28] K. RAVI AND M. ARUNKUMAR, On the Ulam-Gavruta-Rassias stability of the orthogonally Euler-Lagrange type functional equation, Internat. J. Appl. Math. Stat., 7 (2007), 143–156. [29] K. RAVI, M. ARUNKUMAR AND J.M. RASSIAS, Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Stat., 3 (2008), A08, 36–46.

Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 56 of 57 Go Back Full Screen Close

[30] M.A. SIBAHA, B. BOUIKHALENE AND E. ELQORACHI, Ulam-GavrutaRassias stability for a linear functional equation, Internat. J. Appl. Math. Stat., 7 (2007), 157–168. [31] S.M. ULAM, Problems in Modern Mathematics, Rend. Chap.VI, Wiley, New York, 1960. Stability of Generalized Mixed Type K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan vol. 10, iss. 4, art. 114, 2009

Title Page Contents

JJ

II

J

I

Page 57 of 57 Go Back Full Screen Close

Suggest Documents